메뉴 건너뛰기




Volumn 41, Issue 1, 2016, Pages 33-45

The Spliceosome: The Ultimate RNA Chaperone and Sculptor

Author keywords

[No Author keywords available]

Indexed keywords

CHAPERONE; MESSENGER RNA; PHOSPHATE; RNA; SCAFFOLD PROTEIN;

EID: 84951857907     PISSN: 09680004     EISSN: 13624326     Source Type: Journal    
DOI: 10.1016/j.tibs.2015.11.003     Document Type: Review
Times cited : (193)

References (98)
  • 1
    • 60349104299 scopus 로고    scopus 로고
    • The spliceosome: design principles of a dynamic RNP machine
    • Wahl M.C., et al. The spliceosome: design principles of a dynamic RNP machine. Cell 2009, 136:701-718.
    • (2009) Cell , vol.136 , pp. 701-718
    • Wahl, M.C.1
  • 2
    • 77951120000 scopus 로고    scopus 로고
    • Alternative splicing and evolution: diversification, exon definition and function
    • Keren H., et al. Alternative splicing and evolution: diversification, exon definition and function. Nat. Rev. Genet. 2010, 11:345-355.
    • (2010) Nat. Rev. Genet. , vol.11 , pp. 345-355
    • Keren, H.1
  • 3
    • 84875208735 scopus 로고    scopus 로고
    • Dynamic integration of splicing within gene regulatory pathways
    • Braunschweig U., et al. Dynamic integration of splicing within gene regulatory pathways. Cell 2013, 152:1252-1269.
    • (2013) Cell , vol.152 , pp. 1252-1269
    • Braunschweig, U.1
  • 4
    • 73949128867 scopus 로고    scopus 로고
    • The pathobiology of splicing
    • Ward A.J., Cooper T.A. The pathobiology of splicing. J. Pathol. 2010, 220:152-163.
    • (2010) J. Pathol. , vol.220 , pp. 152-163
    • Ward, A.J.1    Cooper, T.A.2
  • 5
    • 84871435525 scopus 로고    scopus 로고
    • Function of alternative splicing
    • Kelemen O., et al. Function of alternative splicing. Gene 2013, 514:1-30.
    • (2013) Gene , vol.514 , pp. 1-30
    • Kelemen, O.1
  • 6
    • 84919928214 scopus 로고    scopus 로고
    • A highly conserved program of neuronal microexons is misregulated in autistic brains
    • Irimia M., et al. A highly conserved program of neuronal microexons is misregulated in autistic brains. Cell 2014, 159:1511-1523.
    • (2014) Cell , vol.159 , pp. 1511-1523
    • Irimia, M.1
  • 7
    • 84864390703 scopus 로고    scopus 로고
    • Pre-mRNA splicing in disease and therapeutics
    • Singh R.K., Cooper T.A. Pre-mRNA splicing in disease and therapeutics. Trends Mol. Med. 2012, 18:472-482.
    • (2012) Trends Mol. Med. , vol.18 , pp. 472-482
    • Singh, R.K.1    Cooper, T.A.2
  • 8
    • 84868355027 scopus 로고    scopus 로고
    • The spliceosome as a target of novel antitumour drugs
    • Bonnal S., et al. The spliceosome as a target of novel antitumour drugs. Nat. Rev. Drug Discov. 2012, 11:847-859.
    • (2012) Nat. Rev. Drug Discov. , vol.11 , pp. 847-859
    • Bonnal, S.1
  • 10
    • 33644783626 scopus 로고    scopus 로고
    • Introns and the origin of nucleus-cytosol compartmentalization
    • Martin W., Koonin E.V. Introns and the origin of nucleus-cytosol compartmentalization. Nature 2006, 440:41-45.
    • (2006) Nature , vol.440 , pp. 41-45
    • Martin, W.1    Koonin, E.V.2
  • 11
    • 84942913896 scopus 로고    scopus 로고
    • Structural basis of pre-mRNA splicing
    • Hang J., et al. Structural basis of pre-mRNA splicing. Science 2015, 349:1191-1198.
    • (2015) Science , vol.349 , pp. 1191-1198
    • Hang, J.1
  • 12
    • 0027184481 scopus 로고
    • A general two-metal-ion mechanism for catalytic RNA
    • Steitz T.A., Steitz J.A. A general two-metal-ion mechanism for catalytic RNA. Proc. Natl. Acad. Sci. U.S.A. 1993, 90:6498-6502.
    • (1993) Proc. Natl. Acad. Sci. U.S.A. , vol.90 , pp. 6498-6502
    • Steitz, T.A.1    Steitz, J.A.2
  • 13
    • 84887624226 scopus 로고    scopus 로고
    • RNA catalyses nuclear pre-mRNA splicing
    • Fica S.M., et al. RNA catalyses nuclear pre-mRNA splicing. Nature 2013, 503:229-234.
    • (2013) Nature , vol.503 , pp. 229-234
    • Fica, S.M.1
  • 14
    • 84893716781 scopus 로고    scopus 로고
    • The spliceosome: disorder and dynamics defined
    • Chen W., Moore M.J. The spliceosome: disorder and dynamics defined. Curr. Opin. Struct. Biol. 2014, 24:141-149.
    • (2014) Curr. Opin. Struct. Biol. , vol.24 , pp. 141-149
    • Chen, W.1    Moore, M.J.2
  • 15
    • 84942474131 scopus 로고    scopus 로고
    • Structure of a yeast spliceosome at 3.6-angstrom resolution
    • Yan C., et al. Structure of a yeast spliceosome at 3.6-angstrom resolution. Science 2015, 349:1182-1191.
    • (2015) Science , vol.349 , pp. 1182-1191
    • Yan, C.1
  • 16
    • 0026486883 scopus 로고
    • A novel base-pairing interaction between U2 and U6 snRNAs suggests a mechanism for the catalytic activation of the spliceosome
    • Madhani H.D., Guthrie C. A novel base-pairing interaction between U2 and U6 snRNAs suggests a mechanism for the catalytic activation of the spliceosome. Cell 1992, 71:803-817.
    • (1992) Cell , vol.71 , pp. 803-817
    • Madhani, H.D.1    Guthrie, C.2
  • 17
    • 0026670431 scopus 로고
    • Interactions of small nuclear RNA's with precursor messenger RNA during in vitro splicing
    • Wassarman D.A., Steitz J.A. Interactions of small nuclear RNA's with precursor messenger RNA during in vitro splicing. Science 1992, 257:1918-1925.
    • (1992) Science , vol.257 , pp. 1918-1925
    • Wassarman, D.A.1    Steitz, J.A.2
  • 18
    • 84901929739 scopus 로고    scopus 로고
    • Evidence for a group II intron-like catalytic triplex in the spliceosome
    • Fica S.M., et al. Evidence for a group II intron-like catalytic triplex in the spliceosome. Nat. Struct. Mol. Biol. 2014, 21:464-471.
    • (2014) Nat. Struct. Mol. Biol. , vol.21 , pp. 464-471
    • Fica, S.M.1
  • 19
    • 84901943586 scopus 로고    scopus 로고
    • Core structure of the U6 small nuclear ribonucleoprotein at 1.7-A resolution
    • Montemayor E.J., et al. Core structure of the U6 small nuclear ribonucleoprotein at 1.7-A resolution. Nat. Struct. Mol. Biol. 2014, 21:544-551.
    • (2014) Nat. Struct. Mol. Biol. , vol.21 , pp. 544-551
    • Montemayor, E.J.1
  • 20
    • 84887115772 scopus 로고    scopus 로고
    • RNA structure analysis of human spliceosomes reveals a compact 3D arrangement of snRNAs at the catalytic core
    • Anokhina M., et al. RNA structure analysis of human spliceosomes reveals a compact 3D arrangement of snRNAs at the catalytic core. EMBO J. 2013, 32:2804-2818.
    • (2013) EMBO J. , vol.32 , pp. 2804-2818
    • Anokhina, M.1
  • 21
    • 0027364421 scopus 로고
    • Evidence for two active sites in the spliceosome provided by stereochemistry of pre-mRNA splicing
    • Moore M.J., Sharp P.A. Evidence for two active sites in the spliceosome provided by stereochemistry of pre-mRNA splicing. Nature 1993, 365:364-368.
    • (1993) Nature , vol.365 , pp. 364-368
    • Moore, M.J.1    Sharp, P.A.2
  • 22
    • 32444443532 scopus 로고    scopus 로고
    • Repositioning of the reaction intermediate within the catalytic center of the spliceosome
    • Konarska M.M., et al. Repositioning of the reaction intermediate within the catalytic center of the spliceosome. Mol. Cell 2006, 21:543-553.
    • (2006) Mol. Cell , vol.21 , pp. 543-553
    • Konarska, M.M.1
  • 23
    • 34249890532 scopus 로고    scopus 로고
    • Opposing classes of prp8 alleles modulate the transition between the catalytic steps of pre-mRNA splicing
    • Liu L., et al. Opposing classes of prp8 alleles modulate the transition between the catalytic steps of pre-mRNA splicing. Nat. Struct. Mol. Biol. 2007, 14:519-526.
    • (2007) Nat. Struct. Mol. Biol. , vol.14 , pp. 519-526
    • Liu, L.1
  • 24
    • 84868592766 scopus 로고    scopus 로고
    • Brr2p-mediated conformational rearrangements in the spliceosome during activation and substrate repositioning
    • Hahn D., et al. Brr2p-mediated conformational rearrangements in the spliceosome during activation and substrate repositioning. Genes Dev. 2012, 26:2408-2421.
    • (2012) Genes Dev. , vol.26 , pp. 2408-2421
    • Hahn, D.1
  • 25
    • 84873629024 scopus 로고    scopus 로고
    • Crystal structure of Prp8 reveals active site cavity of the spliceosome
    • Galej W.P., et al. Crystal structure of Prp8 reveals active site cavity of the spliceosome. Nature 2013, 493:638-643.
    • (2013) Nature , vol.493 , pp. 638-643
    • Galej, W.P.1
  • 26
    • 84938513943 scopus 로고    scopus 로고
    • The architecture of the spliceosomal U4/U6.U5 tri-snRNP
    • Nguyen T.H., et al. The architecture of the spliceosomal U4/U6.U5 tri-snRNP. Nature 2015, 523:47-52.
    • (2015) Nature , vol.523 , pp. 47-52
    • Nguyen, T.H.1
  • 27
    • 79955031925 scopus 로고    scopus 로고
    • Prp8, the pivotal protein of the spliceosomal catalytic center, evolved from a retroelement-encoded reverse transcriptase
    • Dlakic M., Mushegian A. Prp8, the pivotal protein of the spliceosomal catalytic center, evolved from a retroelement-encoded reverse transcriptase. RNA 2011, 17:799-808.
    • (2011) RNA , vol.17 , pp. 799-808
    • Dlakic, M.1    Mushegian, A.2
  • 28
    • 84928386012 scopus 로고    scopus 로고
    • Mammalian NET-Seq reveals genome-wide nascent transcription coupled to RNA processing
    • Nojima T., et al. Mammalian NET-Seq reveals genome-wide nascent transcription coupled to RNA processing. Cell 2015, 161:526-540.
    • (2015) Cell , vol.161 , pp. 526-540
    • Nojima, T.1
  • 29
    • 21244493903 scopus 로고    scopus 로고
    • Cotranscriptional spliceosome assembly occurs in a stepwise fashion and requires the cap binding complex
    • Gornemann J., et al. Cotranscriptional spliceosome assembly occurs in a stepwise fashion and requires the cap binding complex. Mol. Cell 2005, 19:53-63.
    • (2005) Mol. Cell , vol.19 , pp. 53-63
    • Gornemann, J.1
  • 30
    • 69949124307 scopus 로고    scopus 로고
    • Nucleosome positioning as a determinant of exon recognition
    • Tilgner H., et al. Nucleosome positioning as a determinant of exon recognition. Nat. Struct. Mol. Biol. 2009, 16:996-1001.
    • (2009) Nat. Struct. Mol. Biol. , vol.16 , pp. 996-1001
    • Tilgner, H.1
  • 31
    • 82955247079 scopus 로고    scopus 로고
    • Nascent-seq indicates widespread cotranscriptional pre-mRNA splicing in Drosophila
    • Khodor Y.L., et al. Nascent-seq indicates widespread cotranscriptional pre-mRNA splicing in Drosophila. Genes Dev. 2011, 25:2502-2512.
    • (2011) Genes Dev. , vol.25 , pp. 2502-2512
    • Khodor, Y.L.1
  • 32
    • 84882895575 scopus 로고    scopus 로고
    • From structure to systems: high-resolution, quantitative genetic analysis of RNA polymerase II
    • Braberg H., et al. From structure to systems: high-resolution, quantitative genetic analysis of RNA polymerase II. Cell 2013, 154:775-788.
    • (2013) Cell , vol.154 , pp. 775-788
    • Braberg, H.1
  • 33
    • 0141888375 scopus 로고    scopus 로고
    • A slow RNA polymerase II affects alternative splicing in vivo
    • de la Mata M., et al. A slow RNA polymerase II affects alternative splicing in vivo. Mol. Cell 2003, 12:525-532.
    • (2003) Mol. Cell , vol.12 , pp. 525-532
    • de la Mata, M.1
  • 34
    • 49449116959 scopus 로고    scopus 로고
    • The splicing factor SC35 has an active role in transcriptional elongation
    • Lin S., et al. The splicing factor SC35 has an active role in transcriptional elongation. Nat. Struct. Mol. Biol. 2008, 15:819-826.
    • (2008) Nat. Struct. Mol. Biol. , vol.15 , pp. 819-826
    • Lin, S.1
  • 35
    • 84930716439 scopus 로고    scopus 로고
    • Regulation of alternative splicing through coupling with transcription and chromatin structure
    • Naftelberg S., et al. Regulation of alternative splicing through coupling with transcription and chromatin structure. Annu. Rev Biochem. 2015, 84:165-198.
    • (2015) Annu. Rev Biochem. , vol.84 , pp. 165-198
    • Naftelberg, S.1
  • 36
    • 78650961149 scopus 로고    scopus 로고
    • Epigenetics in alternative pre-mRNA splicing
    • Luco R.F., et al. Epigenetics in alternative pre-mRNA splicing. Cell 2011, 144:16-26.
    • (2011) Cell , vol.144 , pp. 16-26
    • Luco, R.F.1
  • 37
    • 84866077515 scopus 로고    scopus 로고
    • Post-transcriptional spliceosomes are retained in nuclear speckles until splicing completion
    • Girard C., et al. Post-transcriptional spliceosomes are retained in nuclear speckles until splicing completion. Nat. Commun. 2012, 3:994.
    • (2012) Nat. Commun. , vol.3 , pp. 994
    • Girard, C.1
  • 38
    • 84937029084 scopus 로고    scopus 로고
    • Functional roles of DExD/H-box RNA helicases in Pre-mRNA splicing
    • Liu Y.C., Cheng S.C. Functional roles of DExD/H-box RNA helicases in Pre-mRNA splicing. J. Biomed. Sci. 2015, 22:54.
    • (2015) J. Biomed. Sci. , vol.22 , pp. 54
    • Liu, Y.C.1    Cheng, S.C.2
  • 39
    • 84868583242 scopus 로고    scopus 로고
    • The Prp8 RNase H-like domain inhibits Brr2-mediated U4/U6 snRNA unwinding by blocking Brr2 loading onto the U4 snRNA
    • Mozaffari-Jovin S., et al. The Prp8 RNase H-like domain inhibits Brr2-mediated U4/U6 snRNA unwinding by blocking Brr2 loading onto the U4 snRNA. Genes Dev. 2012, 26:2422-2434.
    • (2012) Genes Dev. , vol.26 , pp. 2422-2434
    • Mozaffari-Jovin, S.1
  • 40
    • 84879797997 scopus 로고    scopus 로고
    • Inhibition of RNA helicase Brr2 by the C-terminal tail of the spliceosomal protein Prp8
    • Mozaffari-Jovin S., et al. Inhibition of RNA helicase Brr2 by the C-terminal tail of the spliceosomal protein Prp8. Science 2013, 341:80-84.
    • (2013) Science , vol.341 , pp. 80-84
    • Mozaffari-Jovin, S.1
  • 41
    • 84901464971 scopus 로고    scopus 로고
    • Novel regulatory principles of the spliceosomal Brr2 RNA helicase and links to retinal disease in humans
    • Mozaffari-Jovin S., et al. Novel regulatory principles of the spliceosomal Brr2 RNA helicase and links to retinal disease in humans. RNA Biol. 2014, 11:298-312.
    • (2014) RNA Biol. , vol.11 , pp. 298-312
    • Mozaffari-Jovin, S.1
  • 42
    • 0035878541 scopus 로고    scopus 로고
    • Mutations in the pre-mRNA splicing factor gene PRPC8 in autosomal dominant retinitis pigmentosa (RP13)
    • McKie A.B., et al. Mutations in the pre-mRNA splicing factor gene PRPC8 in autosomal dominant retinitis pigmentosa (RP13). Hum. Mol. Genet. 2001, 10:1555-1562.
    • (2001) Hum. Mol. Genet. , vol.10 , pp. 1555-1562
    • McKie, A.B.1
  • 43
    • 77951794446 scopus 로고    scopus 로고
    • Prognosis for splicing factor PRPF8 retinitis pigmentosa, novel mutations and correlation between human and yeast phenotypes
    • Towns K.V., et al. Prognosis for splicing factor PRPF8 retinitis pigmentosa, novel mutations and correlation between human and yeast phenotypes. Hum. Mutat. 2010, 31:E1361-E1376.
    • (2010) Hum. Mutat. , vol.31 , pp. E1361-E1376
    • Towns, K.V.1
  • 44
    • 84942020321 scopus 로고    scopus 로고
    • The spliceosome is a therapeutic vulnerability in MYC-driven cancer
    • Hsu T.Y., et al. The spliceosome is a therapeutic vulnerability in MYC-driven cancer. Nature 2015, 525:384-388.
    • (2015) Nature , vol.525 , pp. 384-388
    • Hsu, T.Y.1
  • 45
    • 84933282444 scopus 로고    scopus 로고
    • MYC regulates the core pre-mRNA splicing machinery as an essential step in lymphomagenesis
    • Koh C.M., et al. MYC regulates the core pre-mRNA splicing machinery as an essential step in lymphomagenesis. Nature 2015, 523:96-100.
    • (2015) Nature , vol.523 , pp. 96-100
    • Koh, C.M.1
  • 46
    • 85027941046 scopus 로고    scopus 로고
    • Hallmarks of alternative splicing in cancer
    • Oltean S., Bates D.O. Hallmarks of alternative splicing in cancer. Oncogene 2014, 33:5311-5318.
    • (2014) Oncogene , vol.33 , pp. 5311-5318
    • Oltean, S.1    Bates, D.O.2
  • 47
    • 59649083526 scopus 로고    scopus 로고
    • Recognition of atypical 5' splice sites by shifted base-pairing to U1 snRNA
    • Roca X., Krainer A.R. Recognition of atypical 5' splice sites by shifted base-pairing to U1 snRNA. Nat. Struct. Mol. Biol. 2009, 16:176-182.
    • (2009) Nat. Struct. Mol. Biol. , vol.16 , pp. 176-182
    • Roca, X.1    Krainer, A.R.2
  • 48
    • 84922355631 scopus 로고    scopus 로고
    • Genome-wide discovery of human splicing branchpoints
    • Mercer T.R., et al. Genome-wide discovery of human splicing branchpoints. Genome Res. 2015, 25:290-303.
    • (2015) Genome Res. , vol.25 , pp. 290-303
    • Mercer, T.R.1
  • 49
    • 42449098125 scopus 로고    scopus 로고
    • Splicing regulation: from a parts list of regulatory elements to an integrated splicing code
    • Wang Z., Burge C.B. Splicing regulation: from a parts list of regulatory elements to an integrated splicing code. RNA 2008, 14:802-813.
    • (2008) RNA , vol.14 , pp. 802-813
    • Wang, Z.1    Burge, C.B.2
  • 50
    • 77952029221 scopus 로고    scopus 로고
    • Deciphering the splicing code
    • Barash Y., et al. Deciphering the splicing code. Nature 2010, 465:53-59.
    • (2010) Nature , vol.465 , pp. 53-59
    • Barash, Y.1
  • 51
    • 84923276179 scopus 로고    scopus 로고
    • RNA splicing. The human splicing code reveals new insights into the genetic determinants of disease
    • Xiong H.Y., et al. RNA splicing. The human splicing code reveals new insights into the genetic determinants of disease. Science 2015, 347:1254806.
    • (2015) Science , vol.347
    • Xiong, H.Y.1
  • 52
    • 43049168361 scopus 로고    scopus 로고
    • SMN deficiency causes tissue-specific perturbations in the repertoire of snRNAs and widespread defects in splicing
    • Zhang Z., et al. SMN deficiency causes tissue-specific perturbations in the repertoire of snRNAs and widespread defects in splicing. Cell 2008, 133:585-600.
    • (2008) Cell , vol.133 , pp. 585-600
    • Zhang, Z.1
  • 53
  • 54
    • 84922041769 scopus 로고    scopus 로고
    • Crystal structure of human U1 snRNP, a small nuclear ribonucleoprotein particle, reveals the mechanism of 5' splice site recognition
    • Kondo Y., et al. Crystal structure of human U1 snRNP, a small nuclear ribonucleoprotein particle, reveals the mechanism of 5' splice site recognition. Elife 2015, 4:04986.
    • (2015) Elife , vol.4
    • Kondo, Y.1
  • 55
    • 84861159694 scopus 로고    scopus 로고
    • Widespread recognition of 5' splice sites by noncanonical base-pairing to U1 snRNA involving bulged nucleotides
    • Roca X., et al. Widespread recognition of 5' splice sites by noncanonical base-pairing to U1 snRNA involving bulged nucleotides. Genes Dev. 2012, 26:1098-1109.
    • (2012) Genes Dev. , vol.26 , pp. 1098-1109
    • Roca, X.1
  • 56
    • 84873022115 scopus 로고    scopus 로고
    • Pick one, but be quick: 5' splice sites and the problems of too many choices
    • Roca X., et al. Pick one, but be quick: 5' splice sites and the problems of too many choices. Genes Dev. 2013, 27:129-144.
    • (2013) Genes Dev. , vol.27 , pp. 129-144
    • Roca, X.1
  • 57
    • 0037121924 scopus 로고    scopus 로고
    • The splicing regulator TIA-1 interacts with U1-C to promote U1 snRNP recruitment to 5' splice sites
    • Förch P., et al. The splicing regulator TIA-1 interacts with U1-C to promote U1 snRNP recruitment to 5' splice sites. EMBO J. 2002, 21:6882-6892.
    • (2002) EMBO J. , vol.21 , pp. 6882-6892
    • Förch, P.1
  • 58
    • 78149393552 scopus 로고    scopus 로고
    • ICLIP predicts the dual splicing effects of TIA-RNA interactions
    • Wang Z., et al. iCLIP predicts the dual splicing effects of TIA-RNA interactions. PLoS Biol. 2010, 8:e1000530.
    • (2010) PLoS Biol. , vol.8
    • Wang, Z.1
  • 59
    • 57649231776 scopus 로고    scopus 로고
    • Dynamic regulation of alternative splicing by silencers that modulate 5' splice site competition
    • Yu Y., et al. Dynamic regulation of alternative splicing by silencers that modulate 5' splice site competition. Cell 2008, 135:1224-1236.
    • (2008) Cell , vol.135 , pp. 1224-1236
    • Yu, Y.1
  • 60
    • 0033010430 scopus 로고    scopus 로고
    • An RNA switch at the 5' splice site requires ATP and the DEAD box protein Prp28p
    • Staley J.P., Guthrie C. An RNA switch at the 5' splice site requires ATP and the DEAD box protein Prp28p. Mol. Cell 1999, 3:55-64.
    • (1999) Mol. Cell , vol.3 , pp. 55-64
    • Staley, J.P.1    Guthrie, C.2
  • 61
    • 0033053502 scopus 로고    scopus 로고
    • The C-terminal region of hPrp8 interacts with the conserved GU dinucleotide at the 5' splice site
    • Reyes J.L., et al. The C-terminal region of hPrp8 interacts with the conserved GU dinucleotide at the 5' splice site. RNA 1999, 5:167-179.
    • (1999) RNA , vol.5 , pp. 167-179
    • Reyes, J.L.1
  • 62
    • 55549143970 scopus 로고    scopus 로고
    • Structure and function of an RNase H domain at the heart of the spliceosome
    • Pena V., et al. Structure and function of an RNase H domain at the heart of the spliceosome. EMBO J. 2008, 27:2929-2940.
    • (2008) EMBO J. , vol.27 , pp. 2929-2940
    • Pena, V.1
  • 63
    • 33745609509 scopus 로고    scopus 로고
    • RS domains contact splicing signals and promote splicing by a common mechanism in yeast through humans
    • Shen H., Green M.R. RS domains contact splicing signals and promote splicing by a common mechanism in yeast through humans. Genes Dev. 2006, 20:1755-1765.
    • (2006) Genes Dev. , vol.20 , pp. 1755-1765
    • Shen, H.1    Green, M.R.2
  • 64
    • 65549090941 scopus 로고    scopus 로고
    • Insights into branch nucleophile positioning and activation from an orthogonal pre-mRNA splicing system in yeast
    • Smith D.J., et al. Insights into branch nucleophile positioning and activation from an orthogonal pre-mRNA splicing system in yeast. Mol. Cell 2009, 34:333-343.
    • (2009) Mol. Cell , vol.34 , pp. 333-343
    • Smith, D.J.1
  • 65
    • 0030044836 scopus 로고    scopus 로고
    • Evidence that sequence-independent binding of highly conserved U2 snRNP proteins upstream of the branch site is required for assembly of spliceosomal complex A
    • Gozani O., et al. Evidence that sequence-independent binding of highly conserved U2 snRNP proteins upstream of the branch site is required for assembly of spliceosomal complex A. Genes Dev. 1996, 10:233-243.
    • (1996) Genes Dev. , vol.10 , pp. 233-243
    • Gozani, O.1
  • 66
    • 79952220808 scopus 로고    scopus 로고
    • Reduced fidelity of branch point recognition and alternative splicing induced by the anti-tumor drug spliceostatin A
    • Corrionero A., et al. Reduced fidelity of branch point recognition and alternative splicing induced by the anti-tumor drug spliceostatin A. Genes Dev. 2011, 25:445-459.
    • (2011) Genes Dev. , vol.25 , pp. 445-459
    • Corrionero, A.1
  • 67
    • 33745499067 scopus 로고    scopus 로고
    • Structural basis for polypyrimidine tract recognition by the essential pre-mRNA splicing factor U2AF65
    • Sickmier E.A., et al. Structural basis for polypyrimidine tract recognition by the essential pre-mRNA splicing factor U2AF65. Mol. Cell 2006, 23:49-59.
    • (2006) Mol. Cell , vol.23 , pp. 49-59
    • Sickmier, E.A.1
  • 68
    • 79960646885 scopus 로고    scopus 로고
    • Multi-domain conformational selection underlies pre-mRNA splicing regulation by U2AF
    • Mackereth C.D., et al. Multi-domain conformational selection underlies pre-mRNA splicing regulation by U2AF. Nature 2011, 475:408-411.
    • (2011) Nature , vol.475 , pp. 408-411
    • Mackereth, C.D.1
  • 69
    • 84876046010 scopus 로고    scopus 로고
    • U2AF65 adapts to diverse pre-mRNA splice sites through conformational selection of specific and promiscuous RNA recognition motifs
    • Jenkins J.L., et al. U2AF65 adapts to diverse pre-mRNA splice sites through conformational selection of specific and promiscuous RNA recognition motifs. Nucleic Acids Res. 2013, 41:3859-3873.
    • (2013) Nucleic Acids Res. , vol.41 , pp. 3859-3873
    • Jenkins, J.L.1
  • 70
    • 33846583944 scopus 로고    scopus 로고
    • Alternative conformations at the RNA-binding surface of the N-terminal U2AF(65) RNA recognition motif
    • Thickman K.R., et al. Alternative conformations at the RNA-binding surface of the N-terminal U2AF(65) RNA recognition motif. J. Mol. Biol. 2007, 366:703-710.
    • (2007) J. Mol. Biol. , vol.366 , pp. 703-710
    • Thickman, K.R.1
  • 71
    • 34548600067 scopus 로고    scopus 로고
    • U2AF-homology motif interactions are required for alternative splicing regulation by SPF45
    • Corsini L., et al. U2AF-homology motif interactions are required for alternative splicing regulation by SPF45. Nat. Struct. Mol. Biol. 2007, 14:620-629.
    • (2007) Nat. Struct. Mol. Biol. , vol.14 , pp. 620-629
    • Corsini, L.1
  • 72
    • 34147174235 scopus 로고    scopus 로고
    • Rearrangement of competing U2 RNA helices within the spliceosome promotes multiple steps in splicing
    • Perriman R.J., Ares M. Rearrangement of competing U2 RNA helices within the spliceosome promotes multiple steps in splicing. Genes Dev. 2007, 21:811-820.
    • (2007) Genes Dev. , vol.21 , pp. 811-820
    • Perriman, R.J.1    Ares, M.2
  • 73
    • 77951956596 scopus 로고    scopus 로고
    • Invariant U2 snRNA nucleotides form a stem loop to recognize the intron early in splicing
    • Perriman R., Ares M. Invariant U2 snRNA nucleotides form a stem loop to recognize the intron early in splicing. Mol. Cell 2010, 38:416-427.
    • (2010) Mol. Cell , vol.38 , pp. 416-427
    • Perriman, R.1    Ares, M.2
  • 74
    • 84920501201 scopus 로고    scopus 로고
    • A novel mechanism for Prp5 function in prespliceosome formation and proofreading the branch site sequence
    • Liang W.W., Cheng S.C. A novel mechanism for Prp5 function in prespliceosome formation and proofreading the branch site sequence. Genes Dev. 2015, 29:81-93.
    • (2015) Genes Dev. , vol.29 , pp. 81-93
    • Liang, W.W.1    Cheng, S.C.2
  • 75
    • 34147179830 scopus 로고    scopus 로고
    • U2 toggles iteratively between the stem IIa and stem IIc conformations to promote pre-mRNA splicing
    • Hilliker A.K., et al. U2 toggles iteratively between the stem IIa and stem IIc conformations to promote pre-mRNA splicing. Genes Dev. 2007, 21:821-834.
    • (2007) Genes Dev. , vol.21 , pp. 821-834
    • Hilliker, A.K.1
  • 76
    • 84896727449 scopus 로고    scopus 로고
    • A splicing-dependent transcriptional checkpoint associated with prespliceosome formation
    • Chathoth K.T., et al. A splicing-dependent transcriptional checkpoint associated with prespliceosome formation. Mol. Cell 2014, 53:779-790.
    • (2014) Mol. Cell , vol.53 , pp. 779-790
    • Chathoth, K.T.1
  • 77
    • 77955488349 scopus 로고    scopus 로고
    • The DEAH box ATPases Prp16 and Prp43 cooperate to proofread 5' splice site cleavage during pre-mRNA splicing
    • Koodathingal P., et al. The DEAH box ATPases Prp16 and Prp43 cooperate to proofread 5' splice site cleavage during pre-mRNA splicing. Mol. Cell 2010, 39:385-395.
    • (2010) Mol. Cell , vol.39 , pp. 385-395
    • Koodathingal, P.1
  • 78
    • 78650446117 scopus 로고    scopus 로고
    • DEAH-box ATPase Prp16 has dual roles in remodeling of the spliceosome in catalytic steps
    • Tseng C.K., et al. DEAH-box ATPase Prp16 has dual roles in remodeling of the spliceosome in catalytic steps. RNA 2011, 17:145-154.
    • (2011) RNA , vol.17 , pp. 145-154
    • Tseng, C.K.1
  • 79
    • 77950870601 scopus 로고    scopus 로고
    • Exon definition complexes contain the tri-snRNP and can be directly converted into B-like precatalytic splicing complexes
    • Schneider M., et al. Exon definition complexes contain the tri-snRNP and can be directly converted into B-like precatalytic splicing complexes. Mol. Cell 2010, 38:223-235.
    • (2010) Mol. Cell , vol.38 , pp. 223-235
    • Schneider, M.1
  • 80
    • 84860513145 scopus 로고    scopus 로고
    • The spliceosome: a flexible, reversible macromolecular machine
    • Hoskins A.A., Moore M.J. The spliceosome: a flexible, reversible macromolecular machine. Trends Biochem. Sci. 2012, 37:179-188.
    • (2012) Trends Biochem. Sci. , vol.37 , pp. 179-188
    • Hoskins, A.A.1    Moore, M.J.2
  • 81
    • 46449086933 scopus 로고    scopus 로고
    • Both catalytic steps of nuclear pre-mRNA splicing are reversible
    • Tseng C.K., Cheng S.C. Both catalytic steps of nuclear pre-mRNA splicing are reversible. Science 2008, 320:1782-1784.
    • (2008) Science , vol.320 , pp. 1782-1784
    • Tseng, C.K.1    Cheng, S.C.2
  • 82
    • 84935037380 scopus 로고    scopus 로고
    • SnapShot: spliceosome dynamics I
    • 1474-e1
    • Wahl M.C., Luhrmann R. SnapShot: spliceosome dynamics I. Cell 2015, 161. 1474-e1.
    • (2015) Cell , vol.161
    • Wahl, M.C.1    Luhrmann, R.2
  • 83
    • 84935037380 scopus 로고    scopus 로고
    • SnapShot: spliceosome dynamics II
    • 456-e1
    • Wahl M.C., Luhrmann R. SnapShot: spliceosome dynamics II. Cell 2015, 162. 456-e1.
    • (2015) Cell , vol.162
    • Wahl, M.C.1    Luhrmann, R.2
  • 84
    • 77950516144 scopus 로고    scopus 로고
    • Conformational dynamics of single pre-mRNA molecules during in vitro splicing
    • Abelson J., et al. Conformational dynamics of single pre-mRNA molecules during in vitro splicing. Nat. Struct. Mol. Biol. 2010, 17:504-512.
    • (2010) Nat. Struct. Mol. Biol. , vol.17 , pp. 504-512
    • Abelson, J.1
  • 85
    • 79952504644 scopus 로고    scopus 로고
    • Ordered and dynamic assembly of single spliceosomes
    • Hoskins A.A., et al. Ordered and dynamic assembly of single spliceosomes. Science 2011, 331:1289-1295.
    • (2011) Science , vol.331 , pp. 1289-1295
    • Hoskins, A.A.1
  • 86
    • 84885860165 scopus 로고    scopus 로고
    • Alternative spliceosome assembly pathways revealed by single-molecule fluorescence microscopy
    • Shcherbakova I., et al. Alternative spliceosome assembly pathways revealed by single-molecule fluorescence microscopy. Cell Rep. 2013, 5:151-165.
    • (2013) Cell Rep. , vol.5 , pp. 151-165
    • Shcherbakova, I.1
  • 87
    • 0141924550 scopus 로고    scopus 로고
    • The Prp19p-associated complex in spliceosome activation
    • Chan S.P., et al. The Prp19p-associated complex in spliceosome activation. Science 2003, 302:279-282.
    • (2003) Science , vol.302 , pp. 279-282
    • Chan, S.P.1
  • 88
    • 79955691547 scopus 로고    scopus 로고
    • The RNA polymerase II C-terminal domain promotes splicing activation through recruitment of a U2AF65-Prp19 complex
    • David C.J., et al. The RNA polymerase II C-terminal domain promotes splicing activation through recruitment of a U2AF65-Prp19 complex. Genes Dev. 2011, 25:972-983.
    • (2011) Genes Dev. , vol.25 , pp. 972-983
    • David, C.J.1
  • 89
    • 84879479282 scopus 로고    scopus 로고
    • Splicing and beyond: the many faces of the Prp19 complex
    • Chanarat S., Strasser K. Splicing and beyond: the many faces of the Prp19 complex. Biochim. Biophys. Acta 2013, 1833:2126-2134.
    • (2013) Biochim. Biophys. Acta , vol.1833 , pp. 2126-2134
    • Chanarat, S.1    Strasser, K.2
  • 90
    • 0028034324 scopus 로고
    • Complementation by SR proteins of pre-mRNA splicing reactions depleted of U1 snRNP
    • Crispino J.D., et al. Complementation by SR proteins of pre-mRNA splicing reactions depleted of U1 snRNP. Science 1994, 265:1866-1869.
    • (1994) Science , vol.265 , pp. 1866-1869
    • Crispino, J.D.1
  • 91
    • 84866076924 scopus 로고    scopus 로고
    • Intrinsic disorder in the human spliceosomal proteome
    • Korneta I., Bujnicki J.M. Intrinsic disorder in the human spliceosomal proteome. PLoS Comput. Biol. 2012, 8:e1002641.
    • (2012) PLoS Comput. Biol. , vol.8
    • Korneta, I.1    Bujnicki, J.M.2
  • 92
    • 84877133527 scopus 로고    scopus 로고
    • Malleable ribonucleoprotein machine: protein intrinsic disorder in the Saccharomyces cerevisiae spliceosome
    • Coelho Ribeiro Mde L., et al. Malleable ribonucleoprotein machine: protein intrinsic disorder in the Saccharomyces cerevisiae spliceosome. PeerJ 2013, 1:e2.
    • (2013) PeerJ , vol.1
    • Coelho Ribeiro Mde, L.1
  • 93
    • 0037012922 scopus 로고    scopus 로고
    • Genomewide analysis of mRNA processing in yeast using splicing-specific microarrays
    • Clark T.A., et al. Genomewide analysis of mRNA processing in yeast using splicing-specific microarrays. Science 2002, 296:907-910.
    • (2002) Science , vol.296 , pp. 907-910
    • Clark, T.A.1
  • 94
    • 34247255773 scopus 로고    scopus 로고
    • Transcript specificity in yeast pre-mRNA splicing revealed by mutations in core spliceosomal components
    • Pleiss J.A., et al. Transcript specificity in yeast pre-mRNA splicing revealed by mutations in core spliceosomal components. PLoS Biol. 2007, 5:e90.
    • (2007) PLoS Biol. , vol.5
    • Pleiss, J.A.1
  • 95
    • 27944488662 scopus 로고    scopus 로고
    • Use of RNA interference to dissect the roles of trans-acting factors in alternative pre-mRNA splicing
    • Park J.W., Graveley B.R. Use of RNA interference to dissect the roles of trans-acting factors in alternative pre-mRNA splicing. Methods 2005, 37:341-344.
    • (2005) Methods , vol.37 , pp. 341-344
    • Park, J.W.1    Graveley, B.R.2
  • 96
    • 84920376732 scopus 로고    scopus 로고
    • Genome-wide identification of Fas/CD95 alternative splicing regulators reveals links with iron homeostasis
    • Tejedor J.R., et al. Genome-wide identification of Fas/CD95 alternative splicing regulators reveals links with iron homeostasis. Mol. Cell 2015, 57:23-38.
    • (2015) Mol. Cell , vol.57 , pp. 23-38
    • Tejedor, J.R.1
  • 97
    • 84920461524 scopus 로고    scopus 로고
    • Functional splicing network reveals extensive regulatory potential of the core spliceosomal machinery
    • Papasaikas P., et al. Functional splicing network reveals extensive regulatory potential of the core spliceosomal machinery. Mol. Cell 2015, 57:7-22.
    • (2015) Mol. Cell , vol.57 , pp. 7-22
    • Papasaikas, P.1
  • 98
    • 84930807415 scopus 로고    scopus 로고
    • The philosophical approach: an interview with ford doolittle
    • Doolittle F., Gitschier J. The philosophical approach: an interview with ford doolittle. PLoS Genet. 2015, 11:e1005173.
    • (2015) PLoS Genet. , vol.11
    • Doolittle, F.1    Gitschier, J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.