메뉴 건너뛰기




Volumn 1, Issue , 2012, Pages 1-10

Spatiotemporal data mining in the era of big spatial data: Algorithms and applications

Author keywords

Big data; Computational and I O challenges; Large scale data mining; Spatiotemporal patterns

Indexed keywords

BIG DATUM; COMPUTATIONAL AND I/O CHALLENGES; COMPUTATIONALLY EFFICIENT; LARGE SCALE DATA; SPATIAL DATA MINING; SPATIO-TEMPORAL DATA; SPATIO-TEMPORAL DATA MINING; SPATIOTEMPORAL PATTERNS;

EID: 84876770463     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/2447481.2447482     Document Type: Conference Paper
Times cited : (132)

References (62)
  • 3
    • 0000913755 scopus 로고
    • Spatial interaction and the statistical analysis of lattice systems
    • J. Besag. Spatial interaction and the statistical analysis of lattice systems. Journal of Royal Statistical Society, 36:192-236, 1974.
    • (1974) Journal of Royal Statistical Society , vol.36 , pp. 192-236
    • Besag, J.1
  • 4
    • 0000013152 scopus 로고
    • On the statistical analysis of dirty pictures
    • J. Besag. On the statistical analysis of dirty pictures. J. Royal Statistical Soc, (48):259-302, 1986.
    • (1986) J. Royal Statistical Soc , Issue.48 , pp. 259-302
    • Besag, J.1
  • 5
    • 0003857778 scopus 로고    scopus 로고
    • A gentle tutorial on the em algorithm and its application to parameter estimation for Gaussian mixture and hidden Markov models
    • ICSI-TR-97-021, 1997
    • J. Bilmes. A gentle tutorial on the em algorithm and its application to parameter estimation for gaussian mixture and hidden markov models. Technical Report, University of Berkeley, ICSI-TR-97-021, 1997., 1997.
    • (1997) Technical Report, University of Berkeley
    • Bilmes, J.1
  • 7
    • 78751619151 scopus 로고    scopus 로고
    • Jatropha: A samllholder bioenergy crop. The potential for pro-poor development
    • R. Brittaine and N. Lutaladio. Jatropha: A samllholder bioenergy crop. the potential for pro-poor development. Integrated Crop Management, 8:1-114, 2010.
    • (2010) Integrated Crop Management , vol.8 , pp. 1-114
    • Brittaine, R.1    Lutaladio, N.2
  • 11
    • 84880082689 scopus 로고    scopus 로고
    • A Gaussian process based online change detection algorithm for monitoring periodic time series
    • V. Chandola and R. R. Vatsavai. A gaussian process based online change detection algorithm for monitoring periodic time series. In SIAM Data Mining (SDM), 2011.
    • (2011) SIAM Data Mining (SDM)
    • Chandola, V.1    Vatsavai, R.R.2
  • 12
    • 79960363460 scopus 로고    scopus 로고
    • A scalable Gaussian process analysis algorithm for biomass monitoring
    • V. Chandola and R. R. Vatsavai. A scalable gaussian process analysis algorithm for biomass monitoring. Statistical Analysis and Data Mining, 4(4):430-445, 2011.
    • (2011) Statistical Analysis and Data Mining , vol.4 , Issue.4 , pp. 430-445
    • Chandola, V.1    Vatsavai, R.R.2
  • 17
    • 84876754419 scopus 로고    scopus 로고
    • Mining extremes: Severe rainfall and climate change
    • D. Das, E. Kodra, Z. Obradovic, and A. R. Ganguly. Mining extremes: Severe rainfall and climate change. In ECAI, pages 899-900, 2012.
    • (2012) ECAI , pp. 899-900
    • Das, D.1    Kodra, E.2    Obradovic, Z.3    Ganguly, A.R.4
  • 19
    • 78649984950 scopus 로고    scopus 로고
    • Dataspaces: An interaction and coordination framework for coupled simulation workflows
    • C. Docan, M. Parashar, and S. Klasky. Dataspaces: an interaction and coordination framework for coupled simulation workflows. In HPDC, pages 25-36, 2010.
    • (2010) HPDC , pp. 25-36
    • Docan, C.1    Parashar, M.2    Klasky, S.3
  • 21
    • 62449142603 scopus 로고    scopus 로고
    • Data mining for climate change and impacts
    • A. R. Ganguly and K. Steinhaeuser. Data mining for climate change and impacts. In ICDM Workshops, pages 385-394, 2008.
    • (2008) ICDM Workshops , pp. 385-394
    • Ganguly, A.R.1    Steinhaeuser, K.2
  • 27
    • 0029778002 scopus 로고    scopus 로고
    • Bayesian contextual classification based on modified M-estimates and Markov random fields
    • Y. Jhung and P. H. Swain. Bayesian Contextual Classification Based on Modified M-Estimates and Markov Random Fields. IEEE Transaction on Pattern Analysis and Machine Intelligence, 34(1):67-75, 1996.
    • (1996) IEEE Transaction on Pattern Analysis and Machine Intelligence , vol.34 , Issue.1 , pp. 67-75
    • Jhung, Y.1    Swain, P.H.2
  • 30
    • 80052308487 scopus 로고    scopus 로고
    • Intensity, duration, and frequency of precipitation extremes under 21st-century warming scenarios
    • S.-C. Kao and A. R. Ganguly. Intensity, duration, and frequency of precipitation extremes under 21st-century warming scenarios. J. Geophys. Res., 116(D16119), 2011.
    • (2011) J. Geophys. Res. , vol.116
    • Kao, S.-C.1    Ganguly, A.R.2
  • 32
    • 33846315505 scopus 로고    scopus 로고
    • On-board vehicle data stream monitoring using mine-fleet and fast resource constrained monitoring of correlation matrices
    • Jan.
    • H. Kargupta, V. Puttagunta, M. Klein, and K. Sarkar. On-board vehicle data stream monitoring using mine-fleet and fast resource constrained monitoring of correlation matrices. New Gen. Comput., 25(1):5-32, Jan. 2007.
    • (2007) New Gen. Comput. , vol.25 , Issue.1 , pp. 5-32
    • Kargupta, H.1    Puttagunta, V.2    Klein, M.3    Sarkar, K.4
  • 36
    • 84872286497 scopus 로고    scopus 로고
    • In situ data processing for extreme-scale computing
    • S. Klasky and et. al. In situ data processing for extreme-scale computing. In SicDAC, page 16, 2011.
    • (2011) SicDAC , pp. 16
    • Klasky, S.1
  • 37
    • 0000064189 scopus 로고    scopus 로고
    • Bayesian estimation of spatial autoregressive models
    • J. LeSage. Bayesian estimation of spatial autoregressive models. International Regional Science Review, (20):113-129, 1997.
    • (1997) International Regional Science Review , Issue.20 , pp. 113-129
    • LeSage, J.1
  • 41
    • 77953686740 scopus 로고    scopus 로고
    • Left-hand-turn elimination
    • December 9
    • J. Lovell. Left-hand-turn elimination. New York Times, http://goo.gl/3bkPb December 9, 2007.
    • (2007) New York Times
    • Lovell, J.1
  • 42
    • 0348234026 scopus 로고    scopus 로고
    • Spatial autoregression and related spatio-temporal models
    • C. Ma. Spatial autoregression and related spatio-temporal models. J. Multivarate Analysis, 88(1):152-162, 2004.
    • (2004) J. Multivarate Analysis , vol.88 , Issue.1 , pp. 152-162
    • Ma, C.1
  • 45
    • 84967194080 scopus 로고    scopus 로고
    • Editorial: The growth of CCTV: A global perspective on the international diffusion of video surveillance in publicly accessible space
    • V. Norris, M. McCahill, and D. Wood. Editorial: The growth of CCTV: a global perspective on the international diffusion of video surveillance in publicly accessible space. Surveillance and Society, 2(2/3):110-135, 2004.
    • (2004) Surveillance and Society , vol.2 , Issue.2-3 , pp. 110-135
    • Norris, V.1    McCahill, M.2    Wood, D.3
  • 46
    • 79951498486 scopus 로고    scopus 로고
    • Climate data challenges in the 21st century
    • J. T. Overpeck, G. A. Meehl, S. Bony, and D. R. Easterling. Climate data challenges in the 21st century. Science, 331(6018):700-702, 2011.
    • (2011) Science , vol.331 , Issue.6018 , pp. 700-702
    • Overpeck, J.T.1    Meehl, G.A.2    Bony, S.3    Easterling, D.R.4
  • 47
    • 0010032645 scopus 로고    scopus 로고
    • Quick computation of regressions with a spatially autoregressive dependent variable
    • R. Pace and R. Barry. Quick Computation of Regressions with a Spatially Autoregressive Dependent Variable. Geographic Analysis, 1997.
    • (1997) Geographic Analysis
    • Pace, R.1    Barry, R.2
  • 48
    • 0031554144 scopus 로고    scopus 로고
    • Sparse spatial autoregressions
    • (Publisher: Elsevier Science)
    • R. Pace and R. Barry. Sparse spatial autoregressions. Statistics and Probability Letters (Publisher: Elsevier Science), (33):291-297, 1997.
    • (1997) Statistics and Probability Letters , Issue.33 , pp. 291-297
    • Pace, R.1    Barry, R.2
  • 50
    • 84873450362 scopus 로고    scopus 로고
    • Differences in the mechanics of information diffusion across topics: Idioms, political hashtags and complex contagion on twitter
    • New York, NY, USA ACM
    • D. M. Romero, B. Meeder, and J. Kleinberg. Differences in the mechanics of information diffusion across topics: idioms, political hashtags and complex contagion on twitter. In Proceedings of the 20th international conference on World wide web, pages 695-704, New York, NY, USA, 2011. ACM.
    • (2011) Proceedings of the 20th International Conference on World Wide Web , pp. 695-704
    • Romero, D.M.1    Meeder, B.2    Kleinberg, J.3
  • 53
    • 0036613147 scopus 로고    scopus 로고
    • Spatial contextual classification and prediction models for mining geospatial data
    • S. Shekhar, P. Schrater, R. Vatsavai, W. Wu, and S. Chawla. Spatial contextual classification and prediction models for mining geospatial data. IEEE Transaction on Multimedia, 4(2):174-188, 2002.
    • (2002) IEEE Transaction on Multimedia , vol.4 , Issue.2 , pp. 174-188
    • Shekhar, S.1    Schrater, P.2    Vatsavai, R.3    Wu, W.4    Chawla, S.5
  • 54
    • 0029772671 scopus 로고    scopus 로고
    • A Markov random field model for classification of multisource satellite imagery
    • A. H. Solberg, T. Taxt, and A. K. Jain. A Markov Random Field Model for Classification of Multisource Satellite Imagery. IEEE Transaction on Geoscience and Remote Sensing, 34(1):100-113, 1996.
    • (1996) IEEE Transaction on Geoscience and Remote Sensing , vol.34 , Issue.1 , pp. 100-113
    • Solberg, A.H.1    Taxt, T.2    Jain, A.K.3
  • 55
    • 84876030318 scopus 로고    scopus 로고
    • Harvesting ambient geospatial information from social media feeds
    • A. Stefanidis, A. Crooks, and J. Radzikowski. Harvesting ambient geospatial information from social media feeds. GeoJournal, pages 1-20, 2011.
    • (2011) GeoJournal , pp. 1-20
    • Stefanidis, A.1    Crooks, A.2    Radzikowski, J.3
  • 56
    • 84864387092 scopus 로고    scopus 로고
    • Multivariate and multiscale dependence in the global climate system revealed through complex networks
    • K. Steinhaeuser, A. Ganguly, and N. Chawla. Multivariate and multiscale dependence in the global climate system revealed through complex networks. Climate Dynamics, 39:889-895, 2012.
    • (2012) Climate Dynamics , vol.39 , pp. 889-895
    • Steinhaeuser, K.1    Ganguly, A.2    Chawla, N.3
  • 59
    • 79951763773 scopus 로고    scopus 로고
    • Unsupervised semantic labeling framework for identification of complex facilities in high-resolution remote sensing images
    • R. R. Vatsavai, A. Cheriyadat, and S. S. Gleason. Unsupervised semantic labeling framework for identification of complex facilities in high-resolution remote sensing images. In ICDM Workshops, pages 273-280, 2010.
    • (2010) ICDM Workshops , pp. 273-280
    • Vatsavai, R.R.1    Cheriyadat, A.2    Gleason, S.S.3
  • 61
    • 0033542824 scopus 로고    scopus 로고
    • Fusion of image classifications using Bayesian techniques with Markov rand fields
    • C. E. Warrender and M. F. Augusteijn. Fusion of image classifications using Bayesian techniques with Markov rand fields. International Journal of Remote Sensing, 20(10):1987-2002, 1999.
    • (1999) International Journal of Remote Sensing , vol.20 , Issue.10 , pp. 1987-2002
    • Warrender, C.E.1    Augusteijn, M.F.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.