-
1
-
-
0016029778
-
The relationship between variable selection and data augmentation and a method for prediction
-
Allen D.M. The relationship between variable selection and data augmentation and a method for prediction. Technometrics 1974, 16:125-127.
-
(1974)
Technometrics
, vol.16
, pp. 125-127
-
-
Allen, D.M.1
-
2
-
-
84857642411
-
A review and comparison of strategies for multi-step ahead time series forecasting based on the nn5 forecasting competition
-
Ben Taieb S., Bontempi G., Atiya A.F., Sorjamaa A. A review and comparison of strategies for multi-step ahead time series forecasting based on the nn5 forecasting competition. Expert Systems with Applications 2012, 39.
-
(2012)
Expert Systems with Applications
, vol.39
-
-
Ben Taieb, S.1
Bontempi, G.2
Atiya, A.F.3
Sorjamaa, A.4
-
3
-
-
79956354306
-
Conditionally dependent strategies for multiple-step-ahead prediction in local learning
-
Bontempi G., Taieb S.B. Conditionally dependent strategies for multiple-step-ahead prediction in local learning. International Journal of Forecasting 2011, 27(3):689-699.
-
(2011)
International Journal of Forecasting
, vol.27
, Issue.3
, pp. 689-699
-
-
Bontempi, G.1
Taieb, S.B.2
-
5
-
-
0030344230
-
Heuristics of instability and stabilization in model selection
-
Breiman L. Heuristics of instability and stabilization in model selection. The Annals of Statistics 1996, 24(6):2350-2383.
-
(1996)
The Annals of Statistics
, vol.24
, Issue.6
, pp. 2350-2383
-
-
Breiman, L.1
-
6
-
-
0030211964
-
Bagging predictors
-
Breiman L. Bagging predictors. Machine Learning 1996, 24(2):123-140.
-
(1996)
Machine Learning
, vol.24
, Issue.2
, pp. 123-140
-
-
Breiman, L.1
-
7
-
-
29444447147
-
Local regularization assisted orthogonal least squares regression
-
Chen S. Local regularization assisted orthogonal least squares regression. Neurocomputing 2006, 69(4-6):559-585.
-
(2006)
Neurocomputing
, vol.69
, Issue.4-6
, pp. 559-585
-
-
Chen, S.1
-
8
-
-
84935863691
-
Variable scaling for time series prediction.
-
Proceedings of ESTSP 2007, European symposium on time series prediction. Espoo (Finland)
-
Corona, F., & Lendasse, A. (2007). Variable scaling for time series prediction. In Proceedings of ESTSP 2007, European symposium on time series prediction. Espoo (Finland) (pp. 69-76).
-
(2007)
, pp. 69-76
-
-
Corona, F.1
Lendasse, A.2
-
9
-
-
79956357674
-
Advances in forecasting with neural networks? Empirical evidence from the {NN3} competition on time series prediction
-
Crone S.F., Hibon M., Nikolopoulos K. Advances in forecasting with neural networks? Empirical evidence from the {NN3} competition on time series prediction. International Journal of Forecasting 2011, 27(3):635-660.
-
(2011)
International Journal of Forecasting
, vol.27
, Issue.3
, pp. 635-660
-
-
Crone, S.F.1
Hibon, M.2
Nikolopoulos, K.3
-
10
-
-
84867197544
-
A novel locally regularized automatic construction method for rbf neural models
-
Du D., Li X., Fei M., Irwin G.W. A novel locally regularized automatic construction method for rbf neural models. Neurocomputing 2012, 98:4-11.
-
(2012)
Neurocomputing
, vol.98
, pp. 4-11
-
-
Du, D.1
Li, X.2
Fei, M.3
Irwin, G.W.4
-
11
-
-
3242708140
-
Least angle regression
-
Efron B., Hastie T., Johnstone I., Tibshirani R. Least angle regression. Annals of Statistics 2004, 32:407-499.
-
(2004)
Annals of Statistics
, vol.32
, pp. 407-499
-
-
Efron, B.1
Hastie, T.2
Johnstone, I.3
Tibshirani, R.4
-
13
-
-
84890822785
-
-
The santa fe time series competition data.
-
Gershenfeld, N., & Weigend, A. (1994). The santa fe time series competition data. http://www-psych.stanford.edu/~andreas/Time-Series/SantaFe.html.
-
(1994)
-
-
Gershenfeld, N.1
Weigend, A.2
-
15
-
-
33745918399
-
Universal approximation using incremental constructive feedforward networks with random hidden nodes
-
Huang G.-B., Chen L., Siew C.-K. Universal approximation using incremental constructive feedforward networks with random hidden nodes. IEEE Transactions on Neural Networks 2006, 17:879-892.
-
(2006)
IEEE Transactions on Neural Networks
, vol.17
, pp. 879-892
-
-
Huang, G.-B.1
Chen, L.2
Siew, C.-K.3
-
16
-
-
33745903481
-
Extreme learning machine: theory and applications
-
Huang G., Zhu Q., Siew C. Extreme learning machine: theory and applications. Neurocomputing 2006, 70(1):489-501.
-
(2006)
Neurocomputing
, vol.70
, Issue.1
, pp. 489-501
-
-
Huang, G.1
Zhu, Q.2
Siew, C.3
-
17
-
-
84890818086
-
-
ESTSP 2007: proceedings. Multiprint Oy/Otamedia. ISBN:978-951-22-8601-0.
-
A. Lendasse (Ed.) (2007). ESTSP 2007: proceedings. Multiprint Oy/Otamedia. ISBN:978-951-22-8601-0.
-
(2007)
-
-
Lendasse, A.1
-
18
-
-
27544460186
-
Vector quantization: a weighted version for time-series forecasting
-
Lendasse A., Francois D., Wertz V., Verleysen M. Vector quantization: a weighted version for time-series forecasting. Future Generation Computer Systems 2005, 21(7):1056-1067.
-
(2005)
Future Generation Computer Systems
, vol.21
, Issue.7
, pp. 1056-1067
-
-
Lendasse, A.1
Francois, D.2
Wertz, V.3
Verleysen, M.4
-
19
-
-
84890844836
-
-
Marshall Space Flight Center. Monthly Sunspot Numbers
-
Marshall Space Flight Center. (2012). Monthly Sunspot Numbers, http://solarscience.msfc.nasa.gov/SunspotCycle.shtml.
-
(2012)
-
-
-
20
-
-
84874705256
-
Multi-step-ahead estimation of time series models
-
McElroy T., Wildi M. Multi-step-ahead estimation of time series models. International Journal of Forecasting 2013, 29(3):378-394.
-
(2013)
International Journal of Forecasting
, vol.29
, Issue.3
, pp. 378-394
-
-
McElroy, T.1
Wildi, M.2
-
21
-
-
73949154686
-
OP-ELM: optimally-pruned extreme learning machine
-
Miche Y., Sorjamaa A., Bas P., Simula O., Jutten C., Lendasse A. OP-ELM: optimally-pruned extreme learning machine. IEEE Transactions on Neural Networks 2010, 21:158-162.
-
(2010)
IEEE Transactions on Neural Networks
, vol.21
, pp. 158-162
-
-
Miche, Y.1
Sorjamaa, A.2
Bas, P.3
Simula, O.4
Jutten, C.5
Lendasse, A.6
-
23
-
-
84890828648
-
-
Ls-svmlab: a matlab/c toolbox for least squares support vector machines.
-
Pelckmans, K., Suykens, J.A.K., Gestel, T.V., Brabanter, J.D., Lukas, L., & Hamers, B. et al. (2002). Ls-svmlab: a matlab/c toolbox for least squares support vector machines.
-
(2002)
-
-
Pelckmans, K.1
Suykens, J.A.K.2
Gestel, T.V.3
Brabanter, J.D.4
Lukas, L.5
Hamers, B.6
-
24
-
-
84890818949
-
-
Improved variable selection with forward-lasso adaptive shrinkage.
-
Radchenko, P., & James, G.M. (2011). Improved variable selection with forward-lasso adaptive shrinkage.
-
(2011)
-
-
Radchenko, P.1
James, G.M.2
-
26
-
-
84861703608
-
Prediction of composite indicators using combined method of extreme learning machine and locally weighted regression
-
Ruksenaite J., Vaitkus P. Prediction of composite indicators using combined method of extreme learning machine and locally weighted regression. Nonlinear Analysis: Modelling and Control 2012, 17(2):238-251.
-
(2012)
Nonlinear Analysis: Modelling and Control
, vol.17
, Issue.2
, pp. 238-251
-
-
Ruksenaite, J.1
Vaitkus, P.2
-
27
-
-
33646231022
-
Multiresponse sparse regression with application to multidimensional scaling.
-
Artificial neural networks: formal models and their applications-ICANN 2005, Vol. 3697/2005
-
Similä, T., & Tikka, J. (2005). Multiresponse sparse regression with application to multidimensional scaling. In Artificial neural networks: formal models and their applications-ICANN 2005, Vol. 3697/2005 (pp. 97-102).
-
(2005)
, pp. 97-102
-
-
Similä, T.1
Tikka, J.2
-
28
-
-
34548170754
-
Methodology for long-term prediction of time series
-
Sorjamaa A., Hao J., Reyhani N., Ji Y., Lendasse A. Methodology for long-term prediction of time series. Neurocomputing 2007, 70:2861-2869.
-
(2007)
Neurocomputing
, vol.70
, pp. 2861-2869
-
-
Sorjamaa, A.1
Hao, J.2
Reyhani, N.3
Ji, Y.4
Lendasse, A.5
-
29
-
-
85028212829
-
Time series prediction using DirRec strategy.
-
M. Verleysen (Ed.), European symposium on artificial neural networks, European symposium on artificial neural networks
-
Sorjamaa, A., & Lendasse, A. (2006). Time series prediction using DirRec strategy. In: M. Verleysen (Ed.), European symposium on artificial neural networks, European symposium on artificial neural networks (pp. 143-148).
-
(2006)
, pp. 143-148
-
-
Sorjamaa, A.1
Lendasse, A.2
-
30
-
-
56049098499
-
Sales forecasting using extreme learning machine with applications in fashion retailing
-
Sun Z.L., Choi T.M., Au K.F., Yu Y. Sales forecasting using extreme learning machine with applications in fashion retailing. Decision Support Systems 2008, 46:411-419.
-
(2008)
Decision Support Systems
, vol.46
, pp. 411-419
-
-
Sun, Z.L.1
Choi, T.M.2
Au, K.F.3
Yu, Y.4
-
32
-
-
70450194207
-
Adaptive ensemble models of extreme learning machines for time series prediction
-
Springer, Heidelberg, C. Alippi, M.M. Polycarpou, C.G. Panayiotou, G. Ellinas (Eds.) ICANN 2009, part II
-
van Heeswijk M., Miche Y., Lindh-Knuutila T., Hilbers P., Honkela T., Oja E., et al. Adaptive ensemble models of extreme learning machines for time series prediction. LNCS 2009, Vol. 5769:305-314. Springer, Heidelberg. C. Alippi, M.M. Polycarpou, C.G. Panayiotou, G. Ellinas (Eds.).
-
(2009)
LNCS
, vol.5769
, pp. 305-314
-
-
van Heeswijk, M.1
Miche, Y.2
Lindh-Knuutila, T.3
Hilbers, P.4
Honkela, T.5
Oja, E.6
-
33
-
-
80051584618
-
GPU-accelerated and parallelized ELM ensembles for large-scale regression
-
van Heeswijk M., Miche Y., Oja E., Lendasse A. GPU-accelerated and parallelized ELM ensembles for large-scale regression. Neurocomputing 2011, 74:2430-2437.
-
(2011)
Neurocomputing
, vol.74
, pp. 2430-2437
-
-
van Heeswijk, M.1
Miche, Y.2
Oja, E.3
Lendasse, A.4
-
35
-
-
79951578472
-
An intelligent fast sales forecasting model for fashion products
-
Yu Y., Choi T.-M., Hui C.-L. An intelligent fast sales forecasting model for fashion products. Expert Systems with Applications 2011, 38:7373-7379.
-
(2011)
Expert Systems with Applications
, vol.38
, pp. 7373-7379
-
-
Yu, Y.1
Choi, T.-M.2
Hui, C.-L.3
|