-
2
-
-
84856275943
-
Classification and regression trees
-
Loh W-Y. Classification and regression trees. WIREs Data Mining Knowl Discov 2011, 1:14-23.
-
(2011)
WIREs Data Mining Knowl Discov
, vol.1
, pp. 14-23
-
-
Loh, W.-Y.1
-
3
-
-
0021875130
-
Tree-structured survival analysis
-
Gordon L, Olshen RA. Tree-structured survival analysis. Cancer Treat Rep 1985, 69:1065-1069.
-
(1985)
Cancer Treat Rep
, vol.69
, pp. 1065-1069
-
-
Gordon, L.1
Olshen, R.A.2
-
4
-
-
0035478854
-
Random forests
-
Breiman L. Random forests. Mach Learn 2001, 45:5-32.
-
(2001)
Mach Learn
, vol.45
, pp. 5-32
-
-
Breiman, L.1
-
5
-
-
0030211964
-
Bagging predictors
-
Breiman L. Bagging predictors. Mach Learn 1996, 24:123-140.
-
(1996)
Mach Learn
, vol.24
, pp. 123-140
-
-
Breiman, L.1
-
6
-
-
33745466826
-
Survival ensembles
-
Hothorn T, Bühlmann P, Dudoit S, Molinaro A, van der Laan MJ. Survival ensembles. Biostatistics 2006, 7:355-373.
-
(2006)
Biostatistics
, vol.7
, pp. 355-373
-
-
Hothorn, T.1
Bühlmann, P.2
Dudoit, S.3
Molinaro, A.4
van der Laan, M.J.5
-
7
-
-
57449111248
-
Random survival forests
-
Ishwaran H, Kogalur UB, Blackstone EH, Lauer MS. Random survival forests. Ann App Statist 2008, 2:841-860.
-
(2008)
Ann App Statist
, vol.2
, pp. 841-860
-
-
Ishwaran, H.1
Kogalur, U.B.2
Blackstone, E.H.3
Lauer, M.S.4
-
8
-
-
84890875937
-
Probability estimation with machine learning methods for dichotomous and multi-category outcome: theory
-
Kruppa J, Liu Y, Biau G, Kohler M, König IR, Malley JD, Ziegler A. Probability estimation with machine learning methods for dichotomous and multi-category outcome: theory. Biom J, In press.
-
Biom J,
-
-
Kruppa, J.1
Liu, Y.2
Biau, G.3
Kohler, M.4
König, I.R.5
Malley, J.D.6
Ziegler, A.7
-
9
-
-
77949388276
-
The behaviour of random forest permutation-based variable importance measures under predictor correlation
-
Nicodemus KK, Malley JD, Strobl C, Ziegler A. The behaviour of random forest permutation-based variable importance measures under predictor correlation. BMC Bioinformatics 2010, 11:110.
-
(2010)
BMC Bioinformatics
, vol.11
, pp. 110
-
-
Nicodemus, K.K.1
Malley, J.D.2
Strobl, C.3
Ziegler, A.4
-
10
-
-
84873187093
-
Overview of random forest methodology and practical guidance with emphasis on computational biology and bioinformatics
-
Boulesteix A-L, Janitza S, Kruppa J, König IR. Overview of random forest methodology and practical guidance with emphasis on computational biology and bioinformatics. WIREs Data Mining Knowl Discov 2012, 2:493-507.
-
(2012)
WIREs Data Mining Knowl Discov
, vol.2
, pp. 493-507
-
-
Boulesteix, A.-L.1
Janitza, S.2
Kruppa, J.3
König, I.R.4
-
11
-
-
80052880887
-
Methods for identifying SNP interactions: a review on variations of Logic Regression, Random Forest and Bayesian logistic regression
-
Chen CC, Schwender H, Keith J, Nunkesser R, Mengersen K, Macrossan P. Methods for identifying SNP interactions: a review on variations of Logic Regression, Random Forest and Bayesian logistic regression. IEEE/ACM Trans Comput Biol Bioinform 2011, 8:1580-1591.
-
(2011)
IEEE/ACM Trans Comput Biol Bioinform
, vol.8
, pp. 1580-1591
-
-
Chen, C.C.1
Schwender, H.2
Keith, J.3
Nunkesser, R.4
Mengersen, K.5
Macrossan, P.6
-
12
-
-
84861730860
-
Random forests for genomic data analysis
-
Chen X, Ishwaran H. Random forests for genomic data analysis. Genomics 2012, 99:323-329.
-
(2012)
Genomics
, vol.99
, pp. 323-329
-
-
Chen, X.1
Ishwaran, H.2
-
13
-
-
33747891439
-
Random forests for microarrays
-
Cutler A, Stevens JR. Random forests for microarrays. Meth Enzymol 2006, 411:422-432.
-
(2006)
Meth Enzymol
, vol.411
, pp. 422-432
-
-
Cutler, A.1
Stevens, J.R.2
-
14
-
-
77958469133
-
Multigenic modeling of complex disease by random forests
-
Sun YV. Multigenic modeling of complex disease by random forests. Adv Genet 2010, 72:73-99.
-
(2010)
Adv Genet
, vol.72
, pp. 73-99
-
-
Sun, Y.V.1
-
15
-
-
72449170109
-
An introduction to recursive partitioning: rationale, application, and characteristics of classification and regression trees, bagging, and random forests
-
Strobl C, Malley J, Tutz G. An introduction to recursive partitioning: rationale, application, and characteristics of classification and regression trees, bagging, and random forests. Psychol Methods 2009, 14:323-348.
-
(2009)
Psychol Methods
, vol.14
, pp. 323-348
-
-
Strobl, C.1
Malley, J.2
Tutz, G.3
-
16
-
-
84871787691
-
Data mining in the life sciences with random forest: a walk in the park or lost in the jungle?
-
Touw WG, Bayjanov JR, Overmars L, Backus L, Boekhorst J, Wels M, van Hijum SA. Data mining in the life sciences with random forest: a walk in the park or lost in the jungle? Brief Bioinform 2013, 14:315-326.
-
(2013)
Brief Bioinform
, vol.14
, pp. 315-326
-
-
Touw, W.G.1
Bayjanov, J.R.2
Overmars, L.3
Backus, L.4
Boekhorst, J.5
Wels, M.6
van Hijum, S.A.7
-
17
-
-
77958064179
-
Mining data with random forests: a survey and results of new tests
-
Verikas A, Gelzinis A, Bacauskiene M. Mining data with random forests: a survey and results of new tests. Pattern Recogn 2011, 44:330-349.
-
(2011)
Pattern Recogn
, vol.44
, pp. 330-349
-
-
Verikas, A.1
Gelzinis, A.2
Bacauskiene, M.3
-
18
-
-
84872386141
-
Bias of the random forest out-of-bag (OOB) error for certain input parameters
-
Mitchell MW. Bias of the random forest out-of-bag (OOB) error for certain input parameters. Open J Statist 2011, 1:205-211.
-
(2011)
Open J Statist
, vol.1
, pp. 205-211
-
-
Mitchell, M.W.1
-
19
-
-
77954485448
-
On safari to Random Jungle: a fast implementation of Random Forests for high-dimensional data
-
Schwarz DF, König IR, Ziegler A. On safari to Random Jungle: a fast implementation of Random Forests for high-dimensional data. Bioinformatics 2010, 26:1752-1758.
-
(2010)
Bioinformatics
, vol.26
, pp. 1752-1758
-
-
Schwarz, D.F.1
König, I.R.2
Ziegler, A.3
-
20
-
-
84890875591
-
-
Random Forests: some methodological insights. arXiv: 0811.3619. Available at:
-
Genuer R, Poggi JM, Tuleau C. Random Forests: some methodological insights. arXiv: 0811.3619. 2008. Available at: http://hal.inria.fr/inria-00340725/en/;
-
(2008)
-
-
Genuer, R.1
Poggi, J.M.2
Tuleau, C.3
-
21
-
-
84874230954
-
Decision tree induction & clustering techniques in SAS Enterprise Miner, SPSS Clementine, and IBM Intelligent Miner - a comparative analysis
-
Al Ghoson AM. Decision tree induction & clustering techniques in SAS Enterprise Miner, SPSS Clementine, and IBM Intelligent Miner - a comparative analysis. Int J Manag Inf Syst 2010, 14:57-70.
-
(2010)
Int J Manag Inf Syst
, vol.14
, pp. 57-70
-
-
Al Ghoson, A.M.1
-
23
-
-
84880692052
-
A brief introduction to boosting
-
Dean TL, ed. IJCAI-99: Proceedings of the Sixteenth International Joint Conference on Artificial Intelligence, San Francisco, CA: Morgan Kaufmann;
-
Schapire RE. A brief introduction to boosting. In: Dean TL, ed. IJCAI-99: Proceedings of the Sixteenth International Joint Conference on Artificial Intelligence, vol. 2. San Francisco, CA: Morgan Kaufmann; 1999, 1401-1406.
-
(1999)
, vol.2
, pp. 1401-1406
-
-
Schapire, R.E.1
-
24
-
-
0034164230
-
Additive logistic regression: a statistical view of boosting
-
Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical view of boosting. Ann Stat 2000, 28:337-407.
-
(2000)
Ann Stat
, vol.28
, pp. 337-407
-
-
Friedman, J.1
Hastie, T.2
Tibshirani, R.3
-
25
-
-
33749254096
-
An empirical comparison of supervised learning algorithms
-
Cohen W, Moore A, eds. New York: Association for Computing Machinery;
-
Caruana R, Niculescu-Mizil A. An empirical comparison of supervised learning algorithms. In: Cohen W, Moore A, eds. Proceedings of the 23rd International Conference on Machine Learning. New York: Association for Computing Machinery; 2006, 161-168.
-
(2006)
Proceedings of the 23rd International Conference on Machine Learning
, pp. 161-168
-
-
Caruana, R.1
Niculescu-Mizil, A.2
-
26
-
-
33749677657
-
Unbiased recursive partitioning: a conditional inference framework
-
Hothorn T, Hornik K, Zeileis A. Unbiased recursive partitioning: a conditional inference framework. J Comput Graph Stat 2006, 15:651-674.
-
(2006)
J Comput Graph Stat
, vol.15
, pp. 651-674
-
-
Hothorn, T.1
Hornik, K.2
Zeileis, A.3
-
27
-
-
54249099241
-
Consistency of random forests and other averaging classifiers
-
Biau G, Devroye L, Lugosi G. Consistency of random forests and other averaging classifiers. J Mach Learn Res 2008, 9:2039-2057.
-
(2008)
J Mach Learn Res
, vol.9
, pp. 2039-2057
-
-
Biau, G.1
Devroye, L.2
Lugosi, G.3
-
28
-
-
77956747417
-
On the layered nearest neighbour estimate, the bagged nearest neighbour estimate and the random forest method in regression and classification
-
Biau G, Devroye L. On the layered nearest neighbour estimate, the bagged nearest neighbour estimate and the random forest method in regression and classification. J Multivariate Anal 2010, 101:2499-2518.
-
(2010)
J Multivariate Anal
, vol.101
, pp. 2499-2518
-
-
Biau, G.1
Devroye, L.2
-
29
-
-
84860701629
-
Analysis of a random forests model
-
Biau G. Analysis of a random forests model. J Mach Learn Res 2012, 13:1063-1095.
-
(2012)
J Mach Learn Res
, vol.13
, pp. 1063-1095
-
-
Biau, G.1
-
30
-
-
84865253237
-
Variance reduction in purely random forests
-
Genuer R. Variance reduction in purely random forests. J Nonparametric Stat 2012, 24:543-562.
-
(2012)
J Nonparametric Stat
, vol.24
, pp. 543-562
-
-
Genuer, R.1
-
31
-
-
84890870316
-
-
Some infinity theory for predictor ensembles. Available at:
-
Breiman L. Some infinity theory for predictor ensembles. 2000. Available at: http://digitalassets.lib.berkeley.edu/sdtr/ucb/text/579.pdf.
-
(2000)
-
-
Breiman, L.1
-
32
-
-
41949115461
-
Random survival forests for R
-
Ishwaran H, Kogalur UB. Random survival forests for R. R-News 2007, 7:25-31.
-
(2007)
R-News
, vol.7
, pp. 25-31
-
-
Ishwaran, H.1
Kogalur, U.B.2
-
33
-
-
33847096395
-
Bias in random forest variable importance measures: illustrations, sources and a solution
-
Strobl C, Boulesteix AL, Zeileis A, Hothorn T. Bias in random forest variable importance measures: illustrations, sources and a solution. BMC Bioinformatics 2007, 8:25.
-
(2007)
BMC Bioinformatics
, vol.8
, pp. 25
-
-
Strobl, C.1
Boulesteix, A.L.2
Zeileis, A.3
Hothorn, T.4
-
34
-
-
67650770061
-
Predictor correlation impacts machine learning algorithms: implications for genomic studies
-
Nicodemus KK, Malley JD. Predictor correlation impacts machine learning algorithms: implications for genomic studies. Bioinformatics 2009, 25:1884-1890.
-
(2009)
Bioinformatics
, vol.25
, pp. 1884-1890
-
-
Nicodemus, K.K.1
Malley, J.D.2
-
35
-
-
64549095229
-
Performance of random forest when SNPs are in linkage disequilibrium
-
Meng YA, Yu Y, Cupples LA, Farrer LA, Lunetta KL. Performance of random forest when SNPs are in linkage disequilibrium. BMC Bioinformatics 2009, 10:78.
-
(2009)
BMC Bioinformatics
, vol.10
, pp. 78
-
-
Meng, Y.A.1
Yu, Y.2
Cupples, L.A.3
Farrer, L.A.4
Lunetta, K.L.5
-
36
-
-
84861813244
-
Random forest Gini importance favours SNPs with large minor allele frequency: impact, sources and recommendations
-
Boulesteix AL, Bender A, Lorenzo Bermejo J, Strobl C. Random forest Gini importance favours SNPs with large minor allele frequency: impact, sources and recommendations. Brief Bioinform 2012, 13:292-304.
-
(2012)
Brief Bioinform
, vol.13
, pp. 292-304
-
-
Boulesteix, A.L.1
Bender, A.2
Lorenzo Bermejo, J.3
Strobl, C.4
-
37
-
-
30644464444
-
Gene selection and classification of microarray data using random forest
-
Díaz-Uriarte R, Alvarez de Andrés S. Gene selection and classification of microarray data using random forest. BMC Bioinformatics 2006, 7:3.
-
(2006)
BMC Bioinformatics
, vol.7
, pp. 3
-
-
Díaz-Uriarte, R.1
Alvarez de Andrés, S.2
-
39
-
-
84890871129
-
-
Robustness of the random forest-based gene selection methods. Available at:
-
Kursa MB. Robustness of the random forest-based gene selection methods. 2013. Available at: http://arxiv.org/abs/1305.4525.
-
(2013)
-
-
Kursa, M.B.1
-
40
-
-
75149176440
-
Use of wrapper algorithms coupled with a random forests classifier for variable selection in large-scale genomic association studies
-
Rodin AS, Litvinenko A, Klos K, Morrison AC, Woodage T, Coresh J, Boerwinkle E. Use of wrapper algorithms coupled with a random forests classifier for variable selection in large-scale genomic association studies. J Comput Biol 2009, 16:1705-1718.
-
(2009)
J Comput Biol
, vol.16
, pp. 1705-1718
-
-
Rodin, A.S.1
Litvinenko, A.2
Klos, K.3
Morrison, A.C.4
Woodage, T.5
Coresh, J.6
Boerwinkle, E.7
-
41
-
-
79961013687
-
Variable selection using random forests
-
Zani S, Cerioli A, Riani M, Vichi M, eds. Heidelberg, Germany: Springer;
-
Sandri M, Zuccolotto P. Variable selection using random forests. In: Zani S, Cerioli A, Riani M, Vichi M, eds. Proceedings of the Meeting of the Classification and Data Analysis Group (CLADAG) of the Italian Statistical Society, University of Parma, June 6-8, 2005. Heidelberg, Germany: Springer; 2006, 263-270.
-
(2006)
Proceedings of the Meeting of the Classification and Data Analysis Group (CLADAG) of the Italian Statistical Society, University of Parma, June 6-8, 2005
, pp. 263-270
-
-
Sandri, M.1
Zuccolotto, P.2
-
42
-
-
84863447426
-
Search for the smallest random forest
-
Zhang H, Wang M. Search for the smallest random forest. Stat. its interface 2009, 2:381.
-
(2009)
Stat. its interface
, vol.2
, pp. 381
-
-
Zhang, H.1
Wang, M.2
-
43
-
-
84862685421
-
Identifying representative trees from ensembles
-
Banerjee M, Ding Y, Noone AM. Identifying representative trees from ensembles. Stat Med 2012, 31:1601-1616.
-
(2012)
Stat Med
, vol.31
, pp. 1601-1616
-
-
Banerjee, M.1
Ding, Y.2
Noone, A.M.3
-
44
-
-
84866731649
-
Risk estimation and risk prediction using machine learning methods
-
Kruppa J, Ziegler A, König IR. Risk estimation and risk prediction using machine learning methods. Hum Genet 2012, 131:1639-1654.
-
(2012)
Hum Genet
, vol.131
, pp. 1639-1654
-
-
Kruppa, J.1
Ziegler, A.2
König, I.R.3
-
45
-
-
30344458073
-
Comparison of the power between microsatellite and single-nucleotide polymorphism markers for linkage and linkage disequilibrium mapping of an electrophysiological phenotype
-
Lin HF, Juo SH, Cheng R. Comparison of the power between microsatellite and single-nucleotide polymorphism markers for linkage and linkage disequilibrium mapping of an electrophysiological phenotype. BMC Genet 2005, 6:S7.
-
(2005)
BMC Genet
, vol.6
-
-
Lin, H.F.1
Juo, S.H.2
Cheng, R.3
-
46
-
-
80255133264
-
An experimental comparison of classification algorithms for imbalanced credit scoring data sets
-
Brown I, Mues C. An experimental comparison of classification algorithms for imbalanced credit scoring data sets. Exp Syst Appl 2012, 39:3446-3453.
-
(2012)
Exp Syst Appl
, vol.39
, pp. 3446-3453
-
-
Brown, I.1
Mues, C.2
-
47
-
-
34249981761
-
Weather regime prediction using statistical learning
-
Deloncle A, Berk R, D'Andrea F, Ghil M. Weather regime prediction using statistical learning. J Atmos Sci 2007, 64:1619-1635.
-
(2007)
J Atmos Sci
, vol.64
, pp. 1619-1635
-
-
Deloncle, A.1
Berk, R.2
D'Andrea, F.3
Ghil, M.4
-
48
-
-
13344278660
-
Random forest classifier for remote sensing classification
-
Pal M. Random forest classifier for remote sensing classification. Int J Remote Sens 2005, 26:217-222.
-
(2005)
Int J Remote Sens
, vol.26
, pp. 217-222
-
-
Pal, M.1
|