메뉴 건너뛰기




Volumn 51, Issue , 2014, Pages 50-56

Long-term time series prediction using OP-ELM

Author keywords

Direct strategy; DirRec strategy; ELM; LS SVM; OP ELM; Ordinary least squares; Recursive strategy; Time series prediction

Indexed keywords

FORECASTING; MEAN SQUARE ERROR; NONLINEAR SYSTEMS; SUPPORT VECTOR MACHINES; TIME SERIES;

EID: 84890844620     PISSN: 08936080     EISSN: 18792782     Source Type: Journal    
DOI: 10.1016/j.neunet.2013.12.002     Document Type: Article
Times cited : (101)

References (35)
  • 1
    • 0016029778 scopus 로고
    • The relationship between variable selection and data augmentation and a method for prediction
    • Allen D.M. The relationship between variable selection and data augmentation and a method for prediction. Technometrics 1974, 16:125-127.
    • (1974) Technometrics , vol.16 , pp. 125-127
    • Allen, D.M.1
  • 2
    • 84857642411 scopus 로고    scopus 로고
    • A review and comparison of strategies for multi-step ahead time series forecasting based on the nn5 forecasting competition
    • Ben Taieb S., Bontempi G., Atiya A.F., Sorjamaa A. A review and comparison of strategies for multi-step ahead time series forecasting based on the nn5 forecasting competition. Expert Systems with Applications 2012, 39.
    • (2012) Expert Systems with Applications , vol.39
    • Ben Taieb, S.1    Bontempi, G.2    Atiya, A.F.3    Sorjamaa, A.4
  • 3
    • 79956354306 scopus 로고    scopus 로고
    • Conditionally dependent strategies for multiple-step-ahead prediction in local learning
    • Bontempi G., Taieb S.B. Conditionally dependent strategies for multiple-step-ahead prediction in local learning. International Journal of Forecasting 2011, 27(3):689-699.
    • (2011) International Journal of Forecasting , vol.27 , Issue.3 , pp. 689-699
    • Bontempi, G.1    Taieb, S.B.2
  • 5
    • 0030344230 scopus 로고    scopus 로고
    • Heuristics of instability and stabilization in model selection
    • Breiman L. Heuristics of instability and stabilization in model selection. The Annals of Statistics 1996, 24(6):2350-2383.
    • (1996) The Annals of Statistics , vol.24 , Issue.6 , pp. 2350-2383
    • Breiman, L.1
  • 6
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • Breiman L. Bagging predictors. Machine Learning 1996, 24(2):123-140.
    • (1996) Machine Learning , vol.24 , Issue.2 , pp. 123-140
    • Breiman, L.1
  • 7
    • 29444447147 scopus 로고    scopus 로고
    • Local regularization assisted orthogonal least squares regression
    • Chen S. Local regularization assisted orthogonal least squares regression. Neurocomputing 2006, 69(4-6):559-585.
    • (2006) Neurocomputing , vol.69 , Issue.4-6 , pp. 559-585
    • Chen, S.1
  • 8
    • 84935863691 scopus 로고    scopus 로고
    • Variable scaling for time series prediction.
    • Proceedings of ESTSP 2007, European symposium on time series prediction. Espoo (Finland)
    • Corona, F., & Lendasse, A. (2007). Variable scaling for time series prediction. In Proceedings of ESTSP 2007, European symposium on time series prediction. Espoo (Finland) (pp. 69-76).
    • (2007) , pp. 69-76
    • Corona, F.1    Lendasse, A.2
  • 9
    • 79956357674 scopus 로고    scopus 로고
    • Advances in forecasting with neural networks? Empirical evidence from the {NN3} competition on time series prediction
    • Crone S.F., Hibon M., Nikolopoulos K. Advances in forecasting with neural networks? Empirical evidence from the {NN3} competition on time series prediction. International Journal of Forecasting 2011, 27(3):635-660.
    • (2011) International Journal of Forecasting , vol.27 , Issue.3 , pp. 635-660
    • Crone, S.F.1    Hibon, M.2    Nikolopoulos, K.3
  • 10
    • 84867197544 scopus 로고    scopus 로고
    • A novel locally regularized automatic construction method for rbf neural models
    • Du D., Li X., Fei M., Irwin G.W. A novel locally regularized automatic construction method for rbf neural models. Neurocomputing 2012, 98:4-11.
    • (2012) Neurocomputing , vol.98 , pp. 4-11
    • Du, D.1    Li, X.2    Fei, M.3    Irwin, G.W.4
  • 13
    • 84890822785 scopus 로고
    • The santa fe time series competition data.
    • Gershenfeld, N., & Weigend, A. (1994). The santa fe time series competition data. http://www-psych.stanford.edu/~andreas/Time-Series/SantaFe.html.
    • (1994)
    • Gershenfeld, N.1    Weigend, A.2
  • 15
    • 33745918399 scopus 로고    scopus 로고
    • Universal approximation using incremental constructive feedforward networks with random hidden nodes
    • Huang G.-B., Chen L., Siew C.-K. Universal approximation using incremental constructive feedforward networks with random hidden nodes. IEEE Transactions on Neural Networks 2006, 17:879-892.
    • (2006) IEEE Transactions on Neural Networks , vol.17 , pp. 879-892
    • Huang, G.-B.1    Chen, L.2    Siew, C.-K.3
  • 16
    • 33745903481 scopus 로고    scopus 로고
    • Extreme learning machine: theory and applications
    • Huang G., Zhu Q., Siew C. Extreme learning machine: theory and applications. Neurocomputing 2006, 70(1):489-501.
    • (2006) Neurocomputing , vol.70 , Issue.1 , pp. 489-501
    • Huang, G.1    Zhu, Q.2    Siew, C.3
  • 17
    • 84890818086 scopus 로고    scopus 로고
    • ESTSP 2007: proceedings. Multiprint Oy/Otamedia. ISBN:978-951-22-8601-0.
    • A. Lendasse (Ed.) (2007). ESTSP 2007: proceedings. Multiprint Oy/Otamedia. ISBN:978-951-22-8601-0.
    • (2007)
    • Lendasse, A.1
  • 19
    • 84890844836 scopus 로고    scopus 로고
    • Marshall Space Flight Center. Monthly Sunspot Numbers
    • Marshall Space Flight Center. (2012). Monthly Sunspot Numbers, http://solarscience.msfc.nasa.gov/SunspotCycle.shtml.
    • (2012)
  • 20
    • 84874705256 scopus 로고    scopus 로고
    • Multi-step-ahead estimation of time series models
    • McElroy T., Wildi M. Multi-step-ahead estimation of time series models. International Journal of Forecasting 2013, 29(3):378-394.
    • (2013) International Journal of Forecasting , vol.29 , Issue.3 , pp. 378-394
    • McElroy, T.1    Wildi, M.2
  • 24
    • 84890818949 scopus 로고    scopus 로고
    • Improved variable selection with forward-lasso adaptive shrinkage.
    • Radchenko, P., & James, G.M. (2011). Improved variable selection with forward-lasso adaptive shrinkage.
    • (2011)
    • Radchenko, P.1    James, G.M.2
  • 26
    • 84861703608 scopus 로고    scopus 로고
    • Prediction of composite indicators using combined method of extreme learning machine and locally weighted regression
    • Ruksenaite J., Vaitkus P. Prediction of composite indicators using combined method of extreme learning machine and locally weighted regression. Nonlinear Analysis: Modelling and Control 2012, 17(2):238-251.
    • (2012) Nonlinear Analysis: Modelling and Control , vol.17 , Issue.2 , pp. 238-251
    • Ruksenaite, J.1    Vaitkus, P.2
  • 27
    • 33646231022 scopus 로고    scopus 로고
    • Multiresponse sparse regression with application to multidimensional scaling.
    • Artificial neural networks: formal models and their applications-ICANN 2005, Vol. 3697/2005
    • Similä, T., & Tikka, J. (2005). Multiresponse sparse regression with application to multidimensional scaling. In Artificial neural networks: formal models and their applications-ICANN 2005, Vol. 3697/2005 (pp. 97-102).
    • (2005) , pp. 97-102
    • Similä, T.1    Tikka, J.2
  • 29
    • 85028212829 scopus 로고    scopus 로고
    • Time series prediction using DirRec strategy.
    • M. Verleysen (Ed.), European symposium on artificial neural networks, European symposium on artificial neural networks
    • Sorjamaa, A., & Lendasse, A. (2006). Time series prediction using DirRec strategy. In: M. Verleysen (Ed.), European symposium on artificial neural networks, European symposium on artificial neural networks (pp. 143-148).
    • (2006) , pp. 143-148
    • Sorjamaa, A.1    Lendasse, A.2
  • 30
    • 56049098499 scopus 로고    scopus 로고
    • Sales forecasting using extreme learning machine with applications in fashion retailing
    • Sun Z.L., Choi T.M., Au K.F., Yu Y. Sales forecasting using extreme learning machine with applications in fashion retailing. Decision Support Systems 2008, 46:411-419.
    • (2008) Decision Support Systems , vol.46 , pp. 411-419
    • Sun, Z.L.1    Choi, T.M.2    Au, K.F.3    Yu, Y.4
  • 32
    • 70450194207 scopus 로고    scopus 로고
    • Adaptive ensemble models of extreme learning machines for time series prediction
    • Springer, Heidelberg, C. Alippi, M.M. Polycarpou, C.G. Panayiotou, G. Ellinas (Eds.) ICANN 2009, part II
    • van Heeswijk M., Miche Y., Lindh-Knuutila T., Hilbers P., Honkela T., Oja E., et al. Adaptive ensemble models of extreme learning machines for time series prediction. LNCS 2009, Vol. 5769:305-314. Springer, Heidelberg. C. Alippi, M.M. Polycarpou, C.G. Panayiotou, G. Ellinas (Eds.).
    • (2009) LNCS , vol.5769 , pp. 305-314
    • van Heeswijk, M.1    Miche, Y.2    Lindh-Knuutila, T.3    Hilbers, P.4    Honkela, T.5    Oja, E.6
  • 33
    • 80051584618 scopus 로고    scopus 로고
    • GPU-accelerated and parallelized ELM ensembles for large-scale regression
    • van Heeswijk M., Miche Y., Oja E., Lendasse A. GPU-accelerated and parallelized ELM ensembles for large-scale regression. Neurocomputing 2011, 74:2430-2437.
    • (2011) Neurocomputing , vol.74 , pp. 2430-2437
    • van Heeswijk, M.1    Miche, Y.2    Oja, E.3    Lendasse, A.4
  • 35
    • 79951578472 scopus 로고    scopus 로고
    • An intelligent fast sales forecasting model for fashion products
    • Yu Y., Choi T.-M., Hui C.-L. An intelligent fast sales forecasting model for fashion products. Expert Systems with Applications 2011, 38:7373-7379.
    • (2011) Expert Systems with Applications , vol.38 , pp. 7373-7379
    • Yu, Y.1    Choi, T.-M.2    Hui, C.-L.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.