-
1
-
-
0035499350
-
Stem cells in tissue engineering
-
Bianco P., Robey P.G. Stem cells in tissue engineering. Nature 2001, 414:118-121.
-
(2001)
Nature
, vol.414
, pp. 118-121
-
-
Bianco, P.1
Robey, P.G.2
-
2
-
-
84876369589
-
Stem cell therapy for craniofacial bone regeneration: a randomized, controlled feasibility trial
-
Kaigler D., Pagni G., Park C.H., Braun T.M., Holman L.A., Yi E., et al. Stem cell therapy for craniofacial bone regeneration: a randomized, controlled feasibility trial. Cell Transpl 2013, 22:767-777.
-
(2013)
Cell Transpl
, vol.22
, pp. 767-777
-
-
Kaigler, D.1
Pagni, G.2
Park, C.H.3
Braun, T.M.4
Holman, L.A.5
Yi, E.6
-
3
-
-
0034425983
-
Tissue-engineered bone regeneration
-
Petite H., Viateau V., Bensaid W., Meunier A., De Pollak C., Bourguignon M., et al. Tissue-engineered bone regeneration. Nat Biotechnol 2000, 18:959-963.
-
(2000)
Nat Biotechnol
, vol.18
, pp. 959-963
-
-
Petite, H.1
Viateau, V.2
Bensaid, W.3
Meunier, A.4
De Pollak, C.5
Bourguignon, M.6
-
4
-
-
19644367664
-
Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering
-
Lutolf M.P., Hubbell J.A. Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering. Nat Biotech 2005, 23:47-55.
-
(2005)
Nat Biotech
, vol.23
, pp. 47-55
-
-
Lutolf, M.P.1
Hubbell, J.A.2
-
5
-
-
70849130059
-
Designing materials to direct stem-cell fate
-
Lutolf M.P., Gilbert P.M., Blau H.M. Designing materials to direct stem-cell fate. Nature 2009, 462:433-441.
-
(2009)
Nature
, vol.462
, pp. 433-441
-
-
Lutolf, M.P.1
Gilbert, P.M.2
Blau, H.M.3
-
6
-
-
67649920749
-
Growth factors, matrices, and forces combine and control stem cells
-
Discher D.E., Mooney D.J., Zandstra P.W. Growth factors, matrices, and forces combine and control stem cells. Science 2009, 324:1673.
-
(2009)
Science
, vol.324
, pp. 1673
-
-
Discher, D.E.1
Mooney, D.J.2
Zandstra, P.W.3
-
7
-
-
84874271053
-
The synergistic effect of hierarchical micro/nano-topography and bioactive ions for enhanced osseointegration
-
Zhang W., Wang G., Liu Y., Zhao X., Zou D., Zhu C., et al. The synergistic effect of hierarchical micro/nano-topography and bioactive ions for enhanced osseointegration. Biomaterials 2013, 34:3184-3195.
-
(2013)
Biomaterials
, vol.34
, pp. 3184-3195
-
-
Zhang, W.1
Wang, G.2
Liu, Y.3
Zhao, X.4
Zou, D.5
Zhu, C.6
-
8
-
-
33750939285
-
Angiogenesis in tissue engineering: breathing life into constructed tissue substitutes
-
Laschke M.W., Harder Y., Amon M., Martin I., Farhadi J., Ring A., et al. Angiogenesis in tissue engineering: breathing life into constructed tissue substitutes. Tissue Eng 2006, 12:2093-2104.
-
(2006)
Tissue Eng
, vol.12
, pp. 2093-2104
-
-
Laschke, M.W.1
Harder, Y.2
Amon, M.3
Martin, I.4
Farhadi, J.5
Ring, A.6
-
9
-
-
69949152311
-
Vascularization strategies for tissue engineering
-
Lovett M., Lee K., Edwards A., Kaplan D.L. Vascularization strategies for tissue engineering. Tissue Eng Part B Rev 2009, 15:353-370.
-
(2009)
Tissue Eng Part B Rev
, vol.15
, pp. 353-370
-
-
Lovett, M.1
Lee, K.2
Edwards, A.3
Kaplan, D.L.4
-
10
-
-
84880288992
-
Slowly degradable porous silk microfabricated scaffolds for vascularized tissue formation
-
Wray L., Tsioris K., Gi E., Omenetto F., Kaplan D. Slowly degradable porous silk microfabricated scaffolds for vascularized tissue formation. Adv Funct Mater 2013, 23:3404-3412.
-
(2013)
Adv Funct Mater
, vol.23
, pp. 3404-3412
-
-
Wray, L.1
Tsioris, K.2
Gi, E.3
Omenetto, F.4
Kaplan, D.5
-
11
-
-
77955111796
-
New opportunities for an ancient material
-
Omenetto F.G., Kaplan D.L. New opportunities for an ancient material. Science 2010, 329:528-531.
-
(2010)
Science
, vol.329
, pp. 528-531
-
-
Omenetto, F.G.1
Kaplan, D.L.2
-
12
-
-
0037290140
-
Silk-based biomaterials
-
Altman G.H., Diaz F., Jakuba C., Calabro T., Horan R.L., Chen J., et al. Silk-based biomaterials. Biomaterials 2003, 24:401-416.
-
(2003)
Biomaterials
, vol.24
, pp. 401-416
-
-
Altman, G.H.1
Diaz, F.2
Jakuba, C.3
Calabro, T.4
Horan, R.L.5
Chen, J.6
-
13
-
-
84867403318
-
Asilk-based scaffold platform with tunable architecture for engineering critically-sized tissue constructs
-
Wray L.S., Rnjak-Kovacina J., Mandal B.B., Schmidt D.F., Gil E.S., Kaplan D.L. Asilk-based scaffold platform with tunable architecture for engineering critically-sized tissue constructs. Biomaterials 2012, 33:9214-9224.
-
(2012)
Biomaterials
, vol.33
, pp. 9214-9224
-
-
Wray, L.S.1
Rnjak-Kovacina, J.2
Mandal, B.B.3
Schmidt, D.F.4
Gil, E.S.5
Kaplan, D.L.6
-
14
-
-
84898890837
-
Arrayed hollow channels in silk-based scaffolds provide functional outcomes for engineering critically sized tissue constructs
-
Rnjak-Kovacina J., Wray L.S., Golinski J.M., Kaplan D.L. Arrayed hollow channels in silk-based scaffolds provide functional outcomes for engineering critically sized tissue constructs. Adv Funct Mater 2013, 24:2188-2196.
-
(2013)
Adv Funct Mater
, vol.24
, pp. 2188-2196
-
-
Rnjak-Kovacina, J.1
Wray, L.S.2
Golinski, J.M.3
Kaplan, D.L.4
-
15
-
-
34447249326
-
Tissue-like self-assembly in cocultures of endothelial cells and osteoblasts and the formation of microcapillary-like structures on three-dimensional porous biomaterials
-
Unger R.E., Sartoris A., Peters K., Motta A., Migliaresi C., Kunkel M., et al. Tissue-like self-assembly in cocultures of endothelial cells and osteoblasts and the formation of microcapillary-like structures on three-dimensional porous biomaterials. Biomaterials 2007, 28:3965-3976.
-
(2007)
Biomaterials
, vol.28
, pp. 3965-3976
-
-
Unger, R.E.1
Sartoris, A.2
Peters, K.3
Motta, A.4
Migliaresi, C.5
Kunkel, M.6
-
16
-
-
84891363682
-
Stem cell-based approaches to engineering vascularized bone
-
Hutton D.L., Grayson W.L. Stem cell-based approaches to engineering vascularized bone. Curr Opin Chem Eng 2014, 3:75-82.
-
(2014)
Curr Opin Chem Eng
, vol.3
, pp. 75-82
-
-
Hutton, D.L.1
Grayson, W.L.2
-
17
-
-
80053387476
-
Materials fabrication from Bombyx mori silk fibroin
-
Rockwood D.N., Preda R.C., Yücel T., Wang X., Lovett M.L., Kaplan D.L. Materials fabrication from Bombyx mori silk fibroin. Nat Protoc 2011, 6:1612-1631.
-
(2011)
Nat Protoc
, vol.6
, pp. 1612-1631
-
-
Rockwood, D.N.1
Preda, R.C.2
Yücel, T.3
Wang, X.4
Lovett, M.L.5
Kaplan, D.L.6
-
18
-
-
2542588554
-
Porous 3-D scaffolds from regenerated silk fibroin
-
Nazarov R., Jin H.-J., Kaplan D.L. Porous 3-D scaffolds from regenerated silk fibroin. Biomacromolecules 2004, 5:718-726.
-
(2004)
Biomacromolecules
, vol.5
, pp. 718-726
-
-
Nazarov, R.1
Jin, H.-J.2
Kaplan, D.L.3
-
19
-
-
84870315848
-
Biofunctionalization of a titanium surface with a nano-sawtooth structure regulates the behavior of rat bone marrow mesenchymal stem cells
-
Zhang W., Li Z., Liu Y., Ye D., Li J., Xu L., et al. Biofunctionalization of a titanium surface with a nano-sawtooth structure regulates the behavior of rat bone marrow mesenchymal stem cells. Int J Nanomed 2012, 7:4459-4472.
-
(2012)
Int J Nanomed
, vol.7
, pp. 4459-4472
-
-
Zhang, W.1
Li, Z.2
Liu, Y.3
Ye, D.4
Li, J.5
Xu, L.6
-
20
-
-
84872980021
-
Effects of a hybrid micro/nanorod topography-modified titanium implant on adhesion and osteogenic differentiation in rat bone marrow mesenchymal stem cells
-
Zhang W., Li Z., Huang Q., Xu L., Li J., Jin Y., et al. Effects of a hybrid micro/nanorod topography-modified titanium implant on adhesion and osteogenic differentiation in rat bone marrow mesenchymal stem cells. Int J Nanomed 2013, 8:257-265.
-
(2013)
Int J Nanomed
, vol.8
, pp. 257-265
-
-
Zhang, W.1
Li, Z.2
Huang, Q.3
Xu, L.4
Li, J.5
Jin, Y.6
-
21
-
-
84904648794
-
Porous silk scaffolds for delivery of growth factors and stem cells to enhance bone regeneration
-
Zhang W., Zhu C., Ye D., Xu L., Zhang X., Wu Q., et al. Porous silk scaffolds for delivery of growth factors and stem cells to enhance bone regeneration. PLoS One 2014, 9:e102371.
-
(2014)
PLoS One
, vol.9
-
-
Zhang, W.1
Zhu, C.2
Ye, D.3
Xu, L.4
Zhang, X.5
Wu, Q.6
-
22
-
-
84892563631
-
VEGF and BMP-2 promote bone regeneration by facilitating bone marrow stem cell homing and differentiation
-
Zhang W., Zhu C., Wu Y., Ye D., Wang S., Zou D., et al. VEGF and BMP-2 promote bone regeneration by facilitating bone marrow stem cell homing and differentiation. Eur Cell Mater 2014, 27:1-12.
-
(2014)
Eur Cell Mater
, vol.27
, pp. 1-12
-
-
Zhang, W.1
Zhu, C.2
Wu, Y.3
Ye, D.4
Wang, S.5
Zou, D.6
-
23
-
-
84908563579
-
Vacuum extraction enhances rhPDGF-BB immobilization on nanotubes to improve implant osseointegration in ovariectomized rats
-
Zhang W., Jin Y., Qian S., Li J., Chang Q., Ye D., et al. Vacuum extraction enhances rhPDGF-BB immobilization on nanotubes to improve implant osseointegration in ovariectomized rats. Nanomedicine NBM 2014, 10:1809-1818.
-
(2014)
Nanomedicine NBM
, vol.10
, pp. 1809-1818
-
-
Zhang, W.1
Jin, Y.2
Qian, S.3
Li, J.4
Chang, Q.5
Ye, D.6
-
24
-
-
80053607677
-
The use of injectable sonication-induced silk hydrogel for VEGF165 and BMP-2 delivery for elevation of the maxillary sinus floor
-
Zhang W., Wang X., Wang S., Zhao J., Xu L., Zhu C., et al. The use of injectable sonication-induced silk hydrogel for VEGF165 and BMP-2 delivery for elevation of the maxillary sinus floor. Biomaterials 2011, 32:9415-9424.
-
(2011)
Biomaterials
, vol.32
, pp. 9415-9424
-
-
Zhang, W.1
Wang, X.2
Wang, S.3
Zhao, J.4
Xu, L.5
Zhu, C.6
-
25
-
-
79957713859
-
Vascularization is the key challenge in tissue engineering
-
Novosel E.C., Kleinhans C., Kluger P.J. Vascularization is the key challenge in tissue engineering. Adv Drug Deliv Rev 2011, 63:300-311.
-
(2011)
Adv Drug Deliv Rev
, vol.63
, pp. 300-311
-
-
Novosel, E.C.1
Kleinhans, C.2
Kluger, P.J.3
-
27
-
-
33845323403
-
Evaluation of processed bovine cancellous bone matrix seeded with syngenic osteoblasts in a critical size calvarial defect rat model
-
Kneser U., Stangenberg L., Ohnolz J., Buettner O., Stern-Straeter J., Möbest D., et al. Evaluation of processed bovine cancellous bone matrix seeded with syngenic osteoblasts in a critical size calvarial defect rat model. JCell Mol Med 2006, 10:695-707.
-
(2006)
JCell Mol Med
, vol.10
, pp. 695-707
-
-
Kneser, U.1
Stangenberg, L.2
Ohnolz, J.3
Buettner, O.4
Stern-Straeter, J.5
Möbest, D.6
-
28
-
-
75749108220
-
Vascularization in bone tissue engineering: physiology, current strategies, major hurdles and future challenges
-
Santos M.I., Reis R.L. Vascularization in bone tissue engineering: physiology, current strategies, major hurdles and future challenges. Macromol Biosci 2010, 10:12-27.
-
(2010)
Macromol Biosci
, vol.10
, pp. 12-27
-
-
Santos, M.I.1
Reis, R.L.2
-
29
-
-
24944477341
-
Engineering vascularized skeletal muscle tissue
-
Levenberg S., Rouwkema J., Macdonald M., Garfein E.S., Kohane D.S., Darland D.C., et al. Engineering vascularized skeletal muscle tissue. Nat Biotechnol 2005, 23:879-884.
-
(2005)
Nat Biotechnol
, vol.23
, pp. 879-884
-
-
Levenberg, S.1
Rouwkema, J.2
Macdonald, M.3
Garfein, E.S.4
Kohane, D.S.5
Darland, D.C.6
-
30
-
-
70350726213
-
Scaffolds with covalently immobilized VEGF and Angiopoietin-1 for vascularization of engineered tissues
-
Chiu L.L., Radisic M. Scaffolds with covalently immobilized VEGF and Angiopoietin-1 for vascularization of engineered tissues. Biomaterials 2010, 31:226-241.
-
(2010)
Biomaterials
, vol.31
, pp. 226-241
-
-
Chiu, L.L.1
Radisic, M.2
-
31
-
-
77956181774
-
Composite materials based on silk proteins
-
Hardy J.G., Scheibel T.R. Composite materials based on silk proteins. Prog Polym Sci 2010, 35:1093-1115.
-
(2010)
Prog Polym Sci
, vol.35
, pp. 1093-1115
-
-
Hardy, J.G.1
Scheibel, T.R.2
-
32
-
-
79952987084
-
Silk fibroin as a vehicle for drug delivery applications
-
Wenk E., Merkle H.P., Meinel L. Silk fibroin as a vehicle for drug delivery applications. JControl Release 2011, 150:128-141.
-
(2011)
JControl Release
, vol.150
, pp. 128-141
-
-
Wenk, E.1
Merkle, H.P.2
Meinel, L.3
-
33
-
-
62149106670
-
Cell proliferation and migration in silk fibroin 3D scaffolds
-
Mandal B.B., Kundu S.C. Cell proliferation and migration in silk fibroin 3D scaffolds. Biomaterials 2009, 30:2956-2965.
-
(2009)
Biomaterials
, vol.30
, pp. 2956-2965
-
-
Mandal, B.B.1
Kundu, S.C.2
-
34
-
-
84871529171
-
Three-dimensional cell aggregates composed of HUVECs and cbMSCs for therapeutic neovascularization in a mouse model of hindlimb ischemia
-
Chen D.-Y., Wei H.-J., Lin K.-J., Huang C.-C., Wang C.-C., Wu C.-T., et al. Three-dimensional cell aggregates composed of HUVECs and cbMSCs for therapeutic neovascularization in a mouse model of hindlimb ischemia. Biomaterials 2013, 34:1995-2004.
-
(2013)
Biomaterials
, vol.34
, pp. 1995-2004
-
-
Chen, D.-Y.1
Wei, H.-J.2
Lin, K.-J.3
Huang, C.-C.4
Wang, C.-C.5
Wu, C.-T.6
-
35
-
-
50349088678
-
Endothelial cell colonization and angiogenic potential of combined nano-and micro-fibrous scaffolds for bone tissue engineering
-
Santos M.I., Tuzlakoglu K., Fuchs S., Gomes M.E., Peters K., Unger R.E., et al. Endothelial cell colonization and angiogenic potential of combined nano-and micro-fibrous scaffolds for bone tissue engineering. Biomaterials 2008, 29:4306-4313.
-
(2008)
Biomaterials
, vol.29
, pp. 4306-4313
-
-
Santos, M.I.1
Tuzlakoglu, K.2
Fuchs, S.3
Gomes, M.E.4
Peters, K.5
Unger, R.E.6
-
36
-
-
77649258698
-
Engineered vascularized bone grafts
-
Tsigkou O., Pomerantseva I., Spencer J.A., Redondo P.A., Hart A.R., O'Doherty E., et al. Engineered vascularized bone grafts. Proc Natl Acad Sci U S A 2010, 107:3311-3316.
-
(2010)
Proc Natl Acad Sci U S A
, vol.107
, pp. 3311-3316
-
-
Tsigkou, O.1
Pomerantseva, I.2
Spencer, J.A.3
Redondo, P.A.4
Hart, A.R.5
O'Doherty, E.6
-
38
-
-
0041440927
-
Fibroblast growth factor-2 (FGF-2) induces vascular endothelial growth factor (VEGF) expression in the endothelial cells of forming capillaries: an autocrine mechanism contributing to angiogenesis
-
Seghezzi G., Patel S., Ren C.J., Gualandris A., Pintucci G., Robbins E.S., et al. Fibroblast growth factor-2 (FGF-2) induces vascular endothelial growth factor (VEGF) expression in the endothelial cells of forming capillaries: an autocrine mechanism contributing to angiogenesis. JCell Biol 1998, 141:1659-1673.
-
(1998)
JCell Biol
, vol.141
, pp. 1659-1673
-
-
Seghezzi, G.1
Patel, S.2
Ren, C.J.3
Gualandris, A.4
Pintucci, G.5
Robbins, E.S.6
-
39
-
-
0024818355
-
Vascular endothelial growth factor is a secreted angiogenic mitogen
-
Leung D.W., Cachianes G., Kuang W.-J., Goeddel D.V., Ferrara N. Vascular endothelial growth factor is a secreted angiogenic mitogen. Science 1989, 246:1306-1309.
-
(1989)
Science
, vol.246
, pp. 1306-1309
-
-
Leung, D.W.1
Cachianes, G.2
Kuang, W.-J.3
Goeddel, D.V.4
Ferrara, N.5
-
40
-
-
17144457576
-
Advanced glycation end products-driven angiogenesis invitro induction of the growth and tube formation of human microvascular endothelial cells through autocrine vascular endothelial growth factor
-
Yamagishi S.-i., Yonekura H., Yamamoto Y., Katsuno K., Sato F., Mita I., et al. Advanced glycation end products-driven angiogenesis invitro induction of the growth and tube formation of human microvascular endothelial cells through autocrine vascular endothelial growth factor. JBiol Chem 1997, 272:8723-8730.
-
(1997)
JBiol Chem
, vol.272
, pp. 8723-8730
-
-
Yamagishi, S.-I.1
Yonekura, H.2
Yamamoto, Y.3
Katsuno, K.4
Sato, F.5
Mita, I.6
-
41
-
-
30944440262
-
Angiogenic and cell survival functions of vascular endothelial growth factor (VEGF)
-
Byrne A.M., Bouchier-Hayes D., Harmey J. Angiogenic and cell survival functions of vascular endothelial growth factor (VEGF). JCell Mol Med 2005, 9:777-794.
-
(2005)
JCell Mol Med
, vol.9
, pp. 777-794
-
-
Byrne, A.M.1
Bouchier-Hayes, D.2
Harmey, J.3
-
42
-
-
34848863384
-
Adult mesenchymal stem cells for tissue engineering versus regenerative medicine
-
Caplan A.I. Adult mesenchymal stem cells for tissue engineering versus regenerative medicine. JCell Physiol 2007, 213:341-347.
-
(2007)
JCell Physiol
, vol.213
, pp. 341-347
-
-
Caplan, A.I.1
-
43
-
-
84872088799
-
The meaning, the sense and the significance: translating the science of mesenchymal stem cells into medicine
-
Bianco P., Cao X., Frenette P.S., Mao J.J., Robey P.G., Simmons P.J., et al. The meaning, the sense and the significance: translating the science of mesenchymal stem cells into medicine. Nat Med 2013, 19:35-42.
-
(2013)
Nat Med
, vol.19
, pp. 35-42
-
-
Bianco, P.1
Cao, X.2
Frenette, P.S.3
Mao, J.J.4
Robey, P.G.5
Simmons, P.J.6
-
44
-
-
2942523981
-
Mesenchymal stem cells can be differentiated into endothelial cells invitro
-
Oswald J., Boxberger S., Jørgensen B., Feldmann S., Ehninger G., Bornhäuser M., et al. Mesenchymal stem cells can be differentiated into endothelial cells invitro. Stem Cells 2004, 22:377-384.
-
(2004)
Stem Cells
, vol.22
, pp. 377-384
-
-
Oswald, J.1
Boxberger, S.2
Jørgensen, B.3
Feldmann, S.4
Ehninger, G.5
Bornhäuser, M.6
-
45
-
-
33947236954
-
Invitro and invivo arterial differentiation of human multipotent adult progenitor cells
-
Aranguren X.L., Luttun A., Clavel C., Moreno C., Abizanda G., Barajas M.A., et al. Invitro and invivo arterial differentiation of human multipotent adult progenitor cells. Blood 2007, 109:2634-2642.
-
(2007)
Blood
, vol.109
, pp. 2634-2642
-
-
Aranguren, X.L.1
Luttun, A.2
Clavel, C.3
Moreno, C.4
Abizanda, G.5
Barajas, M.A.6
-
46
-
-
65249102249
-
Hematopoietic and endothelial differentiation of human induced pluripotent stem cells
-
Choi K.D., Yu J., Smuga-Otto K., Salvagiotto G., Rehrauer W., Vodyanik M., et al. Hematopoietic and endothelial differentiation of human induced pluripotent stem cells. Stem Cells 2009, 27:559-567.
-
(2009)
Stem Cells
, vol.27
, pp. 559-567
-
-
Choi, K.D.1
Yu, J.2
Smuga-Otto, K.3
Salvagiotto, G.4
Rehrauer, W.5
Vodyanik, M.6
-
47
-
-
84855407207
-
Concise Review: Induced pluripotent stem Cell-Derived mesenchymal stem cells: progress toward safe clinical products
-
Jung Y., Bauer G., Nolta J.A. Concise Review: Induced pluripotent stem Cell-Derived mesenchymal stem cells: progress toward safe clinical products. Stem Cells 2012, 30:42-47.
-
(2012)
Stem Cells
, vol.30
, pp. 42-47
-
-
Jung, Y.1
Bauer, G.2
Nolta, J.A.3
|