메뉴 건너뛰기




Volumn 473, Issue 3, 2016, Pages 733-742

Stem cell-derived vasculature: A potent and multidimensional technology for basic research, disease modeling, and tissue engineering

Author keywords

Blood vessels; Embryonic stem cell; Endothelial cells; Induced pluripotent stem cell; Pluripotent stem cell; Smooth muscle; Stem cell; Stem cell therapy; Tissue engineered blood vessels; Tissue engineered vasculature; Vascular; Vascular biology; Vasculature

Indexed keywords

ANGIOGENESIS; BASIC RESEARCH; CELL FUNCTION; CELL THERAPY; CYTOLOGY; DEVELOPMENTAL BIOLOGY; HUMAN; PATHOPHYSIOLOGY; PRIORITY JOURNAL; SHORT SURVEY; STEM CELL; STEM CELL DERIVED VASCULATURE; TISSUE ENGINEERING; TISSUE LEVEL; VASCULAR BIOLOGY; VASCULARIZATION; ANIMAL; BIOLOGICAL THERAPY; BLOOD VESSEL; CHEMISTRY; DISEASE MODEL; EMBRYONIC STEM CELL; ENDOTHELIUM CELL; INDUCED PLURIPOTENT STEM CELL; MICROCIRCULATION; PHYSIOLOGY; PROCEDURES; THREE DIMENSIONAL IMAGING; TISSUE SCAFFOLD; VASCULAR SMOOTH MUSCLE; WOUND HEALING;

EID: 84951045736     PISSN: 0006291X     EISSN: 10902104     Source Type: Journal    
DOI: 10.1016/j.bbrc.2015.09.127     Document Type: Short Survey
Times cited : (15)

References (120)
  • 1
    • 84923113204 scopus 로고    scopus 로고
    • Characterizing human pluripotent-stem-cell-derived vascular cells for tissue engineering applications
    • S. Kusuma, A. Facklam, and S. Gerecht Characterizing human pluripotent-stem-cell-derived vascular cells for tissue engineering applications Stem Cells Dev. 24 2015 451 458 10.1089/scd.2014.0377
    • (2015) Stem Cells Dev. , vol.24 , pp. 451-458
    • Kusuma, S.1    Facklam, A.2    Gerecht, S.3
  • 2
    • 84874119052 scopus 로고    scopus 로고
    • Derivation of vascular endothelial cells from human embryonic stem cells under GMP-compliant conditions: Towards clinical studies in ischaemic disease
    • A. Kaupisch, L. Kennedy, V. Stelmanis, B. Tye, N.M. Kane, J.C. Mountford, and et al. Derivation of vascular endothelial cells from human embryonic stem cells under GMP-compliant conditions: towards clinical studies in ischaemic disease J Cardiovasc. Transl. Res. 5 2012 605 617 10.1007/s12265-012-9379-2
    • (2012) J Cardiovasc. Transl. Res. , vol.5 , pp. 605-617
    • Kaupisch, A.1    Kennedy, L.2    Stelmanis, V.3    Tye, B.4    Kane, N.M.5    Mountford, J.C.6
  • 3
    • 84878847197 scopus 로고    scopus 로고
    • Recent progress in the use of induced pluripotent stem cells in vascular regeneration
    • S. Kusuma, and S. Gerecht Recent progress in the use of induced pluripotent stem cells in vascular regeneration Expert Rev. Cardiovasc. Ther. 11 2013 661 663 10.1586/erc.13.54
    • (2013) Expert Rev. Cardiovasc. Ther. , vol.11 , pp. 661-663
    • Kusuma, S.1    Gerecht, S.2
  • 4
    • 84866951228 scopus 로고    scopus 로고
    • Stem cell sources for vascular tissue engineering and regeneration
    • V.K. Bajpai, and S.T. Andreadis Stem cell sources for vascular tissue engineering and regeneration Tissue Eng. Part B Rev. 18 2012 405 425 10.1089/ten.TEB.2011.0264
    • (2012) Tissue Eng. Part B Rev. , vol.18 , pp. 405-425
    • Bajpai, V.K.1    Andreadis, S.T.2
  • 5
    • 84155166857 scopus 로고    scopus 로고
    • Stem cell-derived vascular endothelial cells and their potential application in regenerative medicine
    • H. Chaudhury, E. Raborn, L.C. Goldie, and K.K. Hirschi Stem cell-derived vascular endothelial cells and their potential application in regenerative medicine Cells Tissues Organs 195 2012 41 47 10.1159/000331423
    • (2012) Cells Tissues Organs , vol.195 , pp. 41-47
    • Chaudhury, H.1    Raborn, E.2    Goldie, L.C.3    Hirschi, K.K.4
  • 6
    • 58149129406 scopus 로고    scopus 로고
    • Mesenchymal stem cells for vascular regeneration
    • N.F. Huang, and S. Li Mesenchymal stem cells for vascular regeneration Regen. Med. 3 2008 877 892 10.2217/17460751.3.6.877
    • (2008) Regen. Med. , vol.3 , pp. 877-892
    • Huang, N.F.1    Li, S.2
  • 8
    • 84907328452 scopus 로고    scopus 로고
    • Derivation and network formation of vascular cells from human pluripotent stem cells
    • S. Kusuma, B. Macklin, and S. Gerecht Derivation and network formation of vascular cells from human pluripotent stem cells Methods Mol. Biol. Clifton N. J. 1202 2014 1 9 10.1007/7651-2013-39
    • (2014) Methods Mol. Biol. Clifton N. J. , vol.1202 , pp. 1-9
    • Kusuma, S.1    Macklin, B.2    Gerecht, S.3
  • 9
    • 84893704122 scopus 로고    scopus 로고
    • Vascular progenitors from cord blood-derived induced pluripotent stem cells possess augmented capacity for regenerating ischemic retinal vasculature
    • T.S. Park, I. Bhutto, L. Zimmerlin, J.S. Huo, P. Nagaria, D. Miller, and et al. Vascular progenitors from cord blood-derived induced pluripotent stem cells possess augmented capacity for regenerating ischemic retinal vasculature Circulation 129 2014 359 372 10.1161/CIRCULATIONAHA.113.003000
    • (2014) Circulation , vol.129 , pp. 359-372
    • Park, T.S.1    Bhutto, I.2    Zimmerlin, L.3    Huo, J.S.4    Nagaria, P.5    Miller, D.6
  • 10
    • 84892754233 scopus 로고    scopus 로고
    • Concurrent generation of functional smooth muscle and endothelial cells via a vascular progenitor
    • M. Marchand, E.K. Anderson, S.M. Phadnis, M.T. Longaker, J.P. Cooke, B. Chen, and et al. Concurrent generation of functional smooth muscle and endothelial cells via a vascular progenitor Stem Cells Transl. Med. 3 2014 91 97 10.5966/sctm.2013-0124
    • (2014) Stem Cells Transl. Med. , vol.3 , pp. 91-97
    • Marchand, M.1    Anderson, E.K.2    Phadnis, S.M.3    Longaker, M.T.4    Cooke, J.P.5    Chen, B.6
  • 11
    • 84869449419 scopus 로고    scopus 로고
    • Functional vascular smooth muscle cells derived from human induced pluripotent stem cells via mesenchymal stem cell intermediates
    • V.K. Bajpai, P. Mistriotis, Y.-H. Loh, G.Q. Daley, and S.T. Andreadis Functional vascular smooth muscle cells derived from human induced pluripotent stem cells via mesenchymal stem cell intermediates Cardiovasc. Res. 96 2012 391 400 10.1093/cvr/cvs253
    • (2012) Cardiovasc. Res. , vol.96 , pp. 391-400
    • Bajpai, V.K.1    Mistriotis, P.2    Loh, Y.-H.3    Daley, G.Q.4    Andreadis, S.T.5
  • 12
    • 84938827001 scopus 로고    scopus 로고
    • Derivation of endothelial cells and pericytes from human pluripotent stem cells
    • S. Kusuma, and S. Gerecht Derivation of endothelial cells and pericytes from human pluripotent stem cells Methods Mol. Biol. Clifton N. J. 2014 10.1007/7651-2014-149
    • (2014) Methods Mol. Biol. Clifton N. J.
    • Kusuma, S.1    Gerecht, S.2
  • 13
    • 84901847622 scopus 로고    scopus 로고
    • Generation, expansion and functional analysis of endothelial cells and pericytes derived from human pluripotent stem cells
    • V.V. Orlova, F.E. van den Hil, S. Petrus-Reurer, Y. Drabsch, P. Ten Dijke, and C.L. Mummery Generation, expansion and functional analysis of endothelial cells and pericytes derived from human pluripotent stem cells Nat. Protoc. 9 2014 1514 1531 10.1038/nprot.2014.102
    • (2014) Nat. Protoc. , vol.9 , pp. 1514-1531
    • Orlova, V.V.1    Van Den Hil, F.E.2    Petrus-Reurer, S.3    Drabsch, Y.4    Ten Dijke, P.5    Mummery, C.L.6
  • 14
    • 84927600890 scopus 로고    scopus 로고
    • Differential effects of culture senescence and mechanical stimulation on the proliferation and leiomyogenic differentiation of MSC from different sources: Implications for engineering vascular grafts
    • M.T. Koobatian, M.-S. Liang, D.D. Swartz, and S.T. Andreadis Differential effects of culture senescence and mechanical stimulation on the proliferation and leiomyogenic differentiation of MSC from different sources: implications for engineering vascular grafts Tissue Eng. Part A 21 2015 1364 1375 10.1089/ten.TEA.2014.0535
    • (2015) Tissue Eng. Part A , vol.21 , pp. 1364-1375
    • Koobatian, M.T.1    Liang, M.-S.2    Swartz, D.D.3    Andreadis, S.T.4
  • 15
    • 84904766944 scopus 로고    scopus 로고
    • Slow and sustained nitric oxide releasing compounds inhibit multipotent vascular stem cell proliferation and differentiation without causing cell death
    • B.M. Curtis, K.A. Leix, Y. Ji, R.S.E. Glaves, D.E. Ash, and D.K. Mohanty Slow and sustained nitric oxide releasing compounds inhibit multipotent vascular stem cell proliferation and differentiation without causing cell death Biochem. Biophys. Res. Commun. 450 2014 208 212 10.1016/j.bbrc.2014.05.087
    • (2014) Biochem. Biophys. Res. Commun. , vol.450 , pp. 208-212
    • Curtis, B.M.1    Leix, K.A.2    Ji, Y.3    Glaves, R.S.E.4    Ash, D.E.5    Mohanty, D.K.6
  • 16
    • 84901365406 scopus 로고    scopus 로고
    • TGF-β1 induces the formation of vascular-like structures in embryoid bodies derived from human embryonic stem cells
    • Y. Wang, D.-J. Qian, W.-Y. Zhong, J.-H. Lu, X.-K. Guo, Y.-L. Cao, and et al. TGF-β1 induces the formation of vascular-like structures in embryoid bodies derived from human embryonic stem cells Exp. Ther. Med. 8 2014 52 58 10.3892/etm.2014.1721
    • (2014) Exp. Ther. Med. , vol.8 , pp. 52-58
    • Wang, Y.1    Qian, D.-J.2    Zhong, W.-Y.3    Lu, J.-H.4    Guo, X.-K.5    Cao, Y.-L.6
  • 17
    • 84939534251 scopus 로고    scopus 로고
    • Biomechanical strain induces elastin and collagen production in human pluripotent stem cell derived vascular smooth muscle cells
    • ajpcell.00366.2014
    • M. Wanjare, N. Agarwal, and S. Gerecht Biomechanical strain induces elastin and collagen production in human pluripotent stem cell derived vascular smooth muscle cells Am. J. Physiol. Cell Physiol. 2015 10.1152/ajpcell.00366.2014 ajpcell.00366.2014
    • (2015) Am. J. Physiol. Cell Physiol.
    • Wanjare, M.1    Agarwal, N.2    Gerecht, S.3
  • 18
    • 84894561974 scopus 로고    scopus 로고
    • Engineering micropatterned surfaces to modulate the function of vascular stem cells
    • J. Li, M. Wu, J. Chu, R. Sochol, and S. Patel Engineering micropatterned surfaces to modulate the function of vascular stem cells Biochem. Biophys. Res. Commun. 444 2014 562 567 10.1016/j.bbrc.2014.01.100
    • (2014) Biochem. Biophys. Res. Commun. , vol.444 , pp. 562-567
    • Li, J.1    Wu, M.2    Chu, J.3    Sochol, R.4    Patel, S.5
  • 19
    • 84885183431 scopus 로고    scopus 로고
    • Stem cell differentiation on electrospun nanofibrous substrates for vascular tissue engineering
    • L. Jia, M.P. Prabhakaran, X. Qin, and S. Ramakrishna Stem cell differentiation on electrospun nanofibrous substrates for vascular tissue engineering Mater. Sci. Eng. C Mater. Biol. Appl. 33 2013 4640 4650 10.1016/j.msec.2013.07.021
    • (2013) Mater. Sci. Eng. C Mater. Biol. Appl. , vol.33 , pp. 4640-4650
    • Jia, L.1    Prabhakaran, M.P.2    Qin, X.3    Ramakrishna, S.4
  • 20
    • 84857791249 scopus 로고    scopus 로고
    • Compressive elasticity of three-dimensional nanofiber matrix directs mesenchymal stem cell differentiation to vascular cells with endothelial or smooth muscle cell markers
    • K. Wingate, W. Bonani, Y. Tan, S.J. Bryant, and W. Tan Compressive elasticity of three-dimensional nanofiber matrix directs mesenchymal stem cell differentiation to vascular cells with endothelial or smooth muscle cell markers Acta Biomater. 8 2012 1440 1449 10.1016/j.actbio.2011.12.032
    • (2012) Acta Biomater. , vol.8 , pp. 1440-1449
    • Wingate, K.1    Bonani, W.2    Tan, Y.3    Bryant, S.J.4    Tan, W.5
  • 21
    • 84920622506 scopus 로고    scopus 로고
    • Induced pluripotent stem cell-derived vascular smooth muscle cells: Methods and application
    • B.C. Dash, Z. Jiang, C. Suh, and Y. Qyang Induced pluripotent stem cell-derived vascular smooth muscle cells: methods and application Biochem. J. 465 2015 185 194 10.1042/BJ20141078
    • (2015) Biochem. J. , vol.465 , pp. 185-194
    • Dash, B.C.1    Jiang, Z.2    Suh, C.3    Qyang, Y.4
  • 22
    • 84884812307 scopus 로고    scopus 로고
    • Molecular pathways governing development of vascular endothelial cells from ES/iPS cells
    • K.S. Tan, K. Tamura, M.I. Lai, A. Veerakumarasivam, Y. Nakanishi, M. Ogawa, and et al. Molecular pathways governing development of vascular endothelial cells from ES/iPS cells Stem Cell Rev. 9 2013 586 598 10.1007/s12015-013-9450-7
    • (2013) Stem Cell Rev. , vol.9 , pp. 586-598
    • Tan, K.S.1    Tamura, K.2    Lai, M.I.3    Veerakumarasivam, A.4    Nakanishi, Y.5    Ogawa, M.6
  • 23
    • 84900333432 scopus 로고    scopus 로고
    • Defining differences among perivascular cells derived from human pluripotent stem cells
    • M. Wanjare, S. Kusuma, and S. Gerecht Defining differences among perivascular cells derived from human pluripotent stem cells Stem Cell Rep. 2 2014 561 575 10.1016/j.stemcr.2014.03.004
    • (2014) Stem Cell Rep. , vol.2 , pp. 561-575
    • Wanjare, M.1    Kusuma, S.2    Gerecht, S.3
  • 24
    • 84875795014 scopus 로고    scopus 로고
    • Perivascular cells in blood vessel regeneration
    • M. Wanjare, S. Kusuma, and S. Gerecht Perivascular cells in blood vessel regeneration Biotechnol. J. 8 2013 434 447 10.1002/biot.201200199
    • (2013) Biotechnol. J. , vol.8 , pp. 434-447
    • Wanjare, M.1    Kusuma, S.2    Gerecht, S.3
  • 25
    • 84943223212 scopus 로고    scopus 로고
    • Pericytes: Properties, functions and applications in tissue engineering
    • B. Gökçinar-Yagci, D. Uçkan-C¸etinkaya, and B. C¸elebi-Saltik Pericytes: properties, functions and applications in tissue engineering Stem Cell Rev. 11 2015 549 559 10.1007/s12015-015-9590-z
    • (2015) Stem Cell Rev. , vol.11 , pp. 549-559
    • Gökçinar-Yagci, B.1    Uçkan-C¸etinkaya, D.2    C¸elebi-Saltik, B.3
  • 26
    • 84893598852 scopus 로고    scopus 로고
    • Fibroblasts derived from human pluripotent stem cells activate angiogenic responses in vitro and in vivo
    • Y. Shamis, E.A. Silva, K.J. Hewitt, Y. Brudno, S. Levenberg, D.J. Mooney, and et al. Fibroblasts derived from human pluripotent stem cells activate angiogenic responses in vitro and in vivo PloS One 8 2013 e83755 10.1371/journal.pone.0083755
    • (2013) PloS One , vol.8
    • Shamis, Y.1    Silva, E.A.2    Hewitt, K.J.3    Brudno, Y.4    Levenberg, S.5    Mooney, D.J.6
  • 27
    • 84873030339 scopus 로고    scopus 로고
    • Vascular tissue engineering: Biodegradable scaffold platforms to promote angiogenesis
    • J.V. Serbo, and S. Gerecht Vascular tissue engineering: biodegradable scaffold platforms to promote angiogenesis Stem Cell Res. Ther. 4 2013 8 10.1186/scrt156
    • (2013) Stem Cell Res. Ther. , vol.4 , pp. 8
    • Serbo, J.V.1    Gerecht, S.2
  • 28
    • 84861143986 scopus 로고    scopus 로고
    • Functional human vascular network generated in photocrosslinkable gelatin methacrylate hydrogels
    • Y.-C. Chen, R.-Z. Lin, H. Qi, Y. Yang, H. Bae, J.M. Melero-Martin, and et al. Functional human vascular network generated in photocrosslinkable gelatin methacrylate hydrogels Adv. Funct. Mater 22 2012 2027 2039 10.1002/adfm.201101662
    • (2012) Adv. Funct. Mater , vol.22 , pp. 2027-2039
    • Chen, Y.-C.1    Lin, R.-Z.2    Qi, H.3    Yang, Y.4    Bae, H.5    Melero-Martin, J.M.6
  • 29
    • 84891692782 scopus 로고    scopus 로고
    • A self-assembling peptide matrix used to control stiffness and binding site density supports the formation of microvascular networks in three dimensions
    • M.D. Stevenson, H. Piristine, N.J. Hogrebe, T.M. Nocera, M.W. Boehm, R.K. Reen, and et al. A self-assembling peptide matrix used to control stiffness and binding site density supports the formation of microvascular networks in three dimensions Acta Biomater. 9 2013 7651 7661 10.1016/j.actbio.2013.04.002
    • (2013) Acta Biomater. , vol.9 , pp. 7651-7661
    • Stevenson, M.D.1    Piristine, H.2    Hogrebe, N.J.3    Nocera, T.M.4    Boehm, M.W.5    Reen, R.K.6
  • 30
    • 84930788783 scopus 로고    scopus 로고
    • Decreasing matrix modulus of PEG hydrogels induces a vascular phenotype in human cord blood stem cells
    • S. Mahadevaiah, K.G. Robinson, P.M. Kharkar, K.L. Kiick, and R.E. Akins Decreasing matrix modulus of PEG hydrogels induces a vascular phenotype in human cord blood stem cells Biomaterials 62 2015 24 34 10.1016/j.biomaterials.2015.05.021
    • (2015) Biomaterials , vol.62 , pp. 24-34
    • Mahadevaiah, S.1    Robinson, K.G.2    Kharkar, P.M.3    Kiick, K.L.4    Akins, R.E.5
  • 31
    • 84903740299 scopus 로고    scopus 로고
    • Hypoxia-induced angiogenesis is increased by the controlled release of deferoxiamine from gelatin hydrogels
    • T. Saito, and Y. Tabata Hypoxia-induced angiogenesis is increased by the controlled release of deferoxiamine from gelatin hydrogels Acta Biomater. 10 2014 3641 3649 10.1016/j.actbio.2014.04.021
    • (2014) Acta Biomater. , vol.10 , pp. 3641-3649
    • Saito, T.1    Tabata, Y.2
  • 32
    • 84902260291 scopus 로고    scopus 로고
    • Hypoxia-inducible hydrogels
    • K.M. Park, and S. Gerecht Hypoxia-inducible hydrogels Nat. Commun 5 2014 4075 10.1038/ncomms5075
    • (2014) Nat. Commun , vol.5 , pp. 4075
    • Park, K.M.1    Gerecht, S.2
  • 33
    • 84939471600 scopus 로고    scopus 로고
    • The design of dextran-based hypoxia-inducible hydrogels via in situ oxygen-consuming reaction
    • K.M. Park, M.R. Blatchley, and S. Gerecht The design of dextran-based hypoxia-inducible hydrogels via in situ oxygen-consuming reaction Macromol. Rapid Commun. 35 2014 1968 1975 10.1002/marc.201400369
    • (2014) Macromol. Rapid Commun. , vol.35 , pp. 1968-1975
    • Park, K.M.1    Blatchley, M.R.2    Gerecht, S.3
  • 35
    • 84924368816 scopus 로고    scopus 로고
    • Coculture of stem cells from apical papilla and human umbilical vein endothelial cell under hypoxia increases the formation of three-dimensional vessel-like structures in vitro
    • C. Yuan, P. Wang, L. Zhu, W.L. Dissanayaka, D.W. Green, E.H.Y. Tong, and et al. Coculture of stem cells from apical papilla and human umbilical vein endothelial cell under hypoxia increases the formation of three-dimensional vessel-like structures in vitro Tissue Eng. Part A 21 2015 1163 1172 10.1089/ten.TEA.2014.0058
    • (2015) Tissue Eng. Part A , vol.21 , pp. 1163-1172
    • Yuan, C.1    Wang, P.2    Zhu, L.3    Dissanayaka, W.L.4    Green, D.W.5    Tong, E.H.Y.6
  • 36
    • 84903954187 scopus 로고    scopus 로고
    • Harnessing developmental processes for vascular engineering and regeneration
    • K.M. Park, and S. Gerecht Harnessing developmental processes for vascular engineering and regeneration Dev. Camb. Engl. 141 2014 2760 2769 10.1242/dev.102194
    • (2014) Dev. Camb. Engl. , vol.141 , pp. 2760-2769
    • Park, K.M.1    Gerecht, S.2
  • 37
    • 84942045441 scopus 로고    scopus 로고
    • Vascular stem/progenitor cells: Current status of the problem
    • Y.V. Bobryshev, A.N. Orekhov, and D.A. Chistiakov Vascular stem/progenitor cells: current status of the problem Cell Tissue Res. 2015 10.1007/s00441-015-2231-7
    • (2015) Cell Tissue Res.
    • Bobryshev, Y.V.1    Orekhov, A.N.2    Chistiakov, D.A.3
  • 39
    • 84934443961 scopus 로고    scopus 로고
    • Control of vascular tube morphogenesis and maturation in 3D extracellular matrices by endothelial cells and pericytes
    • G.E. Davis, D.J. Kim, C.-X. Meng, P.R. Norden, K.R. Speichinger, M.T. Davis, and et al. Control of vascular tube morphogenesis and maturation in 3D extracellular matrices by endothelial cells and pericytes Methods Mol. Biol. Clifton N. J. 1066 2013 17 28 10.1007/978-1-62703-604-7-2
    • (2013) Methods Mol. Biol. Clifton N. J. , vol.1066 , pp. 17-28
    • Davis, G.E.1    Kim, D.J.2    Meng, C.-X.3    Norden, P.R.4    Speichinger, K.R.5    Davis, M.T.6
  • 40
    • 84896055839 scopus 로고    scopus 로고
    • The role of macrophage phenotype in vascularization of tissue engineering scaffolds
    • K.L. Spiller, R. Anfang, K.J. Spiller, J. Ng, K.R. Nakazawa, J.W. Daulton, and et al. The role of macrophage phenotype in vascularization of tissue engineering scaffolds Biomaterials 35 2014 4477 4488 10.1016/j.biomaterials.2014.02.012
    • (2014) Biomaterials , vol.35 , pp. 4477-4488
    • Spiller, K.L.1    Anfang, R.2    Spiller, K.J.3    Ng, J.4    Nakazawa, K.R.5    Daulton, J.W.6
  • 41
    • 77950671531 scopus 로고    scopus 로고
    • Micropatterned 3-dimensional hydrogel system to study human endothelial-mesenchymal stem cell interactions
    • S. Trkov, G. Eng, R. di Liddo, P.P. Parnigotto, and G. Vunjak-Novakovic Micropatterned 3-dimensional hydrogel system to study human endothelial-mesenchymal stem cell interactions J. Tissue Eng. Regen. Med. 4 2010 205 215 10.1002/term.231
    • (2010) J. Tissue Eng. Regen. Med. , vol.4 , pp. 205-215
    • Trkov, S.1    Eng, G.2    Di Liddo, R.3    Parnigotto, P.P.4    Vunjak-Novakovic, G.5
  • 42
    • 84896716757 scopus 로고    scopus 로고
    • A novel in vitro model for microvasculature reveals regulation of circumferential ECM organization by curvature
    • S.F. Barreto-Ortiz, S. Zhang, M. Davenport, J. Fradkin, B. Ginn, H.-Q. Mao, and et al. A novel in vitro model for microvasculature reveals regulation of circumferential ECM organization by curvature PloS One 8 2013 e81061 10.1371/journal.pone.0081061
    • (2013) PloS One , vol.8
    • Barreto-Ortiz, S.F.1    Zhang, S.2    Davenport, M.3    Fradkin, J.4    Ginn, B.5    Mao, H.-Q.6
  • 44
    • 84921851999 scopus 로고    scopus 로고
    • Investigating human vascular tube morphogenesis and maturation using endothelial cell-pericyte co-cultures and a doxycycline-inducible genetic system in 3D extracellular matrices
    • S.L.K. Bowers, C.-X. Meng, M.T. Davis, and G.E. Davis Investigating human vascular tube morphogenesis and maturation using endothelial cell-pericyte co-cultures and a doxycycline-inducible genetic system in 3D extracellular matrices Methods Mol. Biol. Clifton N. J. 1189 2015 171 189 10.1007/978-1-4939-1164-6-12
    • (2015) Methods Mol. Biol. Clifton N. J. , vol.1189 , pp. 171-189
    • Bowers, S.L.K.1    Meng, C.-X.2    Davis, M.T.3    Davis, G.E.4
  • 45
    • 84930671566 scopus 로고    scopus 로고
    • Human vascular tissue models formed from human induced pluripotent stem cell derived endothelial cells
    • D.G. Belair, J.A. Whisler, J. Valdez, J. Velazquez, J.A. Molenda, V. Vickerman, and et al. Human vascular tissue models formed from human induced pluripotent stem cell derived endothelial cells Stem Cell Rev. 11 2015 511 525 10.1007/s12015-014-9549-5
    • (2015) Stem Cell Rev. , vol.11 , pp. 511-525
    • Belair, D.G.1    Whisler, J.A.2    Valdez, J.3    Velazquez, J.4    Molenda, J.A.5    Vickerman, V.6
  • 46
    • 84912062630 scopus 로고    scopus 로고
    • Concise review: Tissue-specific microvascular endothelial cells derived from human pluripotent stem cells
    • H.K. Wilson, S.G. Canfield, E.V. Shusta, and S.P. Palecek Concise review: tissue-specific microvascular endothelial cells derived from human pluripotent stem cells Stem Cells Dayt. Ohio 32 2014 3037 3045 10.1002/stem.1797
    • (2014) Stem Cells Dayt. Ohio , vol.32 , pp. 3037-3045
    • Wilson, H.K.1    Canfield, S.G.2    Shusta, E.V.3    Palecek, S.P.4
  • 47
    • 84875128533 scopus 로고    scopus 로고
    • Serum-free differentiation of functional human coronary-like vascular smooth muscle cells from embryonic stem cells
    • O. El-Mounayri, A. Mihic, E.A. Shikatani, M. Gagliardi, S.K. Steinbach, N. Dubois, and et al. Serum-free differentiation of functional human coronary-like vascular smooth muscle cells from embryonic stem cells Cardiovasc. Res. 98 2013 125 135 10.1093/cvr/cvs357
    • (2013) Cardiovasc. Res. , vol.98 , pp. 125-135
    • El-Mounayri, O.1    Mihic, A.2    Shikatani, E.A.3    Gagliardi, M.4    Steinbach, S.K.5    Dubois, N.6
  • 49
    • 84927566302 scopus 로고    scopus 로고
    • The vascular stem cell niches and their significance in the brain
    • V. Pais, L. Danaila, and E. Pais The vascular stem cell niches and their significance in the brain J. Neurosurg. Sci. 58 2014 161 168
    • (2014) J. Neurosurg. Sci. , vol.58 , pp. 161-168
    • Pais, V.1    Danaila, L.2    Pais, E.3
  • 50
    • 84983095294 scopus 로고    scopus 로고
    • The vascular niche in adult neurogenesis
    • T. Licht, and E. Keshet The vascular niche in adult neurogenesis Mech. Dev. 2015 10.1016/j.mod.2015.06.001
    • (2015) Mech. Dev.
    • Licht, T.1    Keshet, E.2
  • 51
    • 84908018697 scopus 로고    scopus 로고
    • Reconstituting vascular microenvironment of neural stem cell niche in three-dimensional extracellular matrix
    • Y. Shin, K. Yang, S. Han, H.-J. Park, Y. Seok Heo, S.-W. Cho, and et al. Reconstituting vascular microenvironment of neural stem cell niche in three-dimensional extracellular matrix Adv. Healthc. Mater 3 2014 1457 1464 10.1002/adhm.201300569
    • (2014) Adv. Healthc. Mater , vol.3 , pp. 1457-1464
    • Shin, Y.1    Yang, K.2    Han, S.3    Park, H.-J.4    Seok Heo, Y.5    Cho, S.-W.6
  • 52
    • 84929839390 scopus 로고    scopus 로고
    • Brain vascular pericytes following ischemia have multipotential stem cell activity to differentiate into neural and vascular lineage cells
    • T. Nakagomi, S. Kubo, A. Nakano-Doi, R. Sakuma, S. Lu, A. Narita, and et al. Brain vascular pericytes following ischemia have multipotential stem cell activity to differentiate into neural and vascular lineage cells Stem Cells Dayt. Ohio 33 2015 1962 1974 10.1002/stem.1977
    • (2015) Stem Cells Dayt. Ohio , vol.33 , pp. 1962-1974
    • Nakagomi, T.1    Kubo, S.2    Nakano-Doi, A.3    Sakuma, R.4    Lu, S.5    Narita, A.6
  • 53
    • 84864874302 scopus 로고    scopus 로고
    • Derivation of blood-brain barrier endothelial cells from human pluripotent stem cells
    • E.S. Lippmann, S.M. Azarin, J.E. Kay, R.A. Nessler, H.K. Wilson, A. Al-Ahmad, and et al. Derivation of blood-brain barrier endothelial cells from human pluripotent stem cells Nat. Biotechnol. 30 2012 783 791 10.1038/nbt.2247
    • (2012) Nat. Biotechnol. , vol.30 , pp. 783-791
    • Lippmann, E.S.1    Azarin, S.M.2    Kay, J.E.3    Nessler, R.A.4    Wilson, H.K.5    Al-Ahmad, A.6
  • 55
    • 84894641836 scopus 로고    scopus 로고
    • A retinoic acid-enhanced, multicellular human blood-brain barrier model derived from stem cell sources
    • E.S. Lippmann, A. Al-Ahmad, S.M. Azarin, S.P. Palecek, and E.V. Shusta A retinoic acid-enhanced, multicellular human blood-brain barrier model derived from stem cell sources Sci. Rep. 4 2014 4160 10.1038/srep04160
    • (2014) Sci. Rep. , vol.4 , pp. 4160
    • Lippmann, E.S.1    Al-Ahmad, A.2    Azarin, S.M.3    Palecek, S.P.4    Shusta, E.V.5
  • 56
    • 84924039070 scopus 로고    scopus 로고
    • Vascular niche promotes hematopoietic multipotent progenitor formation from pluripotent stem cells
    • J.L. Gori, J.M. Butler, Y.-Y. Chan, D. Chandrasekaran, M.G. Poulos, M. Ginsberg, and et al. Vascular niche promotes hematopoietic multipotent progenitor formation from pluripotent stem cells J. Clin. Invest. 125 2015 1243 1254 10.1172/JCI79328
    • (2015) J. Clin. Invest. , vol.125 , pp. 1243-1254
    • Gori, J.L.1    Butler, J.M.2    Chan, Y.-Y.3    Chandrasekaran, D.4    Poulos, M.G.5    Ginsberg, M.6
  • 57
    • 84870504865 scopus 로고    scopus 로고
    • From blood islands to blood vessels: Morphologic observations and expression of key molecules during hyaloid vascular system development
    • D.S. McLeod, T. Hasegawa, T. Baba, R. Grebe, I. Galtier d'Auriac, C. Merges, and et al. From blood islands to blood vessels: morphologic observations and expression of key molecules during hyaloid vascular system development Invest. Ophthalmol. Vis. Sci. 53 2012 7912 7927 10.1167/iovs.12-10140
    • (2012) Invest. Ophthalmol. Vis. Sci. , vol.53 , pp. 7912-7927
    • McLeod, D.S.1    Hasegawa, T.2    Baba, T.3    Grebe, R.4    Galtier D'Auriac, I.5    Merges, C.6
  • 58
    • 84879915152 scopus 로고    scopus 로고
    • Blood flow and stem cells in vascular disease
    • C. Zhang, L. Zeng, C. Emanueli, and Q. Xu Blood flow and stem cells in vascular disease Cardiovasc. Res. 99 2013 251 259 10.1093/cvr/cvt061
    • (2013) Cardiovasc. Res. , vol.99 , pp. 251-259
    • Zhang, C.1    Zeng, L.2    Emanueli, C.3    Xu, Q.4
  • 59
    • 84857470235 scopus 로고    scopus 로고
    • Concise review: Applying stem cell biology to vascular structures
    • K.I. Boström, A. Garfinkel, Y. Yao, and M. Jumabay Concise review: applying stem cell biology to vascular structures Stem Cells Dayt. Ohio 30 2012 386 391 10.1002/stem.1027
    • (2012) Stem Cells Dayt. Ohio , vol.30 , pp. 386-391
    • Boström, K.I.1    Garfinkel, A.2    Yao, Y.3    Jumabay, M.4
  • 60
    • 44449162751 scopus 로고    scopus 로고
    • Oxidative stress in vascular disease: Causes, defense mechanisms and potential therapies
    • U. Förstermann Oxidative stress in vascular disease: causes, defense mechanisms and potential therapies Nat. Clin. Pract. Cardiovasc. Med. 5 2008 338 349 10.1038/ncpcardio1211
    • (2008) Nat. Clin. Pract. Cardiovasc. Med. , vol.5 , pp. 338-349
    • Förstermann, U.1
  • 61
    • 84891133400 scopus 로고    scopus 로고
    • Purinergic signaling and blood vessels in health and disease
    • G. Burnstock, and V. Ralevic Purinergic signaling and blood vessels in health and disease Pharmacol. Rev. 66 2014 102 192 10.1124/pr.113.008029
    • (2014) Pharmacol. Rev. , vol.66 , pp. 102-192
    • Burnstock, G.1    Ralevic, V.2
  • 62
    • 84924457091 scopus 로고    scopus 로고
    • MESC-based in vitro differentiation models to study vascular response and functionality following genotoxic insults
    • T. Hennicke, K. Nieweg, N. Brockmann, M.U. Kassack, K. Gottmann, and G. Fritz mESC-based in vitro differentiation models to study vascular response and functionality following genotoxic insults Toxicol. Sci. Off. J. Soc. Toxicol. 144 2015 138 150 10.1093/toxsci/kfu264
    • (2015) Toxicol. Sci. Off. J. Soc. Toxicol. , vol.144 , pp. 138-150
    • Hennicke, T.1    Nieweg, K.2    Brockmann, N.3    Kassack, M.U.4    Gottmann, K.5    Fritz, G.6
  • 63
    • 84873466364 scopus 로고    scopus 로고
    • Modeling and rescue of the vascular phenotype of Williams-Beuren syndrome in patient induced pluripotent stem cells
    • C. Kinnear, W.Y. Chang, S. Khattak, A. Hinek, T. Thompson, D. de Carvalho Rodrigues, and et al. Modeling and rescue of the vascular phenotype of Williams-Beuren syndrome in patient induced pluripotent stem cells Stem Cells Transl. Med. 2 2013 2 15 10.5966/sctm.2012-0054
    • (2013) Stem Cells Transl. Med. , vol.2 , pp. 2-15
    • Kinnear, C.1    Chang, W.Y.2    Khattak, S.3    Hinek, A.4    Thompson, T.5    De Carvalho Rodrigues, D.6
  • 64
    • 82255164575 scopus 로고    scopus 로고
    • Bioengineering embryonic stem cell microenvironments for the study of breast cancer
    • N.A. Raof, B.M. Mooney, and Y. Xie Bioengineering embryonic stem cell microenvironments for the study of breast cancer Int. J. Mol. Sci. 12 2011 7662 7691 10.3390/ijms12117662
    • (2011) Int. J. Mol. Sci. , vol.12 , pp. 7662-7691
    • Raof, N.A.1    Mooney, B.M.2    Xie, Y.3
  • 65
    • 84923360210 scopus 로고    scopus 로고
    • Tissue-engineered models of human tumors for cancer research
    • A. Villasante, and G. Vunjak-Novakovic Tissue-engineered models of human tumors for cancer research Expert Opin. Drug Discov. 10 2015 257 268 10.1517/17460441.2015.1009442
    • (2015) Expert Opin. Drug Discov. , vol.10 , pp. 257-268
    • Villasante, A.1    Vunjak-Novakovic, G.2
  • 66
    • 84891351007 scopus 로고    scopus 로고
    • An integrated in vitro model of perfused tumor and cardiac tissue
    • M. Moya, D. Tran, and S.C. George An integrated in vitro model of perfused tumor and cardiac tissue Stem Cell Res. Ther. 4 Suppl. 1 2013 S15 10.1186/scrt376
    • (2013) Stem Cell Res. Ther. , vol.4 , pp. S15
    • Moya, M.1    Tran, D.2    George, S.C.3
  • 69
    • 84870017153 scopus 로고    scopus 로고
    • Microfluidic artificial "vessels" for dynamic mechanical stimulation of mesenchymal stem cells
    • J. Zhou, and L.E. Niklason Microfluidic artificial "vessels" for dynamic mechanical stimulation of mesenchymal stem cells Integr. Biol. Quant. Biosci. Nano Macro. 4 2012 1487 1497 10.1039/c2ib00171c
    • (2012) Integr. Biol. Quant. Biosci. Nano Macro. , vol.4 , pp. 1487-1497
    • Zhou, J.1    Niklason, L.E.2
  • 71
    • 84869126274 scopus 로고    scopus 로고
    • A human disease model of drug toxicity-induced pulmonary edema in a lung-on-a-chip microdevice
    • D. Huh, D.C. Leslie, B.D. Matthews, J.P. Fraser, S. Jurek, G.A. Hamilton, and et al. A human disease model of drug toxicity-induced pulmonary edema in a lung-on-a-chip microdevice Sci. Transl. Med. 4 2012 159ra147 10.1126/scitranslmed.3004249
    • (2012) Sci. Transl. Med. , vol.4
    • Huh, D.1    Leslie, D.C.2    Matthews, B.D.3    Fraser, J.P.4    Jurek, S.5    Hamilton, G.A.6
  • 72
    • 84875231374 scopus 로고    scopus 로고
    • Tissue engineering of blood vessels in cardiovascular disease: Moving towards clinical translation
    • B.V. Udelsman, M.W. Maxfield, and C.K. Breuer Tissue engineering of blood vessels in cardiovascular disease: moving towards clinical translation Heart Br. Card. Soc. 99 2013 454 460 10.1136/heartjnl-2012-302984
    • (2013) Heart Br. Card. Soc. , vol.99 , pp. 454-460
    • Udelsman, B.V.1    Maxfield, M.W.2    Breuer, C.K.3
  • 74
    • 84894151134 scopus 로고    scopus 로고
    • Small-diameter vascular graft engineered using human embryonic stem cell-derived mesenchymal cells
    • S. Sundaram, A. Echter, A. Sivarapatna, C. Qiu, and L. Niklason Small-diameter vascular graft engineered using human embryonic stem cell-derived mesenchymal cells Tissue Eng. Part A 20 2014 740 750 10.1089/ten.TEA.2012.0738
    • (2014) Tissue Eng. Part A , vol.20 , pp. 740-750
    • Sundaram, S.1    Echter, A.2    Sivarapatna, A.3    Qiu, C.4    Niklason, L.5
  • 75
    • 84879884261 scopus 로고    scopus 로고
    • Hollow fibers of poly(lactide-co-glycolide) and poly(ϵ-caprolactone) blends for vascular tissue engineering applications
    • N. Diban, S. Haimi, L. Bolhuis-Versteeg, S. Teixeira, S. Miettinen, A. Poot, and et al. Hollow fibers of poly(lactide-co-glycolide) and poly(ϵ-caprolactone) blends for vascular tissue engineering applications Acta Biomater. 9 2013 6450 6458 10.1016/j.actbio.2013.01.005
    • (2013) Acta Biomater. , vol.9 , pp. 6450-6458
    • Diban, N.1    Haimi, S.2    Bolhuis-Versteeg, L.3    Teixeira, S.4    Miettinen, S.5    Poot, A.6
  • 76
    • 84930329634 scopus 로고    scopus 로고
    • Cells and stimuli in small-caliber blood vessel tissue engineering
    • C. Tresoldi, A.F. Pellegata, and S. Mantero Cells and stimuli in small-caliber blood vessel tissue engineering Regen. Med. 10 2015 505 527 10.2217/rme.15.19
    • (2015) Regen. Med. , vol.10 , pp. 505-527
    • Tresoldi, C.1    Pellegata, A.F.2    Mantero, S.3
  • 77
    • 84857237804 scopus 로고    scopus 로고
    • Evaluation of the use of an induced puripotent stem cell sheet for the construction of tissue-engineered vascular grafts
    • N. Hibino, D.R. Duncan, A. Nalbandian, T. Yi, Y. Qyang, T. Shinoka, and et al. Evaluation of the use of an induced puripotent stem cell sheet for the construction of tissue-engineered vascular grafts J. Thorac. Cardiovasc. Surg. 143 2012 696 703 10.1016/j.jtcvs.2011.06.046
    • (2012) J. Thorac. Cardiovasc. Surg. , vol.143 , pp. 696-703
    • Hibino, N.1    Duncan, D.R.2    Nalbandian, A.3    Yi, T.4    Qyang, Y.5    Shinoka, T.6
  • 78
    • 84913531122 scopus 로고    scopus 로고
    • Tissue-engineered vascular grafts created from human induced pluripotent stem cells
    • S. Sundaram, J. One, J. Siewert, S. Teodosescu, L. Zhao, S. Dimitrievska, and et al. Tissue-engineered vascular grafts created from human induced pluripotent stem cells Stem Cells Transl. Med. 3 2014 1535 1543 10.5966/sctm.2014-0065
    • (2014) Stem Cells Transl. Med. , vol.3 , pp. 1535-1543
    • Sundaram, S.1    One, J.2    Siewert, J.3    Teodosescu, S.4    Zhao, L.5    Dimitrievska, S.6
  • 79
    • 84890855192 scopus 로고    scopus 로고
    • Vascular tissue engineering: Building perfusable vasculature for implantation
    • L. Gui, and L.E. Niklason Vascular tissue engineering: building perfusable vasculature for implantation Curr. Opin. Chem. Eng. 3 2014 68 74 10.1016/j.coche.2013.11.004
    • (2014) Curr. Opin. Chem. Eng. , vol.3 , pp. 68-74
    • Gui, L.1    Niklason, L.E.2
  • 81
    • 84911480323 scopus 로고    scopus 로고
    • Vascularisation to improve translational potential of tissue engineering systems for cardiac repair
    • R.J. Dilley, and W.A. Morrison Vascularisation to improve translational potential of tissue engineering systems for cardiac repair Int. J. Biochem. Cell Biol. 56 2014 38 46 10.1016/j.biocel.2014.10.020
    • (2014) Int. J. Biochem. Cell Biol. , vol.56 , pp. 38-46
    • Dilley, R.J.1    Morrison, W.A.2
  • 82
    • 84926460484 scopus 로고    scopus 로고
    • Vascularization strategies for tissue engineers
    • L. Dew, S. MacNeil, and C.K. Chong Vascularization strategies for tissue engineers Regen. Med. 10 2015 211 224 10.2217/rme.14.83
    • (2015) Regen. Med. , vol.10 , pp. 211-224
    • Dew, L.1    MacNeil, S.2    Chong, C.K.3
  • 83
    • 84864773740 scopus 로고    scopus 로고
    • Advances in cell-based therapy for peripheral vascular disease
    • A. Blum, W. Balkan, and J.M. Hare Advances in cell-based therapy for peripheral vascular disease Atherosclerosis 223 2012 269 277 10.1016/j.atherosclerosis.2012.03.017
    • (2012) Atherosclerosis , vol.223 , pp. 269-277
    • Blum, A.1    Balkan, W.2    Hare, J.M.3
  • 84
    • 84919905419 scopus 로고    scopus 로고
    • Stem cells as a new treatment for peripheral artery disease: Hype or hope? The point of view of a vascular surgeon
    • B. Lehalle Stem cells as a new treatment for peripheral artery disease: hype or hope? The point of view of a vascular surgeon Biomed. Mater. Eng. 25 2015 73 78 10.3233/BME-141229
    • (2015) Biomed. Mater. Eng. , vol.25 , pp. 73-78
    • Lehalle, B.1
  • 85
    • 84937605413 scopus 로고    scopus 로고
    • Modulating the vascular response to limb ischemia: Angiogenic and cell therapies
    • J.P. Cooke, and D.W. Losordo Modulating the vascular response to limb ischemia: angiogenic and cell therapies Circ. Res. 116 2015 1561 1578 10.1161/CIRCRESAHA.115.303565
    • (2015) Circ. Res. , vol.116 , pp. 1561-1578
    • Cooke, J.P.1    Losordo, D.W.2
  • 86
    • 84881114127 scopus 로고    scopus 로고
    • Generation of functionally competent and durable engineered blood vessels from human induced pluripotent stem cells
    • R. Samuel, L. Daheron, S. Liao, T. Vardam, W.S. Kamoun, A. Batista, and et al. Generation of functionally competent and durable engineered blood vessels from human induced pluripotent stem cells Proc. Natl. Acad. Sci. U. S. A. 110 2013 12774 12779 10.1073/pnas.1310675110
    • (2013) Proc. Natl. Acad. Sci. U. S. A. , vol.110 , pp. 12774-12779
    • Samuel, R.1    Daheron, L.2    Liao, S.3    Vardam, T.4    Kamoun, W.S.5    Batista, A.6
  • 87
    • 84928601892 scopus 로고    scopus 로고
    • Combined intramyocardial delivery of human pericytes and cardiac stem cells additively improves the healing of mouse infarcted hearts through stimulation of vascular and muscular repair
    • E. Avolio, M. Meloni, H.L. Spencer, F. Riu, R. Katare, G. Mangialardi, and et al. Combined intramyocardial delivery of human pericytes and cardiac stem cells additively improves the healing of mouse infarcted hearts through stimulation of vascular and muscular repair Circ. Res. 116 2015 e81 94 10.1161/CIRCRESAHA.115.306146
    • (2015) Circ. Res. , vol.116 , pp. e81-e94
    • Avolio, E.1    Meloni, M.2    Spencer, H.L.3    Riu, F.4    Katare, R.5    Mangialardi, G.6
  • 88
    • 84922393721 scopus 로고    scopus 로고
    • Combining tissue repair and tissue engineering; bioactivating implantable cell-free vascular scaffolds
    • D.E.P. Muylaert, J.O. Fledderus, C.V.C. Bouten, P.Y.W. Dankers, and M.C. Verhaar Combining tissue repair and tissue engineering; bioactivating implantable cell-free vascular scaffolds Heart Br. Card. Soc. 100 2014 1825 1830 10.1136/heartjnl-2014-306092
    • (2014) Heart Br. Card. Soc. , vol.100 , pp. 1825-1830
    • Muylaert, D.E.P.1    Fledderus, J.O.2    Bouten, C.V.C.3    Dankers, P.Y.W.4    Verhaar, M.C.5
  • 89
    • 84905737023 scopus 로고    scopus 로고
    • Engineering vascular tissue with functional smooth muscle cells derived from human iPS cells and nanofibrous scaffolds
    • Y. Wang, J. Hu, J. Jiao, Z. Liu, Z. Zhou, C. Zhao, and et al. Engineering vascular tissue with functional smooth muscle cells derived from human iPS cells and nanofibrous scaffolds Biomaterials 35 2014 8960 8969 10.1016/j.biomaterials.2014.07.011
    • (2014) Biomaterials , vol.35 , pp. 8960-8969
    • Wang, Y.1    Hu, J.2    Jiao, J.3    Liu, Z.4    Zhou, Z.5    Zhao, C.6
  • 90
    • 84927630141 scopus 로고    scopus 로고
    • Engineering vascularized adipose tissue using the stromal-vascular fraction and fibrin hydrogels
    • K. Wittmann, S. Dietl, N. Ludwig, O. Berberich, C. Hoefner, K. Storck, and et al. Engineering vascularized adipose tissue using the stromal-vascular fraction and fibrin hydrogels Tissue Eng. Part A 21 2015 1343 1353 10.1089/ten.TEA.2014.0299
    • (2015) Tissue Eng. Part A , vol.21 , pp. 1343-1353
    • Wittmann, K.1    Dietl, S.2    Ludwig, N.3    Berberich, O.4    Hoefner, C.5    Storck, K.6
  • 91
    • 84907591211 scopus 로고    scopus 로고
    • Mechanisms of vasculogenesis in 3D fibrin matrices mediated by the interaction of adipose-derived stem cells and endothelial cells
    • S. Rohringer, P. Hofbauer, K.H. Schneider, A.-M. Husa, G. Feichtinger, A. Peterbauer-Scherb, and et al. Mechanisms of vasculogenesis in 3D fibrin matrices mediated by the interaction of adipose-derived stem cells and endothelial cells Angiogenesis 17 2014 921 933 10.1007/s10456-014-9439-0
    • (2014) Angiogenesis , vol.17 , pp. 921-933
    • Rohringer, S.1    Hofbauer, P.2    Schneider, K.H.3    Husa, A.-M.4    Feichtinger, G.5    Peterbauer-Scherb, A.6
  • 92
    • 84927624073 scopus 로고    scopus 로고
    • Capillary-like network formation by human amniotic fluid-derived stem cells within fibrin/poly(ethylene glycol) hydrogels
    • O.M. Benavides, J.P. Quinn, S. Pok, J. Petsche Connell, R. Ruano, and J.G. Jacot Capillary-like network formation by human amniotic fluid-derived stem cells within fibrin/poly(ethylene glycol) hydrogels Tissue Eng. Part A 21 2015 1185 1194 10.1089/ten.TEA.2014.0288
    • (2015) Tissue Eng. Part A , vol.21 , pp. 1185-1194
    • Benavides, O.M.1    Quinn, J.P.2    Pok, S.3    Petsche Connell, J.4    Ruano, R.5    Jacot, J.G.6
  • 93
    • 84905510304 scopus 로고    scopus 로고
    • A shape-controlled tuneable microgel platform to modulate angiogenic paracrine responses in stem cells
    • D. Thomas, G. Fontana, X. Chen, C. Sanz-Nogués, D.I. Zeugolis, P. Dockery, and et al. A shape-controlled tuneable microgel platform to modulate angiogenic paracrine responses in stem cells Biomaterials 35 2014 8757 8766 10.1016/j.biomaterials.2014.06.053
    • (2014) Biomaterials , vol.35 , pp. 8757-8766
    • Thomas, D.1    Fontana, G.2    Chen, X.3    Sanz-Nogués, C.4    Zeugolis, D.I.5    Dockery, P.6
  • 94
    • 84885435125 scopus 로고    scopus 로고
    • SLIT3-ROBO4 activation promotes vascular network formation in human engineered tissue and angiogenesis in vivo
    • J.D. Paul, K.L.K. Coulombe, P.T. Toth, Y. Zhang, G. Marsboom, V.P. Bindokas, and et al. SLIT3-ROBO4 activation promotes vascular network formation in human engineered tissue and angiogenesis in vivo J. Mol. Cell. Cardiol. 64 2013 124 131 10.1016/j.yjmcc.2013.09.005
    • (2013) J. Mol. Cell. Cardiol. , vol.64 , pp. 124-131
    • Paul, J.D.1    Coulombe, K.L.K.2    Toth, P.T.3    Zhang, Y.4    Marsboom, G.5    Bindokas, V.P.6
  • 95
    • 84855750276 scopus 로고    scopus 로고
    • Blood vessel formation in the tissue-engineered bone with the constitutively active form of HIF-1α mediated BMSCs
    • D. Zou, Z. Zhang, J. He, K. Zhang, D. Ye, W. Han, and et al. Blood vessel formation in the tissue-engineered bone with the constitutively active form of HIF-1α mediated BMSCs Biomaterials 33 2012 2097 2108 10.1016/j.biomaterials.2011.11.053
    • (2012) Biomaterials , vol.33 , pp. 2097-2108
    • Zou, D.1    Zhang, Z.2    He, J.3    Zhang, K.4    Ye, D.5    Han, W.6
  • 98
    • 84941253569 scopus 로고    scopus 로고
    • Generation and grafting of tissue-engineered vessels in a mouse model
    • M.M. Wong, X. Hong, E. Karamariti, Y. Hu, and Q. Xu Generation and grafting of tissue-engineered vessels in a mouse model J. Vis. Exp. JoVE 2015 10.3791/52565
    • (2015) J. Vis. Exp. JoVE
    • Wong, M.M.1    Hong, X.2    Karamariti, E.3    Hu, Y.4    Xu, Q.5
  • 99
    • 84858033844 scopus 로고    scopus 로고
    • Engineered whole organs and complex tissues
    • S.F. Badylak, D.J. Weiss, A. Caplan, and P. Macchiarini Engineered whole organs and complex tissues Lancet 379 2012 943 952 10.1016/S0140-6736(12)60073-7
    • (2012) Lancet , vol.379 , pp. 943-952
    • Badylak, S.F.1    Weiss, D.J.2    Caplan, A.3    Macchiarini, P.4
  • 100
    • 79960351640 scopus 로고    scopus 로고
    • Whole-organ tissue engineering: Decellularization and recellularization of three-dimensional matrix scaffolds
    • S.F. Badylak, D. Taylor, and K. Uygun Whole-organ tissue engineering: decellularization and recellularization of three-dimensional matrix scaffolds Annu. Rev. Biomed. Eng. 13 2011 27 53 10.1146/annurev-bioeng-071910-124743
    • (2011) Annu. Rev. Biomed. Eng. , vol.13 , pp. 27-53
    • Badylak, S.F.1    Taylor, D.2    Uygun, K.3
  • 101
    • 84928699173 scopus 로고    scopus 로고
    • Decellularization and cell seeding of whole liver biologic scaffolds composed of extracellular matrix
    • D.M. Faulk, J.D. Wildemann, and S.F. Badylak Decellularization and cell seeding of whole liver biologic scaffolds composed of extracellular matrix J. Clin. Exp. Hepatol. 5 2015 69 80 10.1016/j.jceh.2014.03.043
    • (2015) J. Clin. Exp. Hepatol. , vol.5 , pp. 69-80
    • Faulk, D.M.1    Wildemann, J.D.2    Badylak, S.F.3
  • 102
    • 85028271843 scopus 로고    scopus 로고
    • In vitro vascularization of a combined system based on a 3D printing technique
    • X. Zhao, L. Liu, J. Wang, Y. Xu, W. Zhang, G. Khang, and et al. In vitro vascularization of a combined system based on a 3D printing technique J. Tissue Eng. Regen. Med. 2014 10.1002/term.1863
    • (2014) J. Tissue Eng. Regen. Med.
    • Zhao, X.1    Liu, L.2    Wang, J.3    Xu, Y.4    Zhang, W.5    Khang, G.6
  • 103
    • 77955280239 scopus 로고    scopus 로고
    • Development of human umbilical vein endothelial cell (HUVEC) and human umbilical vein smooth muscle cell (HUVSMC) branch/stem structures on hydrogel layers via biological laser printing (BioLP)
    • P.K. Wu, and B.R. Ringeisen Development of human umbilical vein endothelial cell (HUVEC) and human umbilical vein smooth muscle cell (HUVSMC) branch/stem structures on hydrogel layers via biological laser printing (BioLP) Biofabrication 2 2010 014111 10.1088/1758-5082/2/1/014111
    • (2010) Biofabrication , vol.2
    • Wu, P.K.1    Ringeisen, B.R.2
  • 104
    • 81455158865 scopus 로고    scopus 로고
    • PLGA/hydrogel biopapers as a stackable substrate for printing HUVEC networks via BioLP
    • R.K. Pirlo, P. Wu, J. Liu, and B. Ringeisen PLGA/hydrogel biopapers as a stackable substrate for printing HUVEC networks via BioLP Biotechnol. Bioeng. 109 2012 262 273 10.1002/bit.23295
    • (2012) Biotechnol. Bioeng. , vol.109 , pp. 262-273
    • Pirlo, R.K.1    Wu, P.2    Liu, J.3    Ringeisen, B.4
  • 105
    • 84896491711 scopus 로고    scopus 로고
    • Effects of angiogenic factors and 3D-microenvironments on vascularization within sandwich cultures
    • A. Nishiguchi, M. Matsusaki, Y. Asano, H. Shimoda, and M. Akashi Effects of angiogenic factors and 3D-microenvironments on vascularization within sandwich cultures Biomaterials 35 2014 4739 4748 10.1016/j.biomaterials.2014.01.079
    • (2014) Biomaterials , vol.35 , pp. 4739-4748
    • Nishiguchi, A.1    Matsusaki, M.2    Asano, Y.3    Shimoda, H.4    Akashi, M.5
  • 107
    • 84866355664 scopus 로고    scopus 로고
    • Rapid casting of patterned vascular networks for perfusable engineered three-dimensional tissues
    • J.S. Miller, K.R. Stevens, M.T. Yang, B.M. Baker, D.-H.T. Nguyen, D.M. Cohen, and et al. Rapid casting of patterned vascular networks for perfusable engineered three-dimensional tissues Nat. Mater 11 2012 768 774 10.1038/nmat3357
    • (2012) Nat. Mater , vol.11 , pp. 768-774
    • Miller, J.S.1    Stevens, K.R.2    Yang, M.T.3    Baker, B.M.4    Nguyen, D.-H.T.5    Cohen, D.M.6
  • 108
    • 84880288992 scopus 로고    scopus 로고
    • Slowly degradable porous silk microfabricated scaffolds for vascularized tissue formation
    • L.S. Wray, K. Tsioris, E.S. Gi, F.G. Omenetto, and D.L. Kaplan Slowly degradable porous silk microfabricated scaffolds for vascularized tissue formation Adv. Funct. Mater 23 2013 3404 3412 10.1002/adfm.201202926
    • (2013) Adv. Funct. Mater , vol.23 , pp. 3404-3412
    • Wray, L.S.1    Tsioris, K.2    Gi, E.S.3    Omenetto, F.G.4    Kaplan, D.L.5
  • 109
    • 84928396541 scopus 로고    scopus 로고
    • Vascularization of hollow channel-modified porous silk scaffolds with endothelial cells for tissue regeneration
    • W. Zhang, L.S. Wray, J. Rnjak-Kovacina, L. Xu, D. Zou, S. Wang, and et al. Vascularization of hollow channel-modified porous silk scaffolds with endothelial cells for tissue regeneration Biomaterials 56 2015 68 77 10.1016/j.biomaterials.2015.03.053
    • (2015) Biomaterials , vol.56 , pp. 68-77
    • Zhang, W.1    Wray, L.S.2    Rnjak-Kovacina, J.3    Xu, L.4    Zou, D.5    Wang, S.6
  • 111
    • 84907518133 scopus 로고    scopus 로고
    • Engineering of human hepatic tissue with functional vascular networks
    • T. Takebe, N. Koike, K. Sekine, R. Fujiwara, T. Amiya, Y.-W. Zheng, and et al. Engineering of human hepatic tissue with functional vascular networks Organogenesis 10 2014 260 267 10.4161/org.27590
    • (2014) Organogenesis , vol.10 , pp. 260-267
    • Takebe, T.1    Koike, N.2    Sekine, K.3    Fujiwara, R.4    Amiya, T.5    Zheng, Y.-W.6
  • 113
    • 84868194071 scopus 로고    scopus 로고
    • The effect of controlled expression of VEGF by transduced myoblasts in a cardiac patch on vascularization in a mouse model of myocardial infarction
    • A. Marsano, R. Maidhof, J. Luo, K. Fujikara, E.E. Konofagou, A. Banfi, and et al. The effect of controlled expression of VEGF by transduced myoblasts in a cardiac patch on vascularization in a mouse model of myocardial infarction Biomaterials 34 2013 393 401 10.1016/j.biomaterials.2012.09.038
    • (2013) Biomaterials , vol.34 , pp. 393-401
    • Marsano, A.1    Maidhof, R.2    Luo, J.3    Fujikara, K.4    Konofagou, E.E.5    Banfi, A.6
  • 115
    • 84904760777 scopus 로고    scopus 로고
    • Cardiac tissue vascularization: From angiogenesis to microfluidic blood vessels
    • M. Montgomery, B. Zhang, and M. Radisic Cardiac tissue vascularization: from angiogenesis to microfluidic blood vessels J. Cardiovasc. Pharmacol. Ther. 19 2014 382 393 10.1177/1074248414528576
    • (2014) J. Cardiovasc. Pharmacol. Ther. , vol.19 , pp. 382-393
    • Montgomery, M.1    Zhang, B.2    Radisic, M.3
  • 116
    • 84925966468 scopus 로고    scopus 로고
    • Human iPS cell-engineered cardiac tissue sheets with cardiomyocytes and vascular cells for cardiac regeneration
    • H. Masumoto, T. Ikuno, M. Takeda, H. Fukushima, A. Marui, S. Katayama, and et al. Human iPS cell-engineered cardiac tissue sheets with cardiomyocytes and vascular cells for cardiac regeneration Sci. Rep. 4 2014 6716 10.1038/srep06716
    • (2014) Sci. Rep. , vol.4 , pp. 6716
    • Masumoto, H.1    Ikuno, T.2    Takeda, M.3    Fukushima, H.4    Marui, A.5    Katayama, S.6
  • 117
    • 84904427920 scopus 로고    scopus 로고
    • A multistep procedure to prepare pre-vascularized cardiac tissue constructs using adult stem sells, dynamic cell cultures, and porous scaffolds
    • S. Pagliari, A. Tirella, A. Ahluwalia, S. Duim, M.-J. Goumans, T. Aoyagi, and et al. A multistep procedure to prepare pre-vascularized cardiac tissue constructs using adult stem sells, dynamic cell cultures, and porous scaffolds Front. Physiol 5 2014 210 10.3389/fphys.2014.00210
    • (2014) Front. Physiol , vol.5 , pp. 210
    • Pagliari, S.1    Tirella, A.2    Ahluwalia, A.3    Duim, S.4    Goumans, M.-J.5    Aoyagi, T.6
  • 118
    • 84893196914 scopus 로고    scopus 로고
    • Strategies affording prevascularized cell-based constructs for myocardial tissue engineering
    • C. Muscari, E. Giordano, F. Bonafè, M. Govoni, and C. Guarnieri Strategies affording prevascularized cell-based constructs for myocardial tissue engineering Stem Cells Int. 2014 2014 434169 10.1155/2014/434169
    • (2014) Stem Cells Int. , vol.2014
    • Muscari, C.1    Giordano, E.2    Bonafè, F.3    Govoni, M.4    Guarnieri, C.5
  • 119
    • 84870909830 scopus 로고    scopus 로고
    • Perfusable branching microvessel bed for vascularization of engineered tissues
    • L.L.Y. Chiu, M. Montgomery, Y. Liang, H. Liu, and M. Radisic Perfusable branching microvessel bed for vascularization of engineered tissues Proc. Natl. Acad. Sci. U. S. A. 109 2012 E3414 E3423 10.1073/pnas.1210580109
    • (2012) Proc. Natl. Acad. Sci. U. S. A. , vol.109 , pp. E3414-E3423
    • Chiu, L.L.Y.1    Montgomery, M.2    Liang, Y.3    Liu, H.4    Radisic, M.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.