-
1
-
-
60349104299
-
The spliceosome: design principles of a dynamic RNP machine
-
Wahl M.C., et al. The spliceosome: design principles of a dynamic RNP machine. Cell 2009, 136:701-718.
-
(2009)
Cell
, vol.136
, pp. 701-718
-
-
Wahl, M.C.1
-
2
-
-
77951120000
-
Alternative splicing and evolution: diversification, exon definition and function
-
Keren H., et al. Alternative splicing and evolution: diversification, exon definition and function. Nat. Rev. Genet. 2010, 11:345-355.
-
(2010)
Nat. Rev. Genet.
, vol.11
, pp. 345-355
-
-
Keren, H.1
-
3
-
-
84875208735
-
Dynamic integration of splicing within gene regulatory pathways
-
Braunschweig U., et al. Dynamic integration of splicing within gene regulatory pathways. Cell 2013, 152:1252-1269.
-
(2013)
Cell
, vol.152
, pp. 1252-1269
-
-
Braunschweig, U.1
-
4
-
-
73949128867
-
The pathobiology of splicing
-
Ward A.J., Cooper T.A. The pathobiology of splicing. J. Pathol. 2010, 220:152-163.
-
(2010)
J. Pathol.
, vol.220
, pp. 152-163
-
-
Ward, A.J.1
Cooper, T.A.2
-
5
-
-
84871435525
-
Function of alternative splicing
-
Kelemen O., et al. Function of alternative splicing. Gene 2013, 514:1-30.
-
(2013)
Gene
, vol.514
, pp. 1-30
-
-
Kelemen, O.1
-
6
-
-
84919928214
-
A highly conserved program of neuronal microexons is misregulated in autistic brains
-
Irimia M., et al. A highly conserved program of neuronal microexons is misregulated in autistic brains. Cell 2014, 159:1511-1523.
-
(2014)
Cell
, vol.159
, pp. 1511-1523
-
-
Irimia, M.1
-
7
-
-
84864390703
-
Pre-mRNA splicing in disease and therapeutics
-
Singh R.K., Cooper T.A. Pre-mRNA splicing in disease and therapeutics. Trends Mol. Med. 2012, 18:472-482.
-
(2012)
Trends Mol. Med.
, vol.18
, pp. 472-482
-
-
Singh, R.K.1
Cooper, T.A.2
-
8
-
-
84868355027
-
The spliceosome as a target of novel antitumour drugs
-
Bonnal S., et al. The spliceosome as a target of novel antitumour drugs. Nat. Rev. Drug Discov. 2012, 11:847-859.
-
(2012)
Nat. Rev. Drug Discov.
, vol.11
, pp. 847-859
-
-
Bonnal, S.1
-
10
-
-
33644783626
-
Introns and the origin of nucleus-cytosol compartmentalization
-
Martin W., Koonin E.V. Introns and the origin of nucleus-cytosol compartmentalization. Nature 2006, 440:41-45.
-
(2006)
Nature
, vol.440
, pp. 41-45
-
-
Martin, W.1
Koonin, E.V.2
-
11
-
-
84942913896
-
Structural basis of pre-mRNA splicing
-
Hang J., et al. Structural basis of pre-mRNA splicing. Science 2015, 349:1191-1198.
-
(2015)
Science
, vol.349
, pp. 1191-1198
-
-
Hang, J.1
-
12
-
-
0027184481
-
A general two-metal-ion mechanism for catalytic RNA
-
Steitz T.A., Steitz J.A. A general two-metal-ion mechanism for catalytic RNA. Proc. Natl. Acad. Sci. U.S.A. 1993, 90:6498-6502.
-
(1993)
Proc. Natl. Acad. Sci. U.S.A.
, vol.90
, pp. 6498-6502
-
-
Steitz, T.A.1
Steitz, J.A.2
-
13
-
-
84887624226
-
RNA catalyses nuclear pre-mRNA splicing
-
Fica S.M., et al. RNA catalyses nuclear pre-mRNA splicing. Nature 2013, 503:229-234.
-
(2013)
Nature
, vol.503
, pp. 229-234
-
-
Fica, S.M.1
-
14
-
-
84893716781
-
The spliceosome: disorder and dynamics defined
-
Chen W., Moore M.J. The spliceosome: disorder and dynamics defined. Curr. Opin. Struct. Biol. 2014, 24:141-149.
-
(2014)
Curr. Opin. Struct. Biol.
, vol.24
, pp. 141-149
-
-
Chen, W.1
Moore, M.J.2
-
15
-
-
84942474131
-
Structure of a yeast spliceosome at 3.6-angstrom resolution
-
Yan C., et al. Structure of a yeast spliceosome at 3.6-angstrom resolution. Science 2015, 349:1182-1191.
-
(2015)
Science
, vol.349
, pp. 1182-1191
-
-
Yan, C.1
-
16
-
-
0026486883
-
A novel base-pairing interaction between U2 and U6 snRNAs suggests a mechanism for the catalytic activation of the spliceosome
-
Madhani H.D., Guthrie C. A novel base-pairing interaction between U2 and U6 snRNAs suggests a mechanism for the catalytic activation of the spliceosome. Cell 1992, 71:803-817.
-
(1992)
Cell
, vol.71
, pp. 803-817
-
-
Madhani, H.D.1
Guthrie, C.2
-
17
-
-
0026670431
-
Interactions of small nuclear RNA's with precursor messenger RNA during in vitro splicing
-
Wassarman D.A., Steitz J.A. Interactions of small nuclear RNA's with precursor messenger RNA during in vitro splicing. Science 1992, 257:1918-1925.
-
(1992)
Science
, vol.257
, pp. 1918-1925
-
-
Wassarman, D.A.1
Steitz, J.A.2
-
18
-
-
84901929739
-
Evidence for a group II intron-like catalytic triplex in the spliceosome
-
Fica S.M., et al. Evidence for a group II intron-like catalytic triplex in the spliceosome. Nat. Struct. Mol. Biol. 2014, 21:464-471.
-
(2014)
Nat. Struct. Mol. Biol.
, vol.21
, pp. 464-471
-
-
Fica, S.M.1
-
19
-
-
84901943586
-
Core structure of the U6 small nuclear ribonucleoprotein at 1.7-A resolution
-
Montemayor E.J., et al. Core structure of the U6 small nuclear ribonucleoprotein at 1.7-A resolution. Nat. Struct. Mol. Biol. 2014, 21:544-551.
-
(2014)
Nat. Struct. Mol. Biol.
, vol.21
, pp. 544-551
-
-
Montemayor, E.J.1
-
20
-
-
84887115772
-
RNA structure analysis of human spliceosomes reveals a compact 3D arrangement of snRNAs at the catalytic core
-
Anokhina M., et al. RNA structure analysis of human spliceosomes reveals a compact 3D arrangement of snRNAs at the catalytic core. EMBO J. 2013, 32:2804-2818.
-
(2013)
EMBO J.
, vol.32
, pp. 2804-2818
-
-
Anokhina, M.1
-
21
-
-
0027364421
-
Evidence for two active sites in the spliceosome provided by stereochemistry of pre-mRNA splicing
-
Moore M.J., Sharp P.A. Evidence for two active sites in the spliceosome provided by stereochemistry of pre-mRNA splicing. Nature 1993, 365:364-368.
-
(1993)
Nature
, vol.365
, pp. 364-368
-
-
Moore, M.J.1
Sharp, P.A.2
-
22
-
-
32444443532
-
Repositioning of the reaction intermediate within the catalytic center of the spliceosome
-
Konarska M.M., et al. Repositioning of the reaction intermediate within the catalytic center of the spliceosome. Mol. Cell 2006, 21:543-553.
-
(2006)
Mol. Cell
, vol.21
, pp. 543-553
-
-
Konarska, M.M.1
-
23
-
-
34249890532
-
Opposing classes of prp8 alleles modulate the transition between the catalytic steps of pre-mRNA splicing
-
Liu L., et al. Opposing classes of prp8 alleles modulate the transition between the catalytic steps of pre-mRNA splicing. Nat. Struct. Mol. Biol. 2007, 14:519-526.
-
(2007)
Nat. Struct. Mol. Biol.
, vol.14
, pp. 519-526
-
-
Liu, L.1
-
24
-
-
84868592766
-
Brr2p-mediated conformational rearrangements in the spliceosome during activation and substrate repositioning
-
Hahn D., et al. Brr2p-mediated conformational rearrangements in the spliceosome during activation and substrate repositioning. Genes Dev. 2012, 26:2408-2421.
-
(2012)
Genes Dev.
, vol.26
, pp. 2408-2421
-
-
Hahn, D.1
-
25
-
-
84873629024
-
Crystal structure of Prp8 reveals active site cavity of the spliceosome
-
Galej W.P., et al. Crystal structure of Prp8 reveals active site cavity of the spliceosome. Nature 2013, 493:638-643.
-
(2013)
Nature
, vol.493
, pp. 638-643
-
-
Galej, W.P.1
-
26
-
-
84938513943
-
The architecture of the spliceosomal U4/U6.U5 tri-snRNP
-
Nguyen T.H., et al. The architecture of the spliceosomal U4/U6.U5 tri-snRNP. Nature 2015, 523:47-52.
-
(2015)
Nature
, vol.523
, pp. 47-52
-
-
Nguyen, T.H.1
-
27
-
-
79955031925
-
Prp8, the pivotal protein of the spliceosomal catalytic center, evolved from a retroelement-encoded reverse transcriptase
-
Dlakic M., Mushegian A. Prp8, the pivotal protein of the spliceosomal catalytic center, evolved from a retroelement-encoded reverse transcriptase. RNA 2011, 17:799-808.
-
(2011)
RNA
, vol.17
, pp. 799-808
-
-
Dlakic, M.1
Mushegian, A.2
-
28
-
-
84928386012
-
Mammalian NET-Seq reveals genome-wide nascent transcription coupled to RNA processing
-
Nojima T., et al. Mammalian NET-Seq reveals genome-wide nascent transcription coupled to RNA processing. Cell 2015, 161:526-540.
-
(2015)
Cell
, vol.161
, pp. 526-540
-
-
Nojima, T.1
-
29
-
-
21244493903
-
Cotranscriptional spliceosome assembly occurs in a stepwise fashion and requires the cap binding complex
-
Gornemann J., et al. Cotranscriptional spliceosome assembly occurs in a stepwise fashion and requires the cap binding complex. Mol. Cell 2005, 19:53-63.
-
(2005)
Mol. Cell
, vol.19
, pp. 53-63
-
-
Gornemann, J.1
-
30
-
-
69949124307
-
Nucleosome positioning as a determinant of exon recognition
-
Tilgner H., et al. Nucleosome positioning as a determinant of exon recognition. Nat. Struct. Mol. Biol. 2009, 16:996-1001.
-
(2009)
Nat. Struct. Mol. Biol.
, vol.16
, pp. 996-1001
-
-
Tilgner, H.1
-
31
-
-
82955247079
-
Nascent-seq indicates widespread cotranscriptional pre-mRNA splicing in Drosophila
-
Khodor Y.L., et al. Nascent-seq indicates widespread cotranscriptional pre-mRNA splicing in Drosophila. Genes Dev. 2011, 25:2502-2512.
-
(2011)
Genes Dev.
, vol.25
, pp. 2502-2512
-
-
Khodor, Y.L.1
-
32
-
-
84882895575
-
From structure to systems: high-resolution, quantitative genetic analysis of RNA polymerase II
-
Braberg H., et al. From structure to systems: high-resolution, quantitative genetic analysis of RNA polymerase II. Cell 2013, 154:775-788.
-
(2013)
Cell
, vol.154
, pp. 775-788
-
-
Braberg, H.1
-
33
-
-
0141888375
-
A slow RNA polymerase II affects alternative splicing in vivo
-
de la Mata M., et al. A slow RNA polymerase II affects alternative splicing in vivo. Mol. Cell 2003, 12:525-532.
-
(2003)
Mol. Cell
, vol.12
, pp. 525-532
-
-
de la Mata, M.1
-
34
-
-
49449116959
-
The splicing factor SC35 has an active role in transcriptional elongation
-
Lin S., et al. The splicing factor SC35 has an active role in transcriptional elongation. Nat. Struct. Mol. Biol. 2008, 15:819-826.
-
(2008)
Nat. Struct. Mol. Biol.
, vol.15
, pp. 819-826
-
-
Lin, S.1
-
35
-
-
84930716439
-
Regulation of alternative splicing through coupling with transcription and chromatin structure
-
Naftelberg S., et al. Regulation of alternative splicing through coupling with transcription and chromatin structure. Annu. Rev Biochem. 2015, 84:165-198.
-
(2015)
Annu. Rev Biochem.
, vol.84
, pp. 165-198
-
-
Naftelberg, S.1
-
36
-
-
78650961149
-
Epigenetics in alternative pre-mRNA splicing
-
Luco R.F., et al. Epigenetics in alternative pre-mRNA splicing. Cell 2011, 144:16-26.
-
(2011)
Cell
, vol.144
, pp. 16-26
-
-
Luco, R.F.1
-
37
-
-
84866077515
-
Post-transcriptional spliceosomes are retained in nuclear speckles until splicing completion
-
Girard C., et al. Post-transcriptional spliceosomes are retained in nuclear speckles until splicing completion. Nat. Commun. 2012, 3:994.
-
(2012)
Nat. Commun.
, vol.3
, pp. 994
-
-
Girard, C.1
-
38
-
-
84937029084
-
Functional roles of DExD/H-box RNA helicases in Pre-mRNA splicing
-
Liu Y.C., Cheng S.C. Functional roles of DExD/H-box RNA helicases in Pre-mRNA splicing. J. Biomed. Sci. 2015, 22:54.
-
(2015)
J. Biomed. Sci.
, vol.22
, pp. 54
-
-
Liu, Y.C.1
Cheng, S.C.2
-
39
-
-
84868583242
-
The Prp8 RNase H-like domain inhibits Brr2-mediated U4/U6 snRNA unwinding by blocking Brr2 loading onto the U4 snRNA
-
Mozaffari-Jovin S., et al. The Prp8 RNase H-like domain inhibits Brr2-mediated U4/U6 snRNA unwinding by blocking Brr2 loading onto the U4 snRNA. Genes Dev. 2012, 26:2422-2434.
-
(2012)
Genes Dev.
, vol.26
, pp. 2422-2434
-
-
Mozaffari-Jovin, S.1
-
40
-
-
84879797997
-
Inhibition of RNA helicase Brr2 by the C-terminal tail of the spliceosomal protein Prp8
-
Mozaffari-Jovin S., et al. Inhibition of RNA helicase Brr2 by the C-terminal tail of the spliceosomal protein Prp8. Science 2013, 341:80-84.
-
(2013)
Science
, vol.341
, pp. 80-84
-
-
Mozaffari-Jovin, S.1
-
41
-
-
84901464971
-
Novel regulatory principles of the spliceosomal Brr2 RNA helicase and links to retinal disease in humans
-
Mozaffari-Jovin S., et al. Novel regulatory principles of the spliceosomal Brr2 RNA helicase and links to retinal disease in humans. RNA Biol. 2014, 11:298-312.
-
(2014)
RNA Biol.
, vol.11
, pp. 298-312
-
-
Mozaffari-Jovin, S.1
-
42
-
-
0035878541
-
Mutations in the pre-mRNA splicing factor gene PRPC8 in autosomal dominant retinitis pigmentosa (RP13)
-
McKie A.B., et al. Mutations in the pre-mRNA splicing factor gene PRPC8 in autosomal dominant retinitis pigmentosa (RP13). Hum. Mol. Genet. 2001, 10:1555-1562.
-
(2001)
Hum. Mol. Genet.
, vol.10
, pp. 1555-1562
-
-
McKie, A.B.1
-
43
-
-
77951794446
-
Prognosis for splicing factor PRPF8 retinitis pigmentosa, novel mutations and correlation between human and yeast phenotypes
-
Towns K.V., et al. Prognosis for splicing factor PRPF8 retinitis pigmentosa, novel mutations and correlation between human and yeast phenotypes. Hum. Mutat. 2010, 31:E1361-E1376.
-
(2010)
Hum. Mutat.
, vol.31
, pp. E1361-E1376
-
-
Towns, K.V.1
-
44
-
-
84942020321
-
The spliceosome is a therapeutic vulnerability in MYC-driven cancer
-
Hsu T.Y., et al. The spliceosome is a therapeutic vulnerability in MYC-driven cancer. Nature 2015, 525:384-388.
-
(2015)
Nature
, vol.525
, pp. 384-388
-
-
Hsu, T.Y.1
-
45
-
-
84933282444
-
MYC regulates the core pre-mRNA splicing machinery as an essential step in lymphomagenesis
-
Koh C.M., et al. MYC regulates the core pre-mRNA splicing machinery as an essential step in lymphomagenesis. Nature 2015, 523:96-100.
-
(2015)
Nature
, vol.523
, pp. 96-100
-
-
Koh, C.M.1
-
46
-
-
85027941046
-
Hallmarks of alternative splicing in cancer
-
Oltean S., Bates D.O. Hallmarks of alternative splicing in cancer. Oncogene 2014, 33:5311-5318.
-
(2014)
Oncogene
, vol.33
, pp. 5311-5318
-
-
Oltean, S.1
Bates, D.O.2
-
47
-
-
59649083526
-
Recognition of atypical 5' splice sites by shifted base-pairing to U1 snRNA
-
Roca X., Krainer A.R. Recognition of atypical 5' splice sites by shifted base-pairing to U1 snRNA. Nat. Struct. Mol. Biol. 2009, 16:176-182.
-
(2009)
Nat. Struct. Mol. Biol.
, vol.16
, pp. 176-182
-
-
Roca, X.1
Krainer, A.R.2
-
48
-
-
84922355631
-
Genome-wide discovery of human splicing branchpoints
-
Mercer T.R., et al. Genome-wide discovery of human splicing branchpoints. Genome Res. 2015, 25:290-303.
-
(2015)
Genome Res.
, vol.25
, pp. 290-303
-
-
Mercer, T.R.1
-
49
-
-
42449098125
-
Splicing regulation: from a parts list of regulatory elements to an integrated splicing code
-
Wang Z., Burge C.B. Splicing regulation: from a parts list of regulatory elements to an integrated splicing code. RNA 2008, 14:802-813.
-
(2008)
RNA
, vol.14
, pp. 802-813
-
-
Wang, Z.1
Burge, C.B.2
-
50
-
-
77952029221
-
Deciphering the splicing code
-
Barash Y., et al. Deciphering the splicing code. Nature 2010, 465:53-59.
-
(2010)
Nature
, vol.465
, pp. 53-59
-
-
Barash, Y.1
-
51
-
-
84923276179
-
RNA splicing. The human splicing code reveals new insights into the genetic determinants of disease
-
Xiong H.Y., et al. RNA splicing. The human splicing code reveals new insights into the genetic determinants of disease. Science 2015, 347:1254806.
-
(2015)
Science
, vol.347
-
-
Xiong, H.Y.1
-
52
-
-
43049168361
-
SMN deficiency causes tissue-specific perturbations in the repertoire of snRNAs and widespread defects in splicing
-
Zhang Z., et al. SMN deficiency causes tissue-specific perturbations in the repertoire of snRNAs and widespread defects in splicing. Cell 2008, 133:585-600.
-
(2008)
Cell
, vol.133
, pp. 585-600
-
-
Zhang, Z.1
-
54
-
-
84922041769
-
Crystal structure of human U1 snRNP, a small nuclear ribonucleoprotein particle, reveals the mechanism of 5' splice site recognition
-
Kondo Y., et al. Crystal structure of human U1 snRNP, a small nuclear ribonucleoprotein particle, reveals the mechanism of 5' splice site recognition. Elife 2015, 4:04986.
-
(2015)
Elife
, vol.4
-
-
Kondo, Y.1
-
55
-
-
84861159694
-
Widespread recognition of 5' splice sites by noncanonical base-pairing to U1 snRNA involving bulged nucleotides
-
Roca X., et al. Widespread recognition of 5' splice sites by noncanonical base-pairing to U1 snRNA involving bulged nucleotides. Genes Dev. 2012, 26:1098-1109.
-
(2012)
Genes Dev.
, vol.26
, pp. 1098-1109
-
-
Roca, X.1
-
56
-
-
84873022115
-
Pick one, but be quick: 5' splice sites and the problems of too many choices
-
Roca X., et al. Pick one, but be quick: 5' splice sites and the problems of too many choices. Genes Dev. 2013, 27:129-144.
-
(2013)
Genes Dev.
, vol.27
, pp. 129-144
-
-
Roca, X.1
-
57
-
-
0037121924
-
The splicing regulator TIA-1 interacts with U1-C to promote U1 snRNP recruitment to 5' splice sites
-
Förch P., et al. The splicing regulator TIA-1 interacts with U1-C to promote U1 snRNP recruitment to 5' splice sites. EMBO J. 2002, 21:6882-6892.
-
(2002)
EMBO J.
, vol.21
, pp. 6882-6892
-
-
Förch, P.1
-
58
-
-
78149393552
-
ICLIP predicts the dual splicing effects of TIA-RNA interactions
-
Wang Z., et al. iCLIP predicts the dual splicing effects of TIA-RNA interactions. PLoS Biol. 2010, 8:e1000530.
-
(2010)
PLoS Biol.
, vol.8
-
-
Wang, Z.1
-
59
-
-
57649231776
-
Dynamic regulation of alternative splicing by silencers that modulate 5' splice site competition
-
Yu Y., et al. Dynamic regulation of alternative splicing by silencers that modulate 5' splice site competition. Cell 2008, 135:1224-1236.
-
(2008)
Cell
, vol.135
, pp. 1224-1236
-
-
Yu, Y.1
-
60
-
-
0033010430
-
An RNA switch at the 5' splice site requires ATP and the DEAD box protein Prp28p
-
Staley J.P., Guthrie C. An RNA switch at the 5' splice site requires ATP and the DEAD box protein Prp28p. Mol. Cell 1999, 3:55-64.
-
(1999)
Mol. Cell
, vol.3
, pp. 55-64
-
-
Staley, J.P.1
Guthrie, C.2
-
61
-
-
0033053502
-
The C-terminal region of hPrp8 interacts with the conserved GU dinucleotide at the 5' splice site
-
Reyes J.L., et al. The C-terminal region of hPrp8 interacts with the conserved GU dinucleotide at the 5' splice site. RNA 1999, 5:167-179.
-
(1999)
RNA
, vol.5
, pp. 167-179
-
-
Reyes, J.L.1
-
62
-
-
55549143970
-
Structure and function of an RNase H domain at the heart of the spliceosome
-
Pena V., et al. Structure and function of an RNase H domain at the heart of the spliceosome. EMBO J. 2008, 27:2929-2940.
-
(2008)
EMBO J.
, vol.27
, pp. 2929-2940
-
-
Pena, V.1
-
63
-
-
33745609509
-
RS domains contact splicing signals and promote splicing by a common mechanism in yeast through humans
-
Shen H., Green M.R. RS domains contact splicing signals and promote splicing by a common mechanism in yeast through humans. Genes Dev. 2006, 20:1755-1765.
-
(2006)
Genes Dev.
, vol.20
, pp. 1755-1765
-
-
Shen, H.1
Green, M.R.2
-
64
-
-
65549090941
-
Insights into branch nucleophile positioning and activation from an orthogonal pre-mRNA splicing system in yeast
-
Smith D.J., et al. Insights into branch nucleophile positioning and activation from an orthogonal pre-mRNA splicing system in yeast. Mol. Cell 2009, 34:333-343.
-
(2009)
Mol. Cell
, vol.34
, pp. 333-343
-
-
Smith, D.J.1
-
65
-
-
0030044836
-
Evidence that sequence-independent binding of highly conserved U2 snRNP proteins upstream of the branch site is required for assembly of spliceosomal complex A
-
Gozani O., et al. Evidence that sequence-independent binding of highly conserved U2 snRNP proteins upstream of the branch site is required for assembly of spliceosomal complex A. Genes Dev. 1996, 10:233-243.
-
(1996)
Genes Dev.
, vol.10
, pp. 233-243
-
-
Gozani, O.1
-
66
-
-
79952220808
-
Reduced fidelity of branch point recognition and alternative splicing induced by the anti-tumor drug spliceostatin A
-
Corrionero A., et al. Reduced fidelity of branch point recognition and alternative splicing induced by the anti-tumor drug spliceostatin A. Genes Dev. 2011, 25:445-459.
-
(2011)
Genes Dev.
, vol.25
, pp. 445-459
-
-
Corrionero, A.1
-
67
-
-
33745499067
-
Structural basis for polypyrimidine tract recognition by the essential pre-mRNA splicing factor U2AF65
-
Sickmier E.A., et al. Structural basis for polypyrimidine tract recognition by the essential pre-mRNA splicing factor U2AF65. Mol. Cell 2006, 23:49-59.
-
(2006)
Mol. Cell
, vol.23
, pp. 49-59
-
-
Sickmier, E.A.1
-
68
-
-
79960646885
-
Multi-domain conformational selection underlies pre-mRNA splicing regulation by U2AF
-
Mackereth C.D., et al. Multi-domain conformational selection underlies pre-mRNA splicing regulation by U2AF. Nature 2011, 475:408-411.
-
(2011)
Nature
, vol.475
, pp. 408-411
-
-
Mackereth, C.D.1
-
69
-
-
84876046010
-
U2AF65 adapts to diverse pre-mRNA splice sites through conformational selection of specific and promiscuous RNA recognition motifs
-
Jenkins J.L., et al. U2AF65 adapts to diverse pre-mRNA splice sites through conformational selection of specific and promiscuous RNA recognition motifs. Nucleic Acids Res. 2013, 41:3859-3873.
-
(2013)
Nucleic Acids Res.
, vol.41
, pp. 3859-3873
-
-
Jenkins, J.L.1
-
70
-
-
33846583944
-
Alternative conformations at the RNA-binding surface of the N-terminal U2AF(65) RNA recognition motif
-
Thickman K.R., et al. Alternative conformations at the RNA-binding surface of the N-terminal U2AF(65) RNA recognition motif. J. Mol. Biol. 2007, 366:703-710.
-
(2007)
J. Mol. Biol.
, vol.366
, pp. 703-710
-
-
Thickman, K.R.1
-
71
-
-
34548600067
-
U2AF-homology motif interactions are required for alternative splicing regulation by SPF45
-
Corsini L., et al. U2AF-homology motif interactions are required for alternative splicing regulation by SPF45. Nat. Struct. Mol. Biol. 2007, 14:620-629.
-
(2007)
Nat. Struct. Mol. Biol.
, vol.14
, pp. 620-629
-
-
Corsini, L.1
-
72
-
-
34147174235
-
Rearrangement of competing U2 RNA helices within the spliceosome promotes multiple steps in splicing
-
Perriman R.J., Ares M. Rearrangement of competing U2 RNA helices within the spliceosome promotes multiple steps in splicing. Genes Dev. 2007, 21:811-820.
-
(2007)
Genes Dev.
, vol.21
, pp. 811-820
-
-
Perriman, R.J.1
Ares, M.2
-
73
-
-
77951956596
-
Invariant U2 snRNA nucleotides form a stem loop to recognize the intron early in splicing
-
Perriman R., Ares M. Invariant U2 snRNA nucleotides form a stem loop to recognize the intron early in splicing. Mol. Cell 2010, 38:416-427.
-
(2010)
Mol. Cell
, vol.38
, pp. 416-427
-
-
Perriman, R.1
Ares, M.2
-
74
-
-
84920501201
-
A novel mechanism for Prp5 function in prespliceosome formation and proofreading the branch site sequence
-
Liang W.W., Cheng S.C. A novel mechanism for Prp5 function in prespliceosome formation and proofreading the branch site sequence. Genes Dev. 2015, 29:81-93.
-
(2015)
Genes Dev.
, vol.29
, pp. 81-93
-
-
Liang, W.W.1
Cheng, S.C.2
-
75
-
-
34147179830
-
U2 toggles iteratively between the stem IIa and stem IIc conformations to promote pre-mRNA splicing
-
Hilliker A.K., et al. U2 toggles iteratively between the stem IIa and stem IIc conformations to promote pre-mRNA splicing. Genes Dev. 2007, 21:821-834.
-
(2007)
Genes Dev.
, vol.21
, pp. 821-834
-
-
Hilliker, A.K.1
-
76
-
-
84896727449
-
A splicing-dependent transcriptional checkpoint associated with prespliceosome formation
-
Chathoth K.T., et al. A splicing-dependent transcriptional checkpoint associated with prespliceosome formation. Mol. Cell 2014, 53:779-790.
-
(2014)
Mol. Cell
, vol.53
, pp. 779-790
-
-
Chathoth, K.T.1
-
77
-
-
77955488349
-
The DEAH box ATPases Prp16 and Prp43 cooperate to proofread 5' splice site cleavage during pre-mRNA splicing
-
Koodathingal P., et al. The DEAH box ATPases Prp16 and Prp43 cooperate to proofread 5' splice site cleavage during pre-mRNA splicing. Mol. Cell 2010, 39:385-395.
-
(2010)
Mol. Cell
, vol.39
, pp. 385-395
-
-
Koodathingal, P.1
-
78
-
-
78650446117
-
DEAH-box ATPase Prp16 has dual roles in remodeling of the spliceosome in catalytic steps
-
Tseng C.K., et al. DEAH-box ATPase Prp16 has dual roles in remodeling of the spliceosome in catalytic steps. RNA 2011, 17:145-154.
-
(2011)
RNA
, vol.17
, pp. 145-154
-
-
Tseng, C.K.1
-
79
-
-
77950870601
-
Exon definition complexes contain the tri-snRNP and can be directly converted into B-like precatalytic splicing complexes
-
Schneider M., et al. Exon definition complexes contain the tri-snRNP and can be directly converted into B-like precatalytic splicing complexes. Mol. Cell 2010, 38:223-235.
-
(2010)
Mol. Cell
, vol.38
, pp. 223-235
-
-
Schneider, M.1
-
80
-
-
84860513145
-
The spliceosome: a flexible, reversible macromolecular machine
-
Hoskins A.A., Moore M.J. The spliceosome: a flexible, reversible macromolecular machine. Trends Biochem. Sci. 2012, 37:179-188.
-
(2012)
Trends Biochem. Sci.
, vol.37
, pp. 179-188
-
-
Hoskins, A.A.1
Moore, M.J.2
-
81
-
-
46449086933
-
Both catalytic steps of nuclear pre-mRNA splicing are reversible
-
Tseng C.K., Cheng S.C. Both catalytic steps of nuclear pre-mRNA splicing are reversible. Science 2008, 320:1782-1784.
-
(2008)
Science
, vol.320
, pp. 1782-1784
-
-
Tseng, C.K.1
Cheng, S.C.2
-
82
-
-
84935037380
-
SnapShot: spliceosome dynamics I
-
1474-e1
-
Wahl M.C., Luhrmann R. SnapShot: spliceosome dynamics I. Cell 2015, 161. 1474-e1.
-
(2015)
Cell
, vol.161
-
-
Wahl, M.C.1
Luhrmann, R.2
-
83
-
-
84935037380
-
SnapShot: spliceosome dynamics II
-
456-e1
-
Wahl M.C., Luhrmann R. SnapShot: spliceosome dynamics II. Cell 2015, 162. 456-e1.
-
(2015)
Cell
, vol.162
-
-
Wahl, M.C.1
Luhrmann, R.2
-
84
-
-
77950516144
-
Conformational dynamics of single pre-mRNA molecules during in vitro splicing
-
Abelson J., et al. Conformational dynamics of single pre-mRNA molecules during in vitro splicing. Nat. Struct. Mol. Biol. 2010, 17:504-512.
-
(2010)
Nat. Struct. Mol. Biol.
, vol.17
, pp. 504-512
-
-
Abelson, J.1
-
85
-
-
79952504644
-
Ordered and dynamic assembly of single spliceosomes
-
Hoskins A.A., et al. Ordered and dynamic assembly of single spliceosomes. Science 2011, 331:1289-1295.
-
(2011)
Science
, vol.331
, pp. 1289-1295
-
-
Hoskins, A.A.1
-
86
-
-
84885860165
-
Alternative spliceosome assembly pathways revealed by single-molecule fluorescence microscopy
-
Shcherbakova I., et al. Alternative spliceosome assembly pathways revealed by single-molecule fluorescence microscopy. Cell Rep. 2013, 5:151-165.
-
(2013)
Cell Rep.
, vol.5
, pp. 151-165
-
-
Shcherbakova, I.1
-
87
-
-
0141924550
-
The Prp19p-associated complex in spliceosome activation
-
Chan S.P., et al. The Prp19p-associated complex in spliceosome activation. Science 2003, 302:279-282.
-
(2003)
Science
, vol.302
, pp. 279-282
-
-
Chan, S.P.1
-
88
-
-
79955691547
-
The RNA polymerase II C-terminal domain promotes splicing activation through recruitment of a U2AF65-Prp19 complex
-
David C.J., et al. The RNA polymerase II C-terminal domain promotes splicing activation through recruitment of a U2AF65-Prp19 complex. Genes Dev. 2011, 25:972-983.
-
(2011)
Genes Dev.
, vol.25
, pp. 972-983
-
-
David, C.J.1
-
89
-
-
84879479282
-
Splicing and beyond: the many faces of the Prp19 complex
-
Chanarat S., Strasser K. Splicing and beyond: the many faces of the Prp19 complex. Biochim. Biophys. Acta 2013, 1833:2126-2134.
-
(2013)
Biochim. Biophys. Acta
, vol.1833
, pp. 2126-2134
-
-
Chanarat, S.1
Strasser, K.2
-
90
-
-
0028034324
-
Complementation by SR proteins of pre-mRNA splicing reactions depleted of U1 snRNP
-
Crispino J.D., et al. Complementation by SR proteins of pre-mRNA splicing reactions depleted of U1 snRNP. Science 1994, 265:1866-1869.
-
(1994)
Science
, vol.265
, pp. 1866-1869
-
-
Crispino, J.D.1
-
91
-
-
84866076924
-
Intrinsic disorder in the human spliceosomal proteome
-
Korneta I., Bujnicki J.M. Intrinsic disorder in the human spliceosomal proteome. PLoS Comput. Biol. 2012, 8:e1002641.
-
(2012)
PLoS Comput. Biol.
, vol.8
-
-
Korneta, I.1
Bujnicki, J.M.2
-
92
-
-
84877133527
-
Malleable ribonucleoprotein machine: protein intrinsic disorder in the Saccharomyces cerevisiae spliceosome
-
Coelho Ribeiro Mde L., et al. Malleable ribonucleoprotein machine: protein intrinsic disorder in the Saccharomyces cerevisiae spliceosome. PeerJ 2013, 1:e2.
-
(2013)
PeerJ
, vol.1
-
-
Coelho Ribeiro Mde, L.1
-
93
-
-
0037012922
-
Genomewide analysis of mRNA processing in yeast using splicing-specific microarrays
-
Clark T.A., et al. Genomewide analysis of mRNA processing in yeast using splicing-specific microarrays. Science 2002, 296:907-910.
-
(2002)
Science
, vol.296
, pp. 907-910
-
-
Clark, T.A.1
-
94
-
-
34247255773
-
Transcript specificity in yeast pre-mRNA splicing revealed by mutations in core spliceosomal components
-
Pleiss J.A., et al. Transcript specificity in yeast pre-mRNA splicing revealed by mutations in core spliceosomal components. PLoS Biol. 2007, 5:e90.
-
(2007)
PLoS Biol.
, vol.5
-
-
Pleiss, J.A.1
-
95
-
-
27944488662
-
Use of RNA interference to dissect the roles of trans-acting factors in alternative pre-mRNA splicing
-
Park J.W., Graveley B.R. Use of RNA interference to dissect the roles of trans-acting factors in alternative pre-mRNA splicing. Methods 2005, 37:341-344.
-
(2005)
Methods
, vol.37
, pp. 341-344
-
-
Park, J.W.1
Graveley, B.R.2
-
96
-
-
84920376732
-
Genome-wide identification of Fas/CD95 alternative splicing regulators reveals links with iron homeostasis
-
Tejedor J.R., et al. Genome-wide identification of Fas/CD95 alternative splicing regulators reveals links with iron homeostasis. Mol. Cell 2015, 57:23-38.
-
(2015)
Mol. Cell
, vol.57
, pp. 23-38
-
-
Tejedor, J.R.1
-
97
-
-
84920461524
-
Functional splicing network reveals extensive regulatory potential of the core spliceosomal machinery
-
Papasaikas P., et al. Functional splicing network reveals extensive regulatory potential of the core spliceosomal machinery. Mol. Cell 2015, 57:7-22.
-
(2015)
Mol. Cell
, vol.57
, pp. 7-22
-
-
Papasaikas, P.1
-
98
-
-
84930807415
-
The philosophical approach: an interview with ford doolittle
-
Doolittle F., Gitschier J. The philosophical approach: an interview with ford doolittle. PLoS Genet. 2015, 11:e1005173.
-
(2015)
PLoS Genet.
, vol.11
-
-
Doolittle, F.1
Gitschier, J.2
|