메뉴 건너뛰기




Volumn 6, Issue , 2015, Pages

The transcriptional coregulator PGC-1β controls mitochondrial function and anti-oxidant defence in skeletal muscles

Author keywords

[No Author keywords available]

Indexed keywords

ACYLTRANSFERASE; CARDIOLIPIN; MITOCHONDRIAL PROTEIN; MITOFUSIN 2; MYOSIN HEAVY CHAIN; PEROXISOME PROLIFERATOR ACTIVATED RECEPTOR GAMMA COACTIVATOR 1BETA; REDUCED NICOTINAMIDE ADENINE DINUCLEOTIDE DEHYDROGENASE; SUCCINATE DEHYDROGENASE; FREE RADICAL; HYDROGEN PEROXIDE; MANGANESE SUPEROXIDE DISMUTASE; MESSENGER RNA; PEROXISOME PROLIFERATOR ACTIVATED RECEPTOR GAMMA COACTIVATOR 1ALPHA; PPARGC1A PROTEIN, MOUSE; REACTIVE OXYGEN METABOLITE; SUPEROXIDE DISMUTASE; TRANSCRIPTION FACTOR;

EID: 84950247738     PISSN: None     EISSN: 20411723     Source Type: Journal    
DOI: 10.1038/ncomms10210     Document Type: Article
Times cited : (63)

References (70)
  • 1
    • 0037127204 scopus 로고    scopus 로고
    • Peroxisome proliferator-activated receptor gamma coactivator 1beta (PGC-1beta ), a novel PGC-1-related transcription coactivator associated with host cell factor
    • Lin, J., Puigserver, P., Donovan, J., Tarr, P. & Spiegelman, B. M. Peroxisome proliferator-activated receptor gamma coactivator 1beta (PGC-1beta ), a novel PGC-1-related transcription coactivator associated with host cell factor. J. Biol. Chem. 277, 1645-1648 (2002).
    • (2002) J. Biol. Chem. , vol.277 , pp. 1645-1648
    • Lin, J.1    Puigserver, P.2    Donovan, J.3    Tarr, P.4    Spiegelman, B.M.5
  • 2
    • 0142091356 scopus 로고    scopus 로고
    • PPARgamma coactivator 1beta/ERR ligand 1 is an ERR protein ligand, whose expression induces a high-energy expenditure and antagonizes obesity
    • Kamei, Y. et al. PPARgamma coactivator 1beta/ERR ligand 1 is an ERR protein ligand, whose expression induces a high-energy expenditure and antagonizes obesity. Proc. Natl Acad. Sci. USA 100, 12378-12383 (2003).
    • (2003) Proc. Natl Acad. Sci. USA , vol.100 , pp. 12378-12383
    • Kamei, Y.1
  • 3
    • 0032549811 scopus 로고    scopus 로고
    • A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis
    • Puigserver, P. et al. A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis. Cell 92, 829-839 (1998).
    • (1998) Cell , vol.92 , pp. 829-839
    • Puigserver, P.1
  • 4
    • 38449092832 scopus 로고    scopus 로고
    • Transcriptional control of mitochondrial energy metabolism through the PGC1 coactivators
    • Discussion 63-69
    • Spiegelman, B. M. Transcriptional control of mitochondrial energy metabolism through the PGC1 coactivators. Novartis Found. Symp. 287, 60-63 (2007); Discussion 63-69.
    • (2007) Novartis Found. Symp. , vol.287 , pp. 60-63
    • Spiegelman, B.M.1
  • 5
    • 79957960940 scopus 로고    scopus 로고
    • Metabolic control of mitochondrial biogenesis through the PGC-1 family regulatory network
    • Scarpulla, R. C. Metabolic control of mitochondrial biogenesis through the PGC-1 family regulatory network. Biochim. Biophys. Acta 1813, 1269-1278 (2011).
    • (2011) Biochim. Biophys. Acta , vol.1813 , pp. 1269-1278
    • Scarpulla, R.C.1
  • 6
    • 2442701392 scopus 로고    scopus 로고
    • PGC-1 promotes insulin resistance in liver through PPAR-alpha-dependent induction of TRB-3
    • Koo, S. H. et al. PGC-1 promotes insulin resistance in liver through PPAR-alpha-dependent induction of TRB-3. Nat. Med. 10, 530-534 (2004).
    • (2004) Nat. Med. , vol.10 , pp. 530-534
    • Koo, S.H.1
  • 7
    • 0038187621 scopus 로고    scopus 로고
    • Insulin-regulated hepatic gluconeogenesis through FOXO1-PGC-1alpha interaction
    • Puigserver, P. et al. Insulin-regulated hepatic gluconeogenesis through FOXO1-PGC-1alpha interaction. Nature 423, 550-555 (2003).
    • (2003) Nature , vol.423 , pp. 550-555
    • Puigserver, P.1
  • 8
    • 22144434964 scopus 로고    scopus 로고
    • Transcriptional coactivator PGC-1 alpha controls the energy state and contractile function of cardiac muscle
    • Arany, Z. et al. Transcriptional coactivator PGC-1 alpha controls the energy state and contractile function of cardiac muscle. Cell Metab. 1, 259-271 (2005).
    • (2005) Cell Metab. , vol.1 , pp. 259-271
    • Arany, Z.1
  • 9
    • 33749999530 scopus 로고    scopus 로고
    • Suppression of reactive oxygen species and neurodegeneration by the PGC-1 transcriptional coactivators
    • St-Pierre, J. et al. Suppression of reactive oxygen species and neurodegeneration by the PGC-1 transcriptional coactivators. Cell 127, 397-408 (2006).
    • (2006) Cell , vol.127 , pp. 397-408
    • St-Pierre, J.1
  • 10
    • 19444365211 scopus 로고    scopus 로고
    • PGC-1alpha regulates the mitochondrial antioxidant defense system in vascular endothelial cells
    • Valle, I., Alvarez-Barrientos, A., Arza, E., Lamas, S. & Monsalve, M. PGC-1alpha regulates the mitochondrial antioxidant defense system in vascular endothelial cells. Cardiovasc. Res. 66, 562-573 (2005).
    • (2005) Cardiovasc. Res. , vol.66 , pp. 562-573
    • Valle, I.1    Alvarez-Barrientos, A.2    Arza, E.3    Lamas, S.4    Monsalve, M.5
  • 11
    • 77955871829 scopus 로고    scopus 로고
    • PGC-1 alpha regulates expression of myocardial mitochondrial antioxidants and myocardial oxidative stress after chronic systolic overload
    • Lu, Z. et al. PGC-1 alpha regulates expression of myocardial mitochondrial antioxidants and myocardial oxidative stress after chronic systolic overload. Antioxid. Redox Signal. 13, 1011-1022 (2010).
    • (2010) Antioxid. Redox Signal. , vol.13 , pp. 1011-1022
    • Lu, Z.1
  • 12
    • 34247590356 scopus 로고    scopus 로고
    • PGC-1beta controls mitochondrial metabolism to modulate circadian activity, adaptive thermogenesis, and hepatic steatosis
    • Sonoda, J., Mehl, I. R., Chong, L. W., Nofsinger, R. R. & Evans, R. M. PGC-1beta controls mitochondrial metabolism to modulate circadian activity, adaptive thermogenesis, and hepatic steatosis. Proc. Natl Acad. Sci. USA 104, 5223-5228 (2007).
    • (2007) Proc. Natl Acad. Sci. USA , vol.104 , pp. 5223-5228
    • Sonoda, J.1    Mehl, I.R.2    Chong, L.W.3    Nofsinger, R.R.4    Evans, R.M.5
  • 13
    • 19944430411 scopus 로고    scopus 로고
    • Hyperlipidemic effects of dietary saturated fats mediated through PGC-1beta coactivation of SREBP
    • Lin, J. et al. Hyperlipidemic effects of dietary saturated fats mediated through PGC-1beta coactivation of SREBP. Cell 120, 261-273 (2005).
    • (2005) Cell , vol.120 , pp. 261-273
    • Lin, J.1
  • 14
    • 80052970004 scopus 로고    scopus 로고
    • PGC-1beta deficiency accelerates the transition to heart failure in pressure overload hypertrophy
    • Riehle, C. et al. PGC-1beta deficiency accelerates the transition to heart failure in pressure overload hypertrophy. Circ. Res. 109, 783-793 (2011).
    • (2011) Circ. Res. , vol.109 , pp. 783-793
    • Riehle, C.1
  • 15
    • 33751022208 scopus 로고    scopus 로고
    • Ablation of PGC-1beta results in defective mitochondrial activity, thermogenesis, hepatic function, and cardiac performance
    • Lelliott, C. J. et al. Ablation of PGC-1beta results in defective mitochondrial activity, thermogenesis, hepatic function, and cardiac performance. PLoS Biol. 4, e369 (2006).
    • (2006) PLoS Biol. , vol.4 , pp. e369
    • Lelliott, C.J.1
  • 16
    • 47549114849 scopus 로고    scopus 로고
    • Transcriptional coactivators PGC-1alpha and PGC-lbeta control overlapping programs required for perinatal maturation of the heart
    • Lai, L. et al. Transcriptional coactivators PGC-1alpha and PGC-lbeta control overlapping programs required for perinatal maturation of the heart. Genes Dev. 22, 1948-1961 (2008).
    • (2008) Genes Dev. , vol.22 , pp. 1948-1961
    • Lai, L.1
  • 17
    • 0033369476 scopus 로고    scopus 로고
    • Mitochondrial oxygen radical generation and leak: Sites of production in states 4 and 3, organ specificity, and relation to aging and longevity
    • Barja, G. Mitochondrial oxygen radical generation and leak: sites of production in states 4 and 3, organ specificity, and relation to aging and longevity. J. Bioenerg. Biomembr. 31, 347-366 (1999).
    • (1999) J. Bioenerg. Biomembr. , vol.31 , pp. 347-366
    • Barja, G.1
  • 18
    • 0142150051 scopus 로고    scopus 로고
    • Mitochondrial formation of reactive oxygen species
    • Turrens, J. F. Mitochondrial formation of reactive oxygen species. J. Physiol. 552, 335-344 (2003).
    • (2003) J. Physiol. , vol.552 , pp. 335-344
    • Turrens, J.F.1
  • 19
    • 0019083215 scopus 로고
    • Generation of superoxide anion by the NADH dehydrogenase of bovine heart mitochondria
    • Turrens, J. F. & Boveris, A. Generation of superoxide anion by the NADH dehydrogenase of bovine heart mitochondria. Biochem. J. 191, 421-427 (1980).
    • (1980) Biochem. J. , vol.191 , pp. 421-427
    • Turrens, J.F.1    Boveris, A.2
  • 20
    • 0021996572 scopus 로고
    • Ubisemiquinone is the electron donor for superoxide formation by complex III of heart mitochondria
    • Turrens, J. F., Alexandre, A. & Lehninger, A. L. Ubisemiquinone is the electron donor for superoxide formation by complex III of heart mitochondria. Arch. Biochem. Biophys. 237, 408-414 (1985).
    • (1985) Arch. Biochem. Biophys. , vol.237 , pp. 408-414
    • Turrens, J.F.1    Alexandre, A.2    Lehninger, A.L.3
  • 21
    • 0017406503 scopus 로고
    • Production of superoxide radicals and hydrogen peroxide by NADH-ubiquinone reductase and ubiquinol-cytochrome c reductase from beef-heart mitochondria
    • Cadenas, E., Boveris, A., Ragan, C. I. & Stoppani, A. O. Production of superoxide radicals and hydrogen peroxide by NADH-ubiquinone reductase and ubiquinol-cytochrome c reductase from beef-heart mitochondria. Arch. Biochem. Biophys. 180, 248-257 (1977).
    • (1977) Arch. Biochem. Biophys. , vol.180 , pp. 248-257
    • Cadenas, E.1    Boveris, A.2    Ragan, C.I.3    Stoppani, A.O.4
  • 22
    • 0015882341 scopus 로고
    • The mitochondrial generation of hydrogen peroxide. General properties and effect of hyperbaric oxygen
    • Boveris, A. & Chance, B. The mitochondrial generation of hydrogen peroxide. General properties and effect of hyperbaric oxygen. Biochem. J. 134, 707-716 (1973).
    • (1973) Biochem. J. , vol.134 , pp. 707-716
    • Boveris, A.1    Chance, B.2
  • 23
    • 55949118714 scopus 로고    scopus 로고
    • Exercise-induced oxidative stress: Cellular mechanisms and impact on muscle force production
    • Powers, S. K. & Jackson, M. J. Exercise-induced oxidative stress: cellular mechanisms and impact on muscle force production. Physiol. Rev. 88, 1243-1276 (2008).
    • (2008) Physiol. Rev. , vol.88 , pp. 1243-1276
    • Powers, S.K.1    Jackson, M.J.2
  • 25
    • 0025023848 scopus 로고
    • Biochemical mechanisms for oxygen free radical formation during exercise
    • Sjodin, B., Hellsten Westing, Y. & Apple, F. S. Biochemical mechanisms for oxygen free radical formation during exercise. Sports Med. 10, 236-254 (1990).
    • (1990) Sports Med. , vol.10 , pp. 236-254
    • Sjodin, B.1    Hellsten Westing, Y.2    Apple, F.S.3
  • 26
    • 0027372086 scopus 로고
    • High intensity training-induced changes in skeletal muscle antioxidant enzyme activity
    • Criswell, D. et al. High intensity training-induced changes in skeletal muscle antioxidant enzyme activity. Med. Sci. Sports Exerc. 25, 1135-1140 (1993).
    • (1993) Med. Sci. Sports Exerc. , vol.25 , pp. 1135-1140
    • Criswell, D.1
  • 27
    • 0029022127 scopus 로고
    • Oxidants and antioxidants in exercise
    • Sen, C. K. Oxidants and antioxidants in exercise. J. Appl. Physiol. 79, 675-686 (1995).
    • (1995) J. Appl. Physiol. , vol.79 , pp. 675-686
    • Sen, C.K.1
  • 28
    • 0030200558 scopus 로고    scopus 로고
    • Antioxidants, tissue damage, and endurance in trained and untrained young male rats
    • Venditti, P. & Di Meo, S. Antioxidants, tissue damage, and endurance in trained and untrained young male rats. Arch. Biochem. Biophys. 331, 63-68 (1996).
    • (1996) Arch. Biochem. Biophys. , vol.331 , pp. 63-68
    • Venditti, P.1    Di Meo, S.2
  • 29
    • 0025782887 scopus 로고
    • Molecular and cellular adaptation of muscle in response to exercise: Perspectives of various models
    • Booth, F.W. & Thomason, D. B. Molecular and cellular adaptation of muscle in response to exercise: perspectives of various models. Physiol. Rev. 71, 541-585 (1991).
    • (1991) Physiol. Rev. , vol.71 , pp. 541-585
    • Booth, F.W.1    Thomason, D.B.2
  • 30
    • 0037102256 scopus 로고    scopus 로고
    • Transcriptional co-activator PGC-1 alpha drives the formation of slow-twitch muscle fibres
    • Lin, J. et al. Transcriptional co-activator PGC-1 alpha drives the formation of slow-twitch muscle fibres. Nature 418, 797-801 (2002).
    • (2002) Nature , vol.418 , pp. 797-801
    • Lin, J.1
  • 31
    • 35648937073 scopus 로고    scopus 로고
    • Skeletal muscle fiber-type switching, exercise intolerance, and myopathy in PGC-1alpha muscle-specific knock-out animals
    • Handschin, C. et al. Skeletal muscle fiber-type switching, exercise intolerance, and myopathy in PGC-1alpha muscle-specific knock-out animals. J. Biol. Chem. 282, 30014-30021 (2007).
    • (2007) J. Biol. Chem. , vol.282 , pp. 30014-30021
    • Handschin, C.1
  • 32
    • 33845674997 scopus 로고    scopus 로고
    • The transcriptional coactivator PGC-1beta drives the formation of oxidative type IIX fibers in skeletal muscle
    • Arany, Z. et al. The transcriptional coactivator PGC-1beta drives the formation of oxidative type IIX fibers in skeletal muscle. Cell Metab. 5, 35-46 (2007).
    • (2007) Cell Metab. , vol.5 , pp. 35-46
    • Arany, Z.1
  • 33
    • 84878565172 scopus 로고    scopus 로고
    • Disconnecting mitochondrial content from respiratory chain capacity in PGC-1-deficient skeletal muscle
    • Rowe, G. C. et al. Disconnecting mitochondrial content from respiratory chain capacity in PGC-1-deficient skeletal muscle. Cell Rep. 3, 1449-1456 (2013).
    • (2013) Cell Rep. , vol.3 , pp. 1449-1456
    • Rowe, G.C.1
  • 34
    • 78649508058 scopus 로고    scopus 로고
    • Total skeletal muscle PGC-1 deficiency uncouples mitochondrial derangements from fiber type determination and insulin sensitivity
    • Zechner, C. et al. Total skeletal muscle PGC-1 deficiency uncouples mitochondrial derangements from fiber type determination and insulin sensitivity. Cell Metab. 12, 633-642 (2010).
    • (2010) Cell Metab. , vol.12 , pp. 633-642
    • Zechner, C.1
  • 35
    • 18544385166 scopus 로고    scopus 로고
    • Temporally controlled targeted somatic mutagenesis in skeletal muscles of the mouse
    • Schuler, M., Ali, F., Metzger, E., Chambon, P. & Metzger, D. Temporally controlled targeted somatic mutagenesis in skeletal muscles of the mouse. Genesis 41, 165-170 (2005).
    • (2005) Genesis , vol.41 , pp. 165-170
    • Schuler, M.1    Ali, F.2    Metzger, E.3    Chambon, P.4    Metzger, D.5
  • 36
    • 50249148905 scopus 로고    scopus 로고
    • Cardiolipin, the heart of mitochondrial metabolism
    • Houtkooper, R. H. & Vaz, F. M. Cardiolipin, the heart of mitochondrial metabolism. Cell Mol. Life Sci. 65, 2493-2506 (2008).
    • (2008) Cell Mol. Life Sci. , vol.65 , pp. 2493-2506
    • Houtkooper, R.H.1    Vaz, F.M.2
  • 37
    • 79958034094 scopus 로고    scopus 로고
    • Mitochondrial phosphatase PTPMT1 is essential for cardiolipin biosynthesis
    • Zhang, J. et al. Mitochondrial phosphatase PTPMT1 is essential for cardiolipin biosynthesis. Cell Metab. 13, 690-700 (2011).
    • (2011) Cell Metab. , vol.13 , pp. 690-700
    • Zhang, J.1
  • 38
    • 0038054341 scopus 로고    scopus 로고
    • PGC-1alpha-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes
    • Mootha, V. K. et al. PGC-1alpha-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat. Genet. 34, 267-273 (2003).
    • (2003) Nat. Genet. , vol.34 , pp. 267-273
    • Mootha, V.K.1
  • 39
    • 0037477855 scopus 로고    scopus 로고
    • Coordinated reduction of genes of oxidative metabolism in humans with insulin resistance and diabetes: Potential role of PGC1 and NRF1
    • Patti, M. E. et al. Coordinated reduction of genes of oxidative metabolism in humans with insulin resistance and diabetes: Potential role of PGC1 and NRF1. Proc. Natl Acad. Sci. USA 100, 8466-8471 (2003).
    • (2003) Proc. Natl Acad. Sci. USA , vol.100 , pp. 8466-8471
    • Patti, M.E.1
  • 40
    • 0028369668 scopus 로고
    • Intracellular hydrogen peroxide and superoxide anion detection in endothelial cells
    • Carter, W. O., Narayanan, P. K. & Robinson, J. P. Intracellular hydrogen peroxide and superoxide anion detection in endothelial cells. J. Leukoc. Biol. 55, 253-258 (1994).
    • (1994) J. Leukoc. Biol. , vol.55 , pp. 253-258
    • Carter, W.O.1    Narayanan, P.K.2    Robinson, J.P.3
  • 41
    • 79953734462 scopus 로고    scopus 로고
    • PGC-1 coactivators and the regulation of skeletal muscle fiber-type determination
    • Author reply 352
    • Handschin, C. & Spiegelman, B. M. PGC-1 coactivators and the regulation of skeletal muscle fiber-type determination. Cell Metab. 13, 351 (2011); Author reply 352.
    • (2011) Cell Metab. , vol.13 , pp. 351
    • Handschin, C.1    Spiegelman, B.M.2
  • 42
    • 12344305124 scopus 로고    scopus 로고
    • Mitochondrial dysfunction and type 2 diabetes
    • Lowell, B. B. & Shulman, G. I. Mitochondrial dysfunction and type 2 diabetes. Science 307, 384-387 (2005).
    • (2005) Science , vol.307 , pp. 384-387
    • Lowell, B.B.1    Shulman, G.I.2
  • 43
    • 1642377274 scopus 로고    scopus 로고
    • Impaired mitochondrial activity in the insulin-resistant offspring of patients with type 2 diabetes
    • Petersen, K. F., Dufour, S., Befroy, D., Garcia, R. & Shulman, G. I. Impaired mitochondrial activity in the insulin-resistant offspring of patients with type 2 diabetes. N. Engl. J. Med. 350, 664-671 (2004).
    • (2004) N. Engl. J. Med. , vol.350 , pp. 664-671
    • Petersen, K.F.1    Dufour, S.2    Befroy, D.3    Garcia, R.4    Shulman, G.I.5
  • 44
    • 0036788293 scopus 로고    scopus 로고
    • Dysfunction of mitochondria in human skeletal muscle in type 2 diabetes
    • Kelley, D. E., He, J., Menshikova, E. V. & Ritov, V. B. Dysfunction of mitochondria in human skeletal muscle in type 2 diabetes. Diabetes 51, 2944-2950 (2002).
    • (2002) Diabetes , vol.51 , pp. 2944-2950
    • Kelley, D.E.1    He, J.2    Menshikova, E.V.3    Ritov, V.B.4
  • 45
    • 85047691371 scopus 로고    scopus 로고
    • Multiple environmental and genetic factors influence skeletal muscle PGC-1alpha and PGC-1beta gene expression in twins
    • Ling, C. et al. Multiple environmental and genetic factors influence skeletal muscle PGC-1alpha and PGC-1beta gene expression in twins. J. Clin. Invest. 114, 1518-1526 (2004).
    • (2004) J. Clin. Invest. , vol.114 , pp. 1518-1526
    • Ling, C.1
  • 46
    • 73649100201 scopus 로고    scopus 로고
    • Deficiency of electron transport chain in human skeletal muscle mitochondria in type 2 diabetes mellitus and obesity
    • Ritov, V. B. et al. Deficiency of electron transport chain in human skeletal muscle mitochondria in type 2 diabetes mellitus and obesity. Am. J. Physiol. Endocrinol. Metab. 298, E49-E58 (2010).
    • (2010) Am. J. Physiol. Endocrinol. Metab. , vol.298 , pp. E49-E58
    • Ritov, V.B.1
  • 47
    • 84865405481 scopus 로고    scopus 로고
    • Muscle mitochondria and insulin resistance: A human perspective
    • Hoeks, J. & Schrauwen, P. Muscle mitochondria and insulin resistance: a human perspective. Trends Endocrinol. Metab. 23, 444-450 (2012).
    • (2012) Trends Endocrinol. Metab. , vol.23 , pp. 444-450
    • Hoeks, J.1    Schrauwen, P.2
  • 48
    • 84856415487 scopus 로고    scopus 로고
    • The role of mitochondria in insulin resistance and type 2 diabetes mellitus
    • Szendroedi, J., Phielix, E. & Roden, M. The role of mitochondria in insulin resistance and type 2 diabetes mellitus. Nat. Rev. Endocrinol. 8, 92-103 (2012).
    • (2012) Nat. Rev. Endocrinol. , vol.8 , pp. 92-103
    • Szendroedi, J.1    Phielix, E.2    Roden, M.3
  • 49
    • 84870667996 scopus 로고    scopus 로고
    • Insulin resistance and mitochondrial function in skeletal muscle
    • Dela, F. & Helge, J. W. Insulin resistance and mitochondrial function in skeletal muscle. Int. J. Biochem. Cell Biol. 45, 11-15 (2013).
    • (2013) Int. J. Biochem. Cell Biol. , vol.45 , pp. 11-15
    • Dela, F.1    Helge, J.W.2
  • 50
    • 84927946082 scopus 로고    scopus 로고
    • PGC-1alpha buffers ROS-mediated removal of mitochondria during myogenesis
    • Baldelli, S., Aquilano, K. & Ciriolo, M. R. PGC-1alpha buffers ROS-mediated removal of mitochondria during myogenesis. Cell Death Dis. 5, e1515 (2014).
    • (2014) Cell Death Dis. , vol.5
    • Baldelli, S.1    Aquilano, K.2    Ciriolo, M.R.3
  • 51
    • 0037174798 scopus 로고    scopus 로고
    • Peroxisome proliferator-activated receptor coactivator-1alpha (PGC-1alpha) coactivates the cardiac-enriched nuclear receptors estrogen-related receptor-alpha and-gamma. Identification of novel leucine-rich interaction motif within PGC-1alpha
    • Huss, J. M., Kopp, R. P. & Kelly, D. P. Peroxisome proliferator-activated receptor coactivator-1alpha (PGC-1alpha) coactivates the cardiac-enriched nuclear receptors estrogen-related receptor-alpha and-gamma. Identification of novel leucine-rich interaction motif within PGC-1alpha. J. Biol. Chem. 277, 40265-40274 (2002).
    • (2002) J. Biol. Chem. , vol.277 , pp. 40265-40274
    • Huss, J.M.1    Kopp, R.P.2    Kelly, D.P.3
  • 52
    • 53849088227 scopus 로고    scopus 로고
    • Transcriptional control of energy homeostasis by the estrogenrelated receptors
    • Giguere, V. Transcriptional control of energy homeostasis by the estrogenrelated receptors. Endocr. Rev. 29, 677-696 (2008).
    • (2008) Endocr. Rev. , vol.29 , pp. 677-696
    • Giguere, V.1
  • 53
    • 68049129872 scopus 로고    scopus 로고
    • Genome-wide identification of direct target genes implicates estrogen-related receptor alpha as a determinant of breast cancer heterogeneity
    • Deblois, G. et al. Genome-wide identification of direct target genes implicates estrogen-related receptor alpha as a determinant of breast cancer heterogeneity. Cancer Res. 69, 6149-6157 (2009).
    • (2009) Cancer Res. , vol.69 , pp. 6149-6157
    • Deblois, G.1
  • 54
    • 2342477730 scopus 로고    scopus 로고
    • Erralpha and Gabpa/b specify PGC-1alpha-dependent oxidative phosphorylation gene expression that is altered in diabetic muscle
    • Mootha, V. K. et al. Erralpha and Gabpa/b specify PGC-1alpha-dependent oxidative phosphorylation gene expression that is altered in diabetic muscle. Proc. Natl Acad. Sci. USA 101, 6570-6575 (2004).
    • (2004) Proc. Natl Acad. Sci. USA , vol.101 , pp. 6570-6575
    • Mootha, V.K.1
  • 55
    • 0032512459 scopus 로고    scopus 로고
    • The structure of GABPalpha/beta: An ETS domain-ankyrin repeat heterodimer bound to DNA
    • Batchelor, A. H., Piper, D. E., de la Brousse, F. C.,McKnight, S. L. &Wolberger, C. The structure of GABPalpha/beta: an ETS domain-ankyrin repeat heterodimer bound to DNA. Science 279, 1037-1041 (1998).
    • (1998) Science , vol.279 , pp. 1037-1041
    • Batchelor, A.H.1    Piper, D.E.2    De La Brousse, F.C.3    McKnight, S.L.4    Wolberger, C.5
  • 56
    • 1542373685 scopus 로고    scopus 로고
    • Transcriptional regulatory circuits controlling mitochondrial biogenesis and function
    • Kelly, D. P. & Scarpulla, R. C. Transcriptional regulatory circuits controlling mitochondrial biogenesis and function. Genes Dev. 18, 357-368 (2004).
    • (2004) Genes Dev. , vol.18 , pp. 357-368
    • Kelly, D.P.1    Scarpulla, R.C.2
  • 57
    • 0028685490 scopus 로고
    • Fitting a mixture model by expectation maximization to discover motifs in biopolymers
    • Bailey, T. L. & Elkan, C. Fitting a mixture model by expectation maximization to discover motifs in biopolymers. Proc. Int. Conf. Intell. Syst. Mol. Biol. 2, 28-36 (1994).
    • (1994) Proc. Int. Conf. Intell. Syst. Mol. Biol. , vol.2 , pp. 28-36
    • Bailey, T.L.1    Elkan, C.2
  • 58
    • 33645011201 scopus 로고    scopus 로고
    • Nuclear control of respiratory gene expression in mammalian cells
    • Scarpulla, R. C. Nuclear control of respiratory gene expression in mammalian cells. J. Cell. Biochem. 97, 673-683 (2006).
    • (2006) J. Cell. Biochem. , vol.97 , pp. 673-683
    • Scarpulla, R.C.1
  • 59
    • 84864314311 scopus 로고    scopus 로고
    • Nucleus-encoded regulators of mitochondrial function: Integration of respiratory chain expression, nutrient sensing and metabolic stress
    • Scarpulla, R. C. Nucleus-encoded regulators of mitochondrial function: integration of respiratory chain expression, nutrient sensing and metabolic stress. Biochim. Biophys. Acta 1819, 1088-1097 (2012).
    • (2012) Biochim. Biophys. Acta , vol.1819 , pp. 1088-1097
    • Scarpulla, R.C.1
  • 60
    • 67649669220 scopus 로고    scopus 로고
    • Suppression of the agingassociated decline in physical performance by a combination of resveratrol intake and habitual exercise in senescence-accelerated mice
    • Murase, T., Haramizu, S., Ota, N. & Hase, T. Suppression of the agingassociated decline in physical performance by a combination of resveratrol intake and habitual exercise in senescence-accelerated mice. Biogerontology 10, 423-434 (2009).
    • (2009) Biogerontology , vol.10 , pp. 423-434
    • Murase, T.1    Haramizu, S.2    Ota, N.3    Hase, T.4
  • 61
    • 84872683615 scopus 로고    scopus 로고
    • Polyphenols prevent ageing-related impairment in skeletal muscle mitochondrial function through decreased reactive oxygen species production
    • Charles, A. L. et al. Polyphenols prevent ageing-related impairment in skeletal muscle mitochondrial function through decreased reactive oxygen species production. Exp. Physiol. 98, 536-545 (2013).
    • (2013) Exp. Physiol. , vol.98 , pp. 536-545
    • Charles, A.L.1
  • 62
    • 0037184960 scopus 로고    scopus 로고
    • SRC-1 and TIF2 control energy balance between white and brown adipose tissues
    • Picard, F. et al. SRC-1 and TIF2 control energy balance between white and brown adipose tissues. Cell 111, 931-941 (2002).
    • (2002) Cell , vol.111 , pp. 931-941
    • Picard, F.1
  • 63
    • 0027478771 scopus 로고
    • The histochemical profiles of fast fiber types IIB, IID, and IIA in skeletal muscles of mouse, rat, and rabbit
    • Hamalainen, N. & Pette, D. The histochemical profiles of fast fiber types IIB, IID, and IIA in skeletal muscles of mouse, rat, and rabbit. J. Histochem. Cytochem. 41, 733-743 (1993).
    • (1993) J. Histochem. Cytochem. , vol.41 , pp. 733-743
    • Hamalainen, N.1    Pette, D.2
  • 65
    • 78049438081 scopus 로고    scopus 로고
    • The transcriptional coregulators TIF2 and SRC-1 regulate energy homeostasis by modulating mitochondrial respiration in skeletal muscles
    • Duteil, D. et al. The transcriptional coregulators TIF2 and SRC-1 regulate energy homeostasis by modulating mitochondrial respiration in skeletal muscles. Cell Metab. 12, 496-508 (2010).
    • (2010) Cell Metab. , vol.12 , pp. 496-508
    • Duteil, D.1
  • 66
    • 0344043305 scopus 로고    scopus 로고
    • Superoxide production in vascular smooth muscle contributes to oxidative stress and impaired relaxation in atherosclerosis
    • Miller, Jr F. J., Gutterman, D. D., Rios, C. D., Heistad, D. D. & Davidson, B. L. Superoxide production in vascular smooth muscle contributes to oxidative stress and impaired relaxation in atherosclerosis. Circ. Res. 82, 1298-1305 (1998).
    • (1998) Circ. Res. , vol.82 , pp. 1298-1305
    • Miller, F.J.1    Gutterman, D.D.2    Rios, C.D.3    Heistad, D.D.4    Davidson, B.L.5
  • 67
    • 84865311331 scopus 로고    scopus 로고
    • Mitochondria of trained skeletal muscle are protected from deleterious effects of statins
    • Bouitbir, J. et al. Mitochondria of trained skeletal muscle are protected from deleterious effects of statins. Muscle Nerve 46, 367-373 (2012).
    • (2012) Muscle Nerve , vol.46 , pp. 367-373
    • Bouitbir, J.1
  • 68
    • 33645456270 scopus 로고    scopus 로고
    • Type II skeletal myofibers possess unique properties that potentiate mitochondrial H(2)O(2) generation
    • Anderson, E. J. & Neufer, P. D. Type II skeletal myofibers possess unique properties that potentiate mitochondrial H(2)O(2) generation. Am. J. Physiol. Cell Physiol. 290, C844-C851 (2006).
    • (2006) Am. J. Physiol. Cell Physiol. , vol.290 , pp. C844-C851
    • Anderson, E.J.1    Neufer, P.D.2
  • 69
    • 84864948661 scopus 로고    scopus 로고
    • Assessment of a standardized ROS production profile in humans by electron paramagnetic resonance
    • Mrakic-Sposta, S., Gussoni, M., Montorsi, M., Porcelli, S. & Vezzoli, A. Assessment of a standardized ROS production profile in humans by electron paramagnetic resonance. Oxid. Med. Cell. Longev. 2012, 973927 (2012).
    • (2012) Oxid. Med. Cell. Longev. , vol.2012 , pp. 973927
    • Mrakic-Sposta, S.1    Gussoni, M.2    Montorsi, M.3    Porcelli, S.4    Vezzoli, A.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.