-
1
-
-
0347444723
-
MicroRNAs: Genomics, biogenesis, mechanism, and function
-
Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004; 116: 281-97.
-
(2004)
Cell
, vol.116
, pp. 281-297
-
-
Bartel, D.P.1
-
2
-
-
58249088751
-
microRNAs: Target recognition and regulatory functions
-
Bartel DP. microRNAs: target recognition and regulatory functions. Cell. 2009; 136: 215-33. doi: 10. 1016/j. cell. 2009. 01. 002.
-
(2009)
Cell
, vol.136
, pp. 215-233
-
-
Bartel, D.P.1
-
3
-
-
78651293534
-
miRBase: Integrating microRNA annotation and deepsequencing data
-
Kozomara A, Griffiths-Jones S. miRBase: integrating microRNA annotation and deepsequencing data. Nucleic Acids Res. 2011; 39: D152-7.
-
(2011)
Nucleic Acids Res
, vol.39
, pp. 152-157
-
-
Kozomara, A.1
Griffiths-Jones, S.2
-
4
-
-
84891818318
-
miRBase: Annotating high confidence microRNAs using deep sequencing data
-
Kozomara A, Griffiths-Jones S. miRBase: annotating high confidence microRNAs using deep sequencing data. Nucleic Acids Res. 2013; 42: D68-73. doi: 10. 1093/nar/gkt1181.
-
(2013)
Nucleic Acids Res
, vol.42
, pp. 68-73
-
-
Kozomara, A.1
Griffiths-Jones, S.2
-
5
-
-
28044455435
-
microPrimer: The biogenesis and function of microRNA
-
Du T. microPrimer: the biogenesis and function of microRNA. Development. 2005; 132: 4645-52. doi: 10. 1242/dev. 02070.
-
(2005)
Development
, vol.132
, pp. 4645-4652
-
-
Du, T.1
-
6
-
-
24644480213
-
Inhibition of translational initiation by Let-7 MicroRNA in human cells
-
Pillai RS, Bhattacharyya SN, Artus CG, et al. Inhibition of translational initiation by Let-7 MicroRNA in human cells. Science. 2005; 309: 1573-6. doi: 10. 1126/science. 1115079.
-
(2005)
Science
, vol.309
, pp. 1573-1576
-
-
Pillai, R.S.1
Bhattacharyya, S.N.2
Artus, C.G.3
-
7
-
-
33845353746
-
Evidence that microRNAs are associated with translating messenger RNAs in human cells
-
Maroney PA, Yu Y, Fisher J, Nilsen TW. Evidence that microRNAs are associated with translating messenger RNAs in human cells. Nat Struct Mol Biol. 2006; 13: 1102-7. doi: 10. 1038/nsmb1174.
-
(2006)
Nat Struct Mol Biol
, vol.13
, pp. 1102-1107
-
-
Maroney, P.A.1
Yu, Y.2
Fisher, J.3
Nilsen, T.W.4
-
8
-
-
58149103297
-
Deadenylation is a widespread effect of miRNA regulation
-
Eulalio A, Huntzinger E, Nishihara T, et al. Deadenylation is a widespread effect of miRNA regulation. RNA. 2009; 15: 21-32. doi: 10. 1261/rna. 1399509.
-
(2009)
RNA
, vol.15
, pp. 21-32
-
-
Eulalio, A.1
Huntzinger, E.2
Nishihara, T.3
-
9
-
-
33645119514
-
MicroRNAs direct rapid deadenylation of mRNA
-
Wu L, Fan J, Belasco JG. MicroRNAs direct rapid deadenylation of mRNA. Proc Natl Acad Sci. 2006; 103: 4034-9. doi: 10. 1073/pnas. 0510928103.
-
(2006)
Proc Natl Acad Sci
, vol.103
, pp. 4034-4039
-
-
Wu, L.1
Fan, J.2
Belasco, J.G.3
-
10
-
-
3242736704
-
Human Argonaute2 mediates RNA cleavage targeted by miRNAs and siRNAs
-
Meister G, Landthaler M, Patkaniowska A, et al. Human Argonaute2 mediates RNA cleavage targeted by miRNAs and siRNAs. Mol Cell. 2004; 15: 185-97. doi: 10. 1016/j. molcel. 2004. 07. 007.
-
(2004)
Mol Cell
, vol.15
, pp. 185-197
-
-
Meister, G.1
Landthaler, M.2
Patkaniowska, A.3
-
11
-
-
0033572660
-
Targeted mRNA degradation by double-stranded RNA in vitro
-
Tuschl T, Zamore PD, Lehmann R, et al. Targeted mRNA degradation by double-stranded RNA in vitro. Genes Dev. 1999; 13: 3191-7.
-
(1999)
Genes Dev
, vol.13
, pp. 3191-3197
-
-
Tuschl, T.1
Zamore, P.D.2
Lehmann, R.3
-
12
-
-
49949117302
-
Widespread changes in protein synthesis induced by microRNAs
-
Selbach M, Schwanhäusser B, Thierfelder N, et al. Widespread changes in protein synthesis induced by microRNAs. Nature. 2008; 455: 58-63. doi: 10. 1038/nature07228.
-
(2008)
Nature
, vol.455
, pp. 58-63
-
-
Selbach, M.1
Schwanhäusser, B.2
Thierfelder, N.3
-
13
-
-
49949116902
-
The impact of microRNAs on protein output
-
Baek D, Villén J, Shin C, et al. The impact of microRNAs on protein output. Nature. 2008; 455: 64-71. doi: 10. 1038/nature07242.
-
(2008)
Nature
, vol.455
, pp. 64-71
-
-
Baek, D.1
Villén, J.2
Shin, C.3
-
14
-
-
77955644289
-
Mammalian microRNAs predominantly act to decrease target mRNA levels
-
Guo H, Ingolia NT, Weissman JS, Bartel DP. Mammalian microRNAs predominantly act to decrease target mRNA levels. Nature. 2010; 466: 835-40. doi: 10. 1038/nature09267.
-
(2010)
Nature
, vol.466
, pp. 835-840
-
-
Guo, H.1
Ingolia, N.T.2
Weissman, J.S.3
Bartel, D.P.4
-
15
-
-
84901424245
-
Macros in microRNA target identification: A comparative analysis of in silico, in vitro, and in vivo approaches to microRNA target identification
-
Tarang S, Weston MD. Macros in microRNA target identification: a comparative analysis of in silico, in vitro, and in vivo approaches to microRNA target identification. RNA Biol. 2014; 11(4): 324-33. doi: 10. 4161/rna. 28649.
-
(2014)
RNA Biol
, vol.11
, Issue.4
, pp. 324-333
-
-
Tarang, S.1
Weston, M.D.2
-
16
-
-
11844278458
-
Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets
-
Lewis BP, Burge CB, Bartel DP. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell. 2005; 120: 15-20. doi: 10. 1016/j. cell. 2004. 12. 035.
-
(2005)
Cell
, vol.120
, pp. 15-20
-
-
Lewis, B.P.1
Burge, C.B.2
Bartel, D.P.3
-
17
-
-
60149095444
-
Most mammalian mRNAs are conserved targets of microRNAs
-
Friedman RC, Farh KK-H, Burge CB, Bartel DP. Most mammalian mRNAs are conserved targets of microRNAs. Genome Res. 2008; 19: 92-105. doi: 10. 1101/gr. 082701. 108.
-
(2008)
Genome Res
, vol.19
, pp. 92-105
-
-
Friedman, R.C.1
Farh, K.K.-H.2
Burge, C.B.3
Bartel, D.P.4
-
18
-
-
79957477843
-
miRFam: An effective automatic miRNA classification method based on n-grams and a multiclass SVM
-
Ding J, Zhou S, Guan J. miRFam: an effective automatic miRNA classification method based on n-grams and a multiclass SVM. BMC Bioinformatics. 2011; 12: 216. doi: 10. 1186/1471-2105-12-216.
-
(2011)
BMC Bioinformatics
, vol.12
, pp. 216
-
-
Ding, J.1
Zhou, S.2
Guan, J.3
-
19
-
-
84892466713
-
miRClassify: An advanced web server for miRNA family classification and annotation
-
Zou Q, Mao Y, Hu L, et al. miRClassify: an advanced web server for miRNA family classification and annotation. Comput Biol Med. 2014; 45: 157-60. doi: 10. 1016/j. compbiomed. 2013. 12. 007.
-
(2014)
Comput Biol Med
, vol.45
, pp. 157-160
-
-
Zou, Q.1
Mao, Y.2
Hu, L.3
-
20
-
-
77957688958
-
A targeted approach to miRNA target identification
-
Grimson A. A targeted approach to miRNA target identification. Nat Methods. 2010; 7: 795-7. doi: 10. 1038/nmeth1010-795.
-
(2010)
Nat Methods
, vol.7
, pp. 795-797
-
-
Grimson, A.1
-
21
-
-
80455154984
-
Weak seed-pairing stability and high target-site abundance decrease the proficiency of lsy-6 and other microRNAs
-
Garcia DM, Baek D, Shin C, et al. Weak seed-pairing stability and high target-site abundance decrease the proficiency of lsy-6 and other microRNAs. Nat Struct Mol Biol. 2011; 18: 1139-46. doi: 10. 1038/nsmb. 2115.
-
(2011)
Nat Struct Mol Biol
, vol.18
, pp. 1139-1146
-
-
Garcia, D.M.1
Baek, D.2
Shin, C.3
-
23
-
-
20944450160
-
Combinatorial microRNA target predictions
-
Krek A, Grün D, Poy MN, et al. Combinatorial microRNA target predictions. Nat Genet. 2005; 37: 495-500. doi: 10. 1038/ng1536.
-
(2005)
Nat Genet
, vol.37
, pp. 495-500
-
-
Krek, A.1
Grün, D.2
Poy, M.N.3
-
24
-
-
34250805982
-
MicroRNA targeting specificity in mammals: Determinants beyond seed pairing
-
Grimson A, Farh KK-H, Johnston WK, et al. MicroRNA targeting specificity in mammals: determinants beyond seed pairing. Mol Cell. 2007; 27: 91-105. doi: 10. 1016/j. molcel. 2007. 06. 017.
-
(2007)
Mol Cell
, vol.27
, pp. 91-105
-
-
Grimson, A.1
Farh, K.K.-H.2
Johnston, W.K.3
-
25
-
-
84897742116
-
Common features of microRNA target prediction tools
-
Peterson SM, Thompson JA, Ufkin ML, et al. Common features of microRNA target prediction tools. Front Genet. 2014; 5: 23. doi: 10. 3389/fgene. 2014. 00023.
-
(2014)
Front Genet
, vol.5
, pp. 23
-
-
Peterson, S.M.1
Thompson, J.A.2
Ufkin, M.L.3
-
26
-
-
84925116268
-
Re-thinking miRNA-mRNA interactions: Intertwining issues confound target discovery
-
Cloonan N. Re-thinking miRNA-mRNA interactions: intertwining issues confound target discovery. Bioessays. 2015; 37: 379-88. doi: 10. 1002/bies. 201400191.
-
(2015)
Bioessays
, vol.37
, pp. 379-388
-
-
Cloonan, N.1
-
27
-
-
84901382023
-
miR-Synth: A computational resource for the design of multi-site multi-target synthetic miRNAs
-
Lagana A, Acunzo M, Romano G, et al. miR-Synth: a computational resource for the design of multi-site multi-target synthetic miRNAs. Nucleic Acids Res. 2014; 42: 5416-25. doi: 10. 1093/nar/gku202.
-
(2014)
Nucleic Acids Res
, vol.42
, pp. 5416-5425
-
-
Lagana, A.1
Acunzo, M.2
Romano, G.3
-
28
-
-
77955475953
-
Expanding the microRNA targeting code: Functional sites with centered pairing
-
Shin C, Nam J-W, Farh KK-H, et al. Expanding the microRNA targeting code: functional sites with centered pairing. Mol Cell. 2010; 38: 789-802. doi: 10. 1016/j. molcel. 2010. 06. 005.
-
(2010)
Mol Cell
, vol.38
, pp. 789-802
-
-
Shin, C.1
Nam, J.-W.2
Farh, K.K.-H.3
-
29
-
-
84857955708
-
An alternative mode of microRNA target recognition
-
Chi SW, Hannon GJ, Darnell RB. An alternative mode of microRNA target recognition. Nat Struct Mol Biol. 2012; 19: 321-7. doi: 10. 1038/nsmb. 2230.
-
(2012)
Nat Struct Mol Biol
, vol.19
, pp. 321-327
-
-
Chi, S.W.1
Hannon, G.J.2
Darnell, R.B.3
-
30
-
-
84870026823
-
Genome-wide identification of miRNA targets by PAR-CLIP
-
Hafner M, Lianoglou S, Tuschl T, Betel D. Genome-wide identification of miRNA targets by PAR-CLIP. Methods. 2012; 58: 94-105. doi: 10. 1016/j. ymeth. 2012. 08. 006.
-
(2012)
Methods
, vol.58
, pp. 94-105
-
-
Hafner, M.1
Lianoglou, S.2
Tuschl, T.3
Betel, D.4
-
31
-
-
84870951115
-
Transcriptome-wide miR-155 binding map reveals widespread noncanonical microRNA targeting
-
Loeb GB, Khan AA, Canner D, et al. Transcriptome-wide miR-155 binding map reveals widespread noncanonical microRNA targeting. Mol Cell. 2012; 48: 760-70. doi: 10. 1016/j. molcel. 2012. 10. 002.
-
(2012)
Mol Cell
, vol.48
, pp. 760-770
-
-
Loeb, G.B.1
Khan, A.A.2
Canner, D.3
-
32
-
-
84899151667
-
Imperfect centered miRNA binding sites are common and can mediate repression of target mRNAs
-
Martin HC, Wani S, Steptoe AL, et al. Imperfect centered miRNA binding sites are common and can mediate repression of target mRNAs. Genome Biol. 2014; 15: R51. doi: 10. 1186/gb-2014-15-3-r51.
-
(2014)
Genome Biol
, vol.15
-
-
Martin, H.C.1
Wani, S.2
Steptoe, A.L.3
-
33
-
-
84876935138
-
Mapping the human miRNA interactome by CLASH reveals frequent noncanonical binding
-
Helwak A, Kudla G, Dudnakova T, Tollervey D. Mapping the human miRNA interactome by CLASH reveals frequent noncanonical binding. Cell. 2013; 153: 654-65. doi: 10. 1016/j. cell. 2013. 03. 043.
-
(2013)
Cell
, vol.153
, pp. 654-665
-
-
Helwak, A.1
Kudla, G.2
Dudnakova, T.3
Tollervey, D.4
-
34
-
-
14044251458
-
Human microRNA targets
-
John B, Enright AJ, Aravin A, et al. Human microRNA targets. PLoS Biol. 2004; 2, e363. doi: 10. 1371/journal. pbio. 0020363.
-
(2004)
PLoS Biol
, vol.2
-
-
John, B.1
Enright, A.J.2
Aravin, A.3
-
35
-
-
0842321501
-
MicroRNA targets in Drosophila
-
Enright AJ, John B, Gaul U, et al. MicroRNA targets in Drosophila. Genome Biol. 2003; 5: R1-14. doi: 10. 1186/gb-2003-5-1-r1.
-
(2003)
Genome Biol
, vol.5
, pp. 1-14
-
-
Enright, A.J.1
John, B.2
Gaul, U.3
-
36
-
-
77955963884
-
Comprehensive modeling of microRNA targets predicts functional non-conserved and non-canonical sites
-
Betel D, Koppal A, Agius P, et al. Comprehensive modeling of microRNA targets predicts functional non-conserved and non-canonical sites. Genome Biol. 2010; 11: R90. doi: 10. 1186/gb-2010-11-8-r90.
-
(2010)
Genome Biol
, vol.11
-
-
Betel, D.1
Koppal, A.2
Agius, P.3
-
37
-
-
84874646362
-
A biophysical miRNA-mRNA interaction model infers canonical and noncanonical targets
-
Khorshid M, Hausser J, Zavolan M, van Nimwegen E. A biophysical miRNA-mRNA interaction model infers canonical and noncanonical targets. Nat Methods. 2013; 10: 253-5. doi: 10. 1038/nmeth. 2341.
-
(2013)
Nat Methods
, vol.10
, pp. 253-255
-
-
Khorshid, M.1
Hausser, J.2
Zavolan, M.3
van Nimwegen, E.4
-
38
-
-
85003365400
-
mirMark: A site-level and UTR-level classifier for miRNA target prediction
-
Menor M, Ching T, Zhu X, et al. mirMark: a site-level and UTR-level classifier for miRNA target prediction. Genome Biol. 2014; 15(10): 500. doi: 10. 1186/s13059-014-0500-5.
-
(2014)
Genome Biol
, vol.15
, Issue.10
, pp. 500
-
-
Menor, M.1
Ching, T.2
Zhu, X.3
-
39
-
-
29144505309
-
The widespread impact of mammalian MicroRNAs on mRNA repression and evolution
-
Farh KK-H, Grimson A, Jan C, et al. The widespread impact of mammalian MicroRNAs on mRNA repression and evolution. Science. 2005; 310: 1817-21. doi: 10. 1126/science. 1121158.
-
(2005)
Science
, vol.310
, pp. 1817-1821
-
-
Farh, K.K.-H.1
Grimson, A.2
Jan, C.3
-
40
-
-
33644756532
-
A genome-wide map of conserved microRNA targets in C. elegans
-
Lall S, Grün D, Krek A, et al. A genome-wide map of conserved microRNA targets in C. elegans. Curr Biol. 2006; 16: 460-71. doi: 10. 1016/j. cub. 2006. 01. 050.
-
(2006)
Curr Biol
, vol.16
, pp. 460-471
-
-
Lall, S.1
Grün, D.2
Krek, A.3
-
41
-
-
84922932221
-
MBSTAR: Multiple instance learning for predicting specific functional binding sites in microRNA targets
-
Bandyopadhyay S, Ghosh D, Mitra R, Zhao Z. MBSTAR: multiple instance learning for predicting specific functional binding sites in microRNA targets. Sci Rep. 2015; 5: 8004-12. doi: 10. 1038/srep08004.
-
(2015)
Sci Rep
, vol.5
, pp. 8004-8012
-
-
Bandyopadhyay, S.1
Ghosh, D.2
Mitra, R.3
Zhao, Z.4
-
42
-
-
84859067415
-
Functional microRNA targets in protein coding sequences
-
Reczko M, Maragkakis M, Alexiou P, et al. Functional microRNA targets in protein coding sequences. Bioinformatics. 2012; 28: 771-6. doi: 10. 1093/bioinformatics/bts043.
-
(2012)
Bioinformatics
, vol.28
, pp. 771-776
-
-
Reczko, M.1
Maragkakis, M.2
Alexiou, P.3
-
43
-
-
84875409279
-
Searching the coding region for microRNA targets
-
Marin RM, Sulc M, Vanicek J. Searching the coding region for microRNA targets. RNA. 2013; 19: 467-74. doi: 10. 1261/rna. 035634. 112.
-
(2013)
RNA
, vol.19
, pp. 467-474
-
-
Marin, R.M.1
Sulc, M.2
Vanicek, J.3
-
44
-
-
77957662209
-
Conserved microRNA targeting in Drosophila is as widespread in coding regions as in 3′UTRs
-
Schnall-Levin M, Zhao Y, Perrimon N, Berger B. Conserved microRNA targeting in Drosophila is as widespread in coding regions as in 3′UTRs. Proc Natl Acad Sci U S A. 2010; 107: 15751-6. doi: 10. 1073/pnas. 1006172107.
-
(2010)
Proc Natl Acad Sci U S A
, vol.107
, pp. 15751-15756
-
-
Schnall-Levin, M.1
Zhao, Y.2
Perrimon, N.3
Berger, B.4
-
46
-
-
4644237189
-
Fast and effective prediction of microRNA/target duplexes
-
Rehmsmeier M. Fast and effective prediction of microRNA/target duplexes. RNA. 2004; 10: 1507-17. doi: 10. 1261/rna. 5248604.
-
(2004)
RNA
, vol.10
, pp. 1507-1517
-
-
Rehmsmeier, M.1
-
47
-
-
78650073575
-
Prediction of human targets for viral-encoded microRNAs by thermodynamics and empirical constraints
-
Lagana A, Forte S, Russo F, et al. Prediction of human targets for viral-encoded microRNAs by thermodynamics and empirical constraints. J RNAi Gene Silenc. 2010; 6: 379-85.
-
(2010)
J RNAi Gene Silenc
, vol.6
, pp. 379-385
-
-
Lagana, A.1
Forte, S.2
Russo, F.3
-
48
-
-
33644853766
-
Local RNA base pairing probabilities in large sequences
-
Bernhart SH, Hofacker IL, Stadler PF. Local RNA base pairing probabilities in large sequences. Bioinformatics. 2006; 22: 614-5. doi: 10. 1093/bioinformatics/btk014.
-
(2006)
Bioinformatics
, vol.22
, pp. 614-615
-
-
Bernhart, S.H.1
Hofacker, I.L.2
Stadler, P.F.3
-
49
-
-
34247258888
-
Potent effect of target structure on microRNA function
-
Long D, Lee R, Williams P, et al. Potent effect of target structure on microRNA function. Nat Struct Mol Biol. 2007; 14: 287-94. doi: 10. 1038/nsmb1226.
-
(2007)
Nat Struct Mol Biol
, vol.14
, pp. 287-294
-
-
Long, D.1
Lee, R.2
Williams, P.3
-
50
-
-
34748821761
-
The role of site accessibility in microRNA target recognition
-
Kertesz M, Iovino N, Unnerstall U, et al. The role of site accessibility in microRNA target recognition. Nat Genet. 2007; 39: 1278-84. doi: 10. 1038/ng2135.
-
(2007)
Nat Genet
, vol.39
, pp. 1278-1284
-
-
Kertesz, M.1
Iovino, N.2
Unnerstall, U.3
-
51
-
-
84871214022
-
miRmap: Comprehensive prediction of microRNA target repression strength
-
Vejnar CE, Zdobnov EM. miRmap: comprehensive prediction of microRNA target repression strength. Nucleic Acids Res. 2012; 40: 11673-83. doi: 10. 1093/nar/gks901.
-
(2012)
Nucleic Acids Res
, vol.40
, pp. 11673-11683
-
-
Vejnar, C.E.1
Zdobnov, E.M.2
-
52
-
-
84875466989
-
Tertiary structure-based analysis of microRNA-target interactions
-
Gan HH, Gunsalus KC. Tertiary structure-based analysis of microRNA-target interactions. RNA. 2013; 19: 539-51. doi: 10. 1261/rna. 035691. 112.
-
(2013)
RNA
, vol.19
, pp. 539-551
-
-
Gan, H.H.1
Gunsalus, K.C.2
-
53
-
-
84862778053
-
Ribosome profiling shows that miR-430 reduces translation before causing mRNA decay in zebrafish
-
Bazzini AA, Lee MT, Giraldez AJ. Ribosome profiling shows that miR-430 reduces translation before causing mRNA decay in zebrafish. Science. 2012; 336: 233-7. doi: 10. 1126/science. 1215704.
-
(2012)
Science
, vol.336
, pp. 233-237
-
-
Bazzini, A.A.1
Lee, M.T.2
Giraldez, A.J.3
-
54
-
-
84859632747
-
miRNA-mediated gene silencing by translational repression followed by mRNA deadenylation and decay
-
Djuranovic S, Nahvi A, Green R. miRNA-mediated gene silencing by translational repression followed by mRNA deadenylation and decay. Science. 2012; 336: 237-40. doi: 10. 1126/science. 1215691.
-
(2012)
Science
, vol.336
, pp. 237-240
-
-
Djuranovic, S.1
Nahvi, A.2
Green, R.3
-
55
-
-
36749005527
-
Using expression profiling data to identify human microRNA targets
-
Huang JC, Babak T, Corson TW, et al. Using expression profiling data to identify human microRNA targets. Nat Methods. 2007; 4: 1045-9. doi: 10. 1038/nmeth1130.
-
(2007)
Nat Methods
, vol.4
, pp. 1045-1049
-
-
Huang, J.C.1
Babak, T.2
Corson, T.W.3
-
56
-
-
79955890715
-
HOCTAR database: A unique resource for microRNA target prediction
-
Gennarino VA, Sardiello M, Mutarelli M, et al. HOCTAR database: a unique resource for microRNA target prediction. Gene. 2011; 480: 51-8. doi: 10. 1016/j. gene. 2011. 03. 005.
-
(2011)
Gene
, vol.480
, pp. 51-58
-
-
Gennarino, V.A.1
Sardiello, M.2
Mutarelli, M.3
-
57
-
-
84856857511
-
Quantification of miRNA-mRNA interactions
-
Muniategui A, Nogales-Cadenas R, Vázquez M, et al. Quantification of miRNA-mRNA interactions. PLoS One. 2012; 7: e30766. doi: 10. 1371/journal. pone. 0030766.
-
(2012)
PLoS One
, vol.7
-
-
Muniategui, A.1
Nogales-Cadenas, R.2
Vázquez, M.3
-
58
-
-
84870612323
-
Context-specific microRNA analysis: Identification of functional microRNAs and their mRNA targets
-
Bossel Ben-Moshe N, Avraham R, Kedmi M, et al. Context-specific microRNA analysis: identification of functional microRNAs and their mRNA targets. Nucleic Acids Res. 2012; 40: 10614-27. doi: 10. 1093/nar/gks841.
-
(2012)
Nucleic Acids Res
, vol.40
, pp. 10614-10627
-
-
Bossel Ben-Moshe, N.1
Avraham, R.2
Kedmi, M.3
-
59
-
-
50849141708
-
mirWIP: MicroRNA target prediction based on microRNA-containing ribonucleoprotein-enriched transcripts
-
Hammell M, Long D, Zhang L, et al. mirWIP: microRNA target prediction based on microRNA-containing ribonucleoprotein-enriched transcripts. Nat Methods. 2008; 5: 813-9. doi: 10. 1038/nmeth. 1247.
-
(2008)
Nat Methods
, vol.5
, pp. 813-819
-
-
Hammell, M.1
Long, D.2
Zhang, L.3
-
60
-
-
84881534055
-
CLIP-based prediction of mammalian microRNA binding sites
-
Liu C, Mallick B, Long D, et al. CLIP-based prediction of mammalian microRNA binding sites. Nucleic Acids Res. 2013; 41: e138. doi: 10. 1093/nar/gkt435.
-
(2013)
Nucleic Acids Res
, vol.41
-
-
Liu, C.1
Mallick, B.2
Long, D.3
-
61
-
-
84920574625
-
A computational approach for identifying microRNAtarget interactions using high-throughput CLIP and PAR-CLIP sequencing
-
Chou C-H, Lin F-M, Chou M-T, et al. A computational approach for identifying microRNAtarget interactions using high-throughput CLIP and PAR-CLIP sequencing. BMC Genomics. 2013; 14: S2. doi: 10. 1186/1471-2164-14-S1-S2.
-
(2013)
BMC Genomics
, vol.14
-
-
Chou, C.-H.1
Lin, F.-M.2
Chou, M.-T.3
-
62
-
-
84891796290
-
miRTarBase update 2014: An information resource for experimentally validated miRNA-target interactions
-
Hsu S-D, Tseng Y-T, Shrestha S, et al. miRTarBase update 2014: an information resource for experimentally validated miRNA-target interactions. Nucleic Acids Res. 2014; 42: D78-85. doi: 10. 1093/nar/gkt1266.
-
(2014)
Nucleic Acids Res
, vol.42
, pp. 78-85
-
-
Hsu, S.-D.1
Tseng, Y.-T.2
Shrestha, S.3
-
63
-
-
84861963461
-
doRiNA: A database of RNA interactions in posttranscriptional regulation
-
Anders G, Mackowiak SD, Jens M, et al. doRiNA: a database of RNA interactions in posttranscriptional regulation. Nucleic Acids Res. 2011; 40: D180-6. doi: 10. 1093/nar/gkr1007.
-
(2011)
Nucleic Acids Res
, vol.40
, pp. 180-186
-
-
Anders, G.1
Mackowiak, S.D.2
Jens, M.3
-
64
-
-
78651307694
-
starBase: A database for exploring microRNA-mRNA interaction maps from Argonaute CLIP-Seq and Degradome-Seq data
-
Yang J-H, Li J-H, Shao P, et al. starBase: a database for exploring microRNA-mRNA interaction maps from Argonaute CLIP-Seq and Degradome-Seq data. Nucleic Acids Res. 2010; 39: D202-9. doi: 10. 1093/nar/gkq1056.
-
(2010)
Nucleic Acids Res
, vol.39
, pp. 202-209
-
-
Yang, J.-H.1
Li, J.-H.2
Shao, P.3
-
65
-
-
84891818924
-
starBase v2. 0: Decoding miRNA-ceRNA, miRNA-ncRNA and protein-RNA interaction networks from large-scale CLIP-Seq data
-
Li J-H, Liu S, Zhou H, et al. starBase v2. 0: decoding miRNA-ceRNA, miRNA-ncRNA and protein-RNA interaction networks from large-scale CLIP-Seq data. Nucleic Acids Res. 2013; 42: D92-7. doi: 10. 1093/nar/gkt1248.
-
(2013)
Nucleic Acids Res
, vol.42
, pp. 92-97
-
-
Li, J.-H.1
Liu, S.2
Zhou, H.3
-
66
-
-
79961170994
-
A ceRNA hypothesis: The Rosetta Stone of a hidden RNA language?
-
Salmena L, Poliseno L, Tay Y, et al. A ceRNA hypothesis: the Rosetta Stone of a hidden RNA language? Cell. 2011; 146: 353-8. doi: 10. 1016/j. cell. 2011. 07. 014.
-
(2011)
Cell
, vol.146
, pp. 353-358
-
-
Salmena, L.1
Poliseno, L.2
Tay, Y.3
-
67
-
-
77953957633
-
A coding-independent function of gene and pseudogene mRNAs regulates tumour biology
-
Poliseno L, Salmena L, Zhang J, et al. A coding-independent function of gene and pseudogene mRNAs regulates tumour biology. Nature. 2010; 465: 1033-8. doi: 10. 1038/nature09144.
-
(2010)
Nature
, vol.465
, pp. 1033-1038
-
-
Poliseno, L.1
Salmena, L.2
Zhang, J.3
-
68
-
-
84896836537
-
Competing endogenous RNA: The key to posttranscriptional regulation
-
Sen R, Ghosal S, Das S, et al. Competing endogenous RNA: the key to posttranscriptional regulation. Sci World J. 2014; 2014: 1-6. doi: 10. 1155/2014/896206.
-
(2014)
Sci World J
, vol.2014
, pp. 1-6
-
-
Sen, R.1
Ghosal, S.2
Das, S.3
-
69
-
-
84941087952
-
DIANA-TarBase v7. 0: Indexing more than half a million experimentally supported miRNA: MRNA interactions
-
Vlachos IS, Paraskevopoulou MD, Karagkouni D, et al. DIANA-TarBase v7. 0: indexing more than half a million experimentally supported miRNA: mRNA interactions. Nucleic Acids Res. 2015; 43: D153-9. doi: 10. 1093/nar/gku1215.
-
(2015)
Nucleic Acids Res
, vol.43
, pp. 153-159
-
-
Vlachos, I.S.1
Paraskevopoulou, M.D.2
Karagkouni, D.3
-
70
-
-
58149186499
-
miRecords: An integrated resource for microRNA-target interactions
-
Xiao F, Zuo Z, Cai G, et al. miRecords: an integrated resource for microRNA-target interactions. Nucleic Acids Res. 2009; 37: D105-10. doi: 10. 1093/nar/gkn851.
-
(2009)
Nucleic Acids Res
, vol.37
, pp. 105-110
-
-
Xiao, F.1
Zuo, Z.2
Cai, G.3
-
71
-
-
79952146521
-
NAViGaTing the micronome-using multiple microRNA prediction databases to identify signalling pathway-associated microRNAs
-
Shirdel EA, Xie W, Mak TW, Jurisica I. NAViGaTing the micronome-using multiple microRNA prediction databases to identify signalling pathway-associated microRNAs. PLoS One. 2011; 6: e17429. doi: 10. 1371/journal. pone. 0017429.
-
(2011)
PLoS One
, vol.6
-
-
Shirdel, E.A.1
Xie, W.2
Mak, T.W.3
Jurisica, I.4
-
72
-
-
84908092028
-
MiRo: A miRNA knowledge base
-
Lagana A, Forte S, Giudice A, et al. MiRo: a miRNA knowledge base. Database. 2009; 2009: bap008. doi: 10. 1093/database/bap008.
-
(2009)
Database
, vol.2009
-
-
Lagana, A.1
Forte, S.2
Giudice, A.3
-
73
-
-
84876519505
-
miRGator v3. 0: A microRNA portal for deep sequencing, expression profiling and mRNA targeting
-
Cho S, Jang I, Jun Y, et al. miRGator v3. 0: a microRNA portal for deep sequencing, expression profiling and mRNA targeting. Nucleic Acids Res. 2012; 41: D252-7. doi: 10. 1093/nar/gks1168.
-
(2012)
Nucleic Acids Res
, vol.41
, pp. 252-257
-
-
Cho, S.1
Jang, I.2
Jun, Y.3
-
74
-
-
79959805164
-
MiRWalk-database: Prediction of possible miRNA binding sites by "walking" the genes of three genomes
-
Dweep H, Sticht C, Pandey P, Gretz N. MiRWalk-database: prediction of possible miRNA binding sites by "walking" the genes of three genomes. J Biomed Inform. 2011; 44: 839-47. doi: 10. 1016/j. jbi. 2011. 05. 002.
-
(2011)
J Biomed Inform
, vol.44
, pp. 839-847
-
-
Dweep, H.1
Sticht, C.2
Pandey, P.3
Gretz, N.4
-
75
-
-
84901952075
-
Genome-wide survey of tissue-specific microRNA and transcription factor regulatory networks in 12 tissues
-
Guo Z, Maki M, Ding R, et al. Genome-wide survey of tissue-specific microRNA and transcription factor regulatory networks in 12 tissues. Sci Rep. 2014; 4: 1-9. doi: 10. 1038/srep05150.
-
(2014)
Sci Rep
, vol.4
, pp. 1-9
-
-
Guo, Z.1
Maki, M.2
Ding, R.3
-
76
-
-
84930275123
-
Comprehensive overview and assessment of computational prediction of microRNA targets in animals
-
Fan X, Kurgan L. Comprehensive overview and assessment of computational prediction of microRNA targets in animals. Brief Bioinformatics. 2014: bbu044. doi: 10. 1093/bib/bbu044.
-
(2014)
Brief Bioinformatics
-
-
Fan, X.1
Kurgan, L.2
-
77
-
-
84883581963
-
ComiR: Combinatorial microRNA target prediction tool
-
Coronnello C, Benos PV. ComiR: combinatorial microRNA target prediction tool. Nucleic Acids Res. 2013; 41: W159-64. doi: 10. 1093/nar/gkt379.
-
(2013)
Nucleic Acids Res
, vol.41
, pp. 159-164
-
-
Coronnello, C.1
Benos, P.V.2
-
78
-
-
84872023255
-
Novel modeling of combinatorial miRNA targeting identifies SNP with potential role in bone density
-
Coronnello C, Hartmaier R, Arora A, et al. Novel modeling of combinatorial miRNA targeting identifies SNP with potential role in bone density. PLoS Comput Biol. 2012; 8: e1002830. doi: 10. 1371/journal. pcbi. 1002830.
-
(2012)
PLoS Comput Biol
, vol.8
-
-
Coronnello, C.1
Hartmaier, R.2
Arora, A.3
-
79
-
-
84883579190
-
DIANA-microT web server v5. 0: Service integration into miRNA functional analysis workflows
-
Paraskevopoulou MD, Georgakilas G, Kostoulas N, et al. DIANA-microT web server v5. 0: service integration into miRNA functional analysis workflows. Nucleic Acids Res. 2013; 41: W169-73. doi: 10. 1093/nar/gkt393.
-
(2013)
Nucleic Acids Res
, vol.41
, pp. 169-173
-
-
Paraskevopoulou, M.D.1
Georgakilas, G.2
Kostoulas, N.3
-
80
-
-
34547894270
-
Inference of miRNA targets using evolutionary conservation and pathway analysis
-
Gaidatzis D, van Nimwegen E, Hausser J, Zavolan M. Inference of miRNA targets using evolutionary conservation and pathway analysis. BMC Bioinformatics. 2007; 8: 248. doi: 10. 1186/1471-2105-8-69.
-
(2007)
BMC Bioinformatics
, vol.8
, pp. 248
-
-
Gaidatzis, D.1
van Nimwegen, E.2
Hausser, J.3
Zavolan, M.4
-
82
-
-
78149459713
-
ExprTarget: An integrative approach to predicting human microRNA targets
-
Gamazon ER, Im H-K, Duan S, et al. ExprTarget: an integrative approach to predicting human microRNA targets. PLoS One. 2010; 5: e13534-8. doi: 10. 1371/journal. pone. 0013534.
-
(2010)
PLoS One
, vol.5
, pp. 13534-13538
-
-
Gamazon, E.R.1
Im, H.-K.2
Duan, S.3
-
83
-
-
45849107663
-
The effect of central loops in miRNA: MRE duplexes on the efficiency of miRNA-mediated gene regulation
-
Ye W, Lv Q, Wong C-KA, et al. The effect of central loops in miRNA: MRE duplexes on the efficiency of miRNA-mediated gene regulation. PLoS One. 2008; 3: e1719. doi: 10. 1371/journal. pone. 0001719.
-
(2008)
PLoS One
, vol.3
-
-
Ye, W.1
Lv, Q.2
Wong, C.-K.A.3
-
84
-
-
23144449159
-
MicroInspector: A web tool for detection of miRNA binding sites in an RNA sequence
-
Rusinov V, Baev V, Minkov IN, Tabler M. MicroInspector: a web tool for detection of miRNA binding sites in an RNA sequence. Nucleic Acids Res. 2005; 33: W696-700. doi: 10. 1093/nar/gki364.
-
(2005)
Nucleic Acids Res
, vol.33
, pp. 696-700
-
-
Rusinov, V.1
Baev, V.2
Minkov, I.N.3
Tabler, M.4
-
85
-
-
33947424813
-
MicroTar: Predicting microRNA targets from RNA duplexes
-
Thadani R, Tammi MT. MicroTar: predicting microRNA targets from RNA duplexes. BMC Bioinformatics. 2006; 7: S20-9. doi: 10. 1186/1471-2105-7-S5-S20.
-
(2006)
BMC Bioinformatics
, vol.7
, pp. 20-29
-
-
Thadani, R.1
Tammi, M.T.2
-
86
-
-
84865138690
-
miRcode: A map of putative microRNA target sites in the long non-coding transcriptome
-
Jeggari A, Marks DS, Larsson E. miRcode: a map of putative microRNA target sites in the long non-coding transcriptome. Bioinformatics. 2012; 28: 2062-3. doi: 10. 1093/bioinformatics/bts344.
-
(2012)
Bioinformatics
, vol.28
, pp. 2062-2063
-
-
Jeggari, A.1
Marks, D.S.2
Larsson, E.3
-
87
-
-
38849145861
-
Prediction of both conserved and nonconserved microRNA targets in animals
-
Wang X, El Naqa IM. Prediction of both conserved and nonconserved microRNA targets in animals. Bioinformatics. 2008; 24: 325-32. doi: 10. 1093/bioinformatics/btm595.
-
(2008)
Bioinformatics
, vol.24
, pp. 325-332
-
-
Wang, X.1
El Naqa, I.M.2
-
88
-
-
80052842349
-
MultiMiTar: A novel multi objective optimization based miRNAtarget prediction method
-
Mitra R, Bandyopadhyay S. MultiMiTar: a novel multi objective optimization based miRNAtarget prediction method. PLoS One. 2011; 6, e24583. doi: 10. 1371/journal. pone. 0024583. s012.
-
(2011)
PLoS One
, vol.6
-
-
Mitra, R.1
Bandyopadhyay, S.2
-
89
-
-
78651329275
-
Efficient use of accessibility in microRNA target prediction
-
Marin RM, Vanicek J. Efficient use of accessibility in microRNA target prediction. Nucleic Acids Res. 2011; 39: 19-29. doi: 10. 1093/nar/gkq768.
-
(2011)
Nucleic Acids Res
, vol.39
, pp. 19-29
-
-
Marin, R.M.1
Vanicek, J.2
-
90
-
-
84857570339
-
Optimal use of conservation and accessibility filters in microRNA target prediction
-
Marín RM, Vaníček J. Optimal use of conservation and accessibility filters in microRNA target prediction. PLoS One. 2012; 7, e32208. doi: 10. 1371/journal. pone. 0032208.
-
(2012)
PLoS One
, vol.7
-
-
Marín, R.M.1
Vaníček, J.2
-
92
-
-
78651271681
-
RepTar: A database of predicted cellular targets of host and viral miRNAs
-
Elefant N, Berger A, Shein H, et al. RepTar: a database of predicted cellular targets of host and viral miRNAs. Nucleic Acids Res. 2011; 39: D188-94. doi: 10. 1093/nar/gkq1233.
-
(2011)
Nucleic Acids Res
, vol.39
, pp. 188-194
-
-
Elefant, N.1
Berger, A.2
Shein, H.3
-
93
-
-
33748587841
-
A pattern-based method for the identification of microRNA binding sites and their corresponding heteroduplexes
-
Miranda KC, Huynh T, Tay Y, et al. A pattern-based method for the identification of microRNA binding sites and their corresponding heteroduplexes. Cell. 2006; 126: 1203-17. doi: 10. 1016/j. cell. 2006. 07. 031.
-
(2006)
Cell
, vol.126
, pp. 1203-1217
-
-
Miranda, K.C.1
Huynh, T.2
Tay, Y.3
-
94
-
-
77956846500
-
Improving performance of mammalian microRNA target prediction
-
Liu H, Yue D, Chen Y, et al. Improving performance of mammalian microRNA target prediction. BMC Bioinformatics. 2010; 11: 476. doi: 10. 1186/1471-2105-11-476.
-
(2010)
BMC Bioinformatics
, vol.11
, pp. 476
-
-
Liu, H.1
Yue, D.2
Chen, Y.3
-
95
-
-
70350000602
-
TargetMiner: MicroRNA target prediction with systematic identification of tissue-specific negative examples
-
Bandyopadhyay S, Mitra R. TargetMiner: microRNA target prediction with systematic identification of tissue-specific negative examples. Bioinformatics. 2009; 25: 2625-31. doi: 10. 1093/bioinformatics/btp503.
-
(2009)
Bioinformatics
, vol.25
, pp. 2625-2631
-
-
Bandyopadhyay, S.1
Mitra, R.2
-
96
-
-
77952671774
-
TargetSpy: A supervised machine learning approach for microRNA target prediction
-
Sturm M, Hackenberg M, Langenberger D, Frishman D. TargetSpy: a supervised machine learning approach for microRNA target prediction. BMC Bioinformatics. 2010; 11: 292. doi: 10. 1186/1471-2105-11-292.
-
(2010)
BMC Bioinformatics
, vol.11
, pp. 292
-
-
Sturm, M.1
Hackenberg, M.2
Langenberger, D.3
Frishman, D.4
|