메뉴 건너뛰기




Volumn 10, Issue 3, 2016, Pages 679-692

A 128-Channel Extreme Learning Machine-Based Neural Decoder for Brain Machine Interfaces

Author keywords

Brain machine interfaces; extreme learning machine; implant; machine learning; motor intention; neural decoding; neural network; portable; very large scale integration (VLSI)

Indexed keywords

ALGORITHMS; ARTIFICIAL INTELLIGENCE; BRAIN COMPUTER INTERFACE; DECODING; ENERGY EFFICIENCY; INTERFACE STATES; KNOWLEDGE ACQUISITION; TIME DELAY;

EID: 84949870816     PISSN: 19324545     EISSN: None     Source Type: Journal    
DOI: 10.1109/TBCAS.2015.2483618     Document Type: Article
Times cited : (98)

References (43)
  • 3
    • 77952925507 scopus 로고    scopus 로고
    • The 128-channel fully differnetial digital integrated neural recording and stimulation interface
    • Jun.
    • F. Shahrokhi, K. Abdelhalim, D. Serletis, P. L. Carlen, and R. Genov, "The 128-channel fully differnetial digital integrated neural recording and stimulation interface," IEEE Trans. Biomed. Circuits Syst., vol. 4, no. 3, pp. 149-161, Jun. 2010.
    • (2010) IEEE Trans. Biomed. Circuits Syst. , vol.4 , Issue.3 , pp. 149-161
    • Shahrokhi, F.1    Abdelhalim, K.2    Serletis, D.3    Carlen, P.L.4    Genov, R.5
  • 5
    • 84946235865 scopus 로고    scopus 로고
    • A 1 V, compact, current-mode neural spike detector with detection probability estimator in 65 nm CMOS
    • May
    • E. Yao and A. Basu, "A 1 V, compact, current-mode neural spike detector with detection probability estimator in 65 nm CMOS," in Proc. IEEE ISCAS, May 2015.
    • (2015) Proc. IEEE ISCAS
    • Yao, E.1    Basu, A.2
  • 7
    • 77951007949 scopus 로고    scopus 로고
    • VLSI architecture of NEO spike detection with noise shaping filter and feature extraction using informative samples
    • Sep.
    • L. Hoang, Y. Zhi, and W. Liu, "VLSI architecture of NEO spike detection with noise shaping filter and feature extraction using informative samples," in Proc. IEEE EMBC Conf., Sep. 2009, pp. 978-981.
    • (2009) Proc. IEEE EMBC Conf. , pp. 978-981
    • Hoang, L.1    Zhi, Y.2    Liu, W.3
  • 8
    • 69249141469 scopus 로고    scopus 로고
    • An ultra low-power CMOS automatic action potential detector
    • Aug.
    • B. Gosselin and M. Sawan, "An ultra low-power CMOS automatic action potential detector," IEEE Trans. Neural Syst. Rehabil. Eng., vol. 17, no. 4, pp. 346-353, Aug. 2009.
    • (2009) IEEE Trans. Neural Syst. Rehabil. Eng. , vol.17 , Issue.4 , pp. 346-353
    • Gosselin, B.1    Sawan, M.2
  • 10
    • 79955591880 scopus 로고    scopus 로고
    • A 130-uW, 64-channel neural spike-sorting DSP chip
    • May
    • V. Karkare, S. Gibson, and D. Markovic, "A 130-uW, 64-channel neural spike-sorting DSP chip," IEEE J. Solid-State Circuits, vol. 46, no. 5, pp. 1214-1222, May 2011.
    • (2011) IEEE J. Solid-State Circuits , vol.46 , Issue.5 , pp. 1214-1222
    • Karkare, V.1    Gibson, S.2    Markovic, D.3
  • 11
    • 84883310213 scopus 로고    scopus 로고
    • A 75-uW, 16-channel neural spike-sorting processor with unsupervised clustering
    • Sep.
    • V. Karkare, S. Gibson, and D. Markovic, "A 75-uW, 16-channel neural spike-sorting processor with unsupervised clustering," IEEE J. Solid-State Circuits, vol. 48, no. 9, pp. 2230-2238, Sep. 2013.
    • (2013) IEEE J. Solid-State Circuits , vol.48 , Issue.9 , pp. 2230-2238
    • Karkare, V.1    Gibson, S.2    Markovic, D.3
  • 13
    • 84888606301 scopus 로고    scopus 로고
    • A brain-machine interface enables bimanual arm movements in monkeys
    • P. Ifft, S. Shokur, Z. Li, M. Lebedev, and M. Nicolelis, "A brain-machine interface enables bimanual arm movements in monkeys," Science. Translat. Med., vol. 5, pp. 1-13, 2013.
    • (2013) Science. Translat. Med. , vol.5 , pp. 1-13
    • Ifft, P.1    Shokur, S.2    Li, Z.3    Lebedev, M.4    Nicolelis, M.5
  • 15
    • 79251589964 scopus 로고    scopus 로고
    • How advances in neural recording affect data analysis
    • I. H. Stevenson and K. P. Kording, "How advances in neural recording affect data analysis," Nature Neurosci., vol. 14, pp. 139-142, 2011.
    • (2011) Nature Neurosci. , vol.14 , pp. 139-142
    • Stevenson, I.H.1    Kording, K.P.2
  • 18
    • 84946205168 scopus 로고    scopus 로고
    • A 128 channel 290 GMACs/W machine learning based co-processor for intention decoding in brain machine interfaces
    • May
    • Y. Chen, Y. Enyi, and A. Basu, "A 128 channel 290 GMACs/W machine learning based co-processor for intention decoding in brain machine interfaces," in Proc. IEEE ISCAS, May 2015.
    • (2015) Proc. IEEE ISCAS
    • Chen, Y.1    Enyi, Y.2    Basu, A.3
  • 19
    • 33745903481 scopus 로고    scopus 로고
    • Extreme learning machines: Theory and applications
    • G. B. Huang, Q. Y. Zhu, and C. K. Siew, "Extreme learning machines: Theory and applications," Neurocomputing, vol. 70, pp. 489-501, 2006.
    • (2006) Neurocomputing , vol.70 , pp. 489-501
    • Huang, G.B.1    Zhu, Q.Y.2    Siew, C.K.3
  • 20
    • 84859007933 scopus 로고    scopus 로고
    • Extreme learning machine for regression and multiclass classification
    • Apr.
    • G. Huang, H. Zhou, X. Ding, and R. Zhang, "Extreme learning machine for regression and multiclass classification," IEEE Trans. Systems, Man, Cybern. B, Cybern., vol. 42, no. 2, pp. 513-529, Apr. 2012.
    • (2012) IEEE Trans. Systems, Man, Cybern. B, Cybern. , vol.42 , Issue.2 , pp. 513-529
    • Huang, G.1    Zhou, H.2    Ding, X.3    Zhang, R.4
  • 23
    • 78149297677 scopus 로고    scopus 로고
    • Weighted sums of random kitchen sinks: Replacing minimization with randomization in learning
    • A. Rahimi and B. Recht, "Weighted sums of random kitchen sinks: Replacing minimization with randomization in learning," in Proc. Neural Information Processing Systems, 2009.
    • (2009) Proc. Neural Information Processing Systems
    • Rahimi, A.1    Recht, B.2
  • 24
    • 84900496486 scopus 로고    scopus 로고
    • Information systems opportunities in brain-machine interface decodersinformation systems opportunities in brain-machine interface decoders
    • May
    • J. C. Kao, S. D. Stavisky, D. Sussillo, P. Nuyujukian, and K. V. Shenoy, "Information systems opportunities in brain-machine interface decodersinformation systems opportunities in brain-machine interface decoders," Proc. IEEE, vol. 102, no. 5, pp. 666-682, May 2014.
    • (2014) Proc. IEEE , vol.102 , Issue.5 , pp. 666-682
    • Kao, J.C.1    Stavisky, S.D.2    Sussillo, D.3    Nuyujukian, P.4    Shenoy, K.V.5
  • 26
    • 84870252936 scopus 로고    scopus 로고
    • Silicon spiking neurons for hardware implementation of extreme learning machines
    • A. Basu, S. Shuo, H. Zhou, M. Lim, and G. Huang, "Silicon spiking neurons for hardware implementation of extreme learning machines," Neurocomput., vol. 102, pp. 125-134, 2013.
    • (2013) Neurocomput. , vol.102 , pp. 125-134
    • Basu, A.1    Shuo, S.2    Zhou, H.3    Lim, M.4    Huang, G.5
  • 27
    • 84893561481 scopus 로고    scopus 로고
    • Computation using mismatch: Neuromorphic extreme learning machines
    • Rotterdam, Netherlands
    • Y. Enyi, S. Hussain, and A. Basu, "Computation using mismatch: Neuromorphic extreme learning machines," in Proc. IEEE Biomedical Circuits and Systems Conf., Rotterdam, Netherlands, 2013, pp. 294-297.
    • (2013) Proc. IEEE Biomedical Circuits and Systems Conf. , pp. 294-297
    • Enyi, Y.1    Hussain, S.2    Basu, A.3
  • 29
    • 84879931688 scopus 로고    scopus 로고
    • A low-power processor with configurable embedded machine-learning accelerators for high-order and adaptive analysis of medical-sensor signals
    • Jul.
    • K. H. Lee and N. Verma, "A low-power processor with configurable embedded machine-learning accelerators for high-order and adaptive analysis of medical-sensor signals," IEEE J. Solid-State Circuits, vol. 48, no. 7, pp. 1625-1637, Jul. 2013.
    • (2013) IEEE J. Solid-State Circuits , vol.48 , Issue.7 , pp. 1625-1637
    • Lee, K.H.1    Verma, N.2
  • 30
    • 34247503687 scopus 로고    scopus 로고
    • Sub-microwatt analog VLSI trainable pattern classifier
    • May
    • S. Chakrabartty and G. Cauwenberghs, "Sub-microwatt analog VLSI trainable pattern classifier," IEEE J. Solid-State Circuits, vol. 42, no. 5, pp. 1169-1179, May 2007.
    • (2007) IEEE J. Solid-State Circuits , vol.42 , Issue.5 , pp. 1169-1179
    • Chakrabartty, S.1    Cauwenberghs, G.2
  • 31
    • 84887321418 scopus 로고    scopus 로고
    • A 57 mw 12.5 uj/epoch embedded mixed-mode neuro-fuzzy processor for mobile real-time object recognition
    • Nov.
    • J. Oh, G. Kim, B.-G. Nam, and H.-J. Yoo, "A 57 mw 12.5 uj/epoch embedded mixed-mode neuro-fuzzy processor for mobile real-time object recognition," IEEE J. Solid-State Circuits, vol. 48, no. 11, pp. 2894-2907, Nov. 2013.
    • (2013) IEEE J. Solid-State Circuits , vol.48 , Issue.11 , pp. 2894-2907
    • Oh, J.1    Kim, G.2    Nam, B.-G.3    Yoo, H.-J.4
  • 32
    • 84898062031 scopus 로고    scopus 로고
    • 1 TOPS/W analog deep machine-learning engine with floating-gate storage in 0.13um CMOS
    • J. Lu, S. Young, I. Arel, and J. Holleman, "1 TOPS/W analog deep machine-learning engine with floating-gate storage in 0.13um CMOS," in Proc. ISSCC Dig. Tech. Papers, 2014, pp. 504-505.
    • (2014) Proc. ISSCC Dig. Tech. Papers , pp. 504-505
    • Lu, J.1    Young, S.2    Arel, I.3    Holleman, J.4
  • 33
    • 67650489076 scopus 로고    scopus 로고
    • A new redundant binary booth encoding for fast 2n-bit multiplier design
    • Jun.
    • Y. He and C.-H. Chang, "A new redundant binary booth encoding for fast 2n-Bit multiplier design," IEEE Trans. Circuits Syst. I, Reg. Papers., vol. 56, no. 6, pp. 1192-1201, Jun. 2009.
    • (2009) IEEE Trans. Circuits Syst. I, Reg. Papers. , vol.56 , Issue.6 , pp. 1192-1201
    • He, Y.1    Chang, C.-H.2
  • 35
    • 84921714670 scopus 로고    scopus 로고
    • Razor based programmable truncated multiply and accumulate, energy-reduction for efficient digital signal processing
    • Jan.
    • M. La Guia de Solaz and R. Conway, "Razor based programmable truncated multiply and accumulate, energy-reduction for efficient digital signal processing," IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 23, no. 1, pp. 189-93, Jan. 2015.
    • (2015) IEEE Trans. Very Large Scale Integr. (VLSI) Syst. , vol.23 , Issue.1 , pp. 189-193
    • La Guia-De-Solaz, M.1    Conway, R.2
  • 37
  • 38
    • 84963901761 scopus 로고    scopus 로고
    • A 0.7 V, 40 nW compact, currentmode neural spike detector in 65 nm CMOS
    • IEEE Xplore, Early Access
    • Y. Enyi, Y. Chen, and A. Basu, "A 0.7 V, 40 nW compact, currentmode neural spike detector in 65 nm CMOS," IEEE Trans. Biomed. Circuits Syst., 2015, IEEE Xplore, Early Access.
    • (2015) IEEE Trans. Biomed. Circuits Syst.
    • Enyi, Y.1    Chen, Y.2    Basu, A.3
  • 39
    • 84905389940 scopus 로고    scopus 로고
    • A 2.4 GHz ULP reconfigurable asymmetric transceiver for single-chip wireless neural recording IC
    • Aug.
    • J. Tan, W. S. Liu, C. H. Heng, and Y. Lian, "A 2.4 GHz ULP reconfigurable asymmetric transceiver for single-chip wireless neural recording IC," IEEE Trans. Biomed. Circuits Syst., vol. 8, no. 4, pp. 497-509, Aug. 2014.
    • (2014) IEEE Trans. Biomed. Circuits Syst. , vol.8 , Issue.4 , pp. 497-509
    • Tan, J.1    Liu, W.S.2    Heng, C.H.3    Lian, Y.4
  • 40
    • 84855417994 scopus 로고    scopus 로고
    • A 50-Mb/s CMOS QPSK/O-QPSK transmitter employing injection locking for direct modulation
    • Jan.
    • S. X. Diao, Y. J. Zheng, Y. Gao, S. J. Cheng, X. J. Yuan, and M. Y. Je, "A 50-Mb/s CMOS QPSK/O-QPSK transmitter employing injection locking for direct modulation," IEEE Trans. Microw. Theory Tech., vol. 60, no. 1, pp. 120-130, Jan. 2012.
    • (2012) IEEE Trans. Microw. Theory Tech. , vol.60 , Issue.1 , pp. 120-130
    • Diao, S.X.1    Zheng, Y.J.2    Gao, Y.3    Cheng, S.J.4    Yuan, X.J.5    Je, M.Y.6
  • 41
    • 69249110119 scopus 로고    scopus 로고
    • A 128-channel 6 mW wireless neural recording IC with spike feature extraction and UWB transmitter
    • M. Chae, Z. Yang, M. Yuce, L. Hong, and W. Liu, "A 128-channel 6 mW wireless neural recording IC with spike feature extraction and UWB transmitter," IEEE Trans. Neural Syst. Rehabil. Eng., vol. 17, no. 4, pp. 312-321, 2009.
    • (2009) IEEE Trans. Neural Syst. Rehabil. Eng. , vol.17 , Issue.4 , pp. 312-321
    • Chae, M.1    Yang, Z.2    Yuce, M.3    Hong, L.4    Liu, W.5
  • 42
    • 84892692994 scopus 로고    scopus 로고
    • Intention estimation in brain machine interfaces
    • J. M. Fan et al., "Intention estimation in brain machine interfaces," J. Neuroeng., vol. 11, no. 1, 2014.
    • (2014) J. Neuroeng. , vol.11 , Issue.1
    • Fan, J.M.1
  • 43
    • 84863766742 scopus 로고    scopus 로고
    • Closedloop decoder adaptation on intermediate time-scales facilitates rapid BMI performance improvements independent of decoder initialization conditions
    • Jul.
    • A. L. Orsborn, S. Dangi, H. G. Moorman, and J. M. Camena, "Closedloop decoder adaptation on intermediate time-scales facilitates rapid BMI performance improvements independent of decoder initialization conditions," IEEE Trans. Neural Syst. Rehabil. Eng., vol. 20, no. 4, pp. 468-477, Jul. 2012.
    • (2012) IEEE Trans. Neural Syst. Rehabil. Eng. , vol.20 , Issue.4 , pp. 468-477
    • Orsborn, A.L.1    Dangi, S.2    Moorman, H.G.3    Camena, J.M.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.