-
1
-
-
84861479227
-
Software measurement data reduction using ensemble techniques
-
Wang H., Khoshgoftaar T.M., Napolitano A. Software measurement data reduction using ensemble techniques. Neurocomputing 2012, 92:124-132.
-
(2012)
Neurocomputing
, vol.92
, pp. 124-132
-
-
Wang, H.1
Khoshgoftaar, T.M.2
Napolitano, A.3
-
2
-
-
80655146441
-
-
IEEE 16th Conference on Emerging Technologies Factory Automation (ETFA 2011)
-
S. Soares, R. Araújo, P. Sousa, F. Souza, Design and application of soft sensor using ensemble methods, in: Proceedings of 2011 IEEE 16th Conference on Emerging Technologies Factory Automation (ETFA 2011), 2011, pp. 1-8.
-
(2011)
Design and application of soft sensor using ensemble methods, in: Proceedings of 2011
, pp. 1-8
-
-
Soares, S.1
Araújo, R.2
Sousa, P.3
Souza, F.4
-
3
-
-
79954599740
-
Local learning-based adaptive soft sensor for catalyst activation prediction
-
Kadlec P., Gabrys B. Local learning-based adaptive soft sensor for catalyst activation prediction. AIChE J. 2011, 57(5):1288-1301.
-
(2011)
AIChE J.
, vol.57
, Issue.5
, pp. 1288-1301
-
-
Kadlec, P.1
Gabrys, B.2
-
5
-
-
80053403826
-
-
Lecture Notes in Computer Science, vol. 1857, Springer-Verlag, Berlin, Heidelberg
-
T. G. Dietterich, Ensemble methods in machine learning, in: J. Kittler, F. Roli (Eds.), Proceedings of the First International Workshop on (MCS 2000) Multiple Classifier Systems, Lecture Notes in Computer Science, vol. 1857, Springer-Verlag, Berlin, Heidelberg, 2000, pp. 1-15.
-
(2000)
Ensemble methods in machine learning, in: J. Kittler, F. Roli (Eds.), Proceedings of the First International Workshop on (MCS 2000) Multiple Classifier Systems
, pp. 1-15
-
-
Dietterich, T.G.1
-
6
-
-
10444221886
-
Diversity creation methods. a survey and categorisation
-
Brown G., Wyatt J., Harris R., Yao X. Diversity creation methods. a survey and categorisation. Inf. Fusion 2005, 6(1):5-20.
-
(2005)
Inf. Fusion
, vol.6
, Issue.1
, pp. 5-20
-
-
Brown, G.1
Wyatt, J.2
Harris, R.3
Yao, X.4
-
7
-
-
0034315099
-
Evolutionary ensembles with negative correlation learning
-
Liu Y., Yao X., Higuchi T. Evolutionary ensembles with negative correlation learning. IEEE Trans. Evol. Comput. 2000, 4(4):380-387.
-
(2000)
IEEE Trans. Evol. Comput.
, vol.4
, Issue.4
, pp. 380-387
-
-
Liu, Y.1
Yao, X.2
Higuchi, T.3
-
8
-
-
78649938427
-
On the evolutionary design of heterogeneous bagging models
-
Coelho A.L.V., Nascimento D.S.C. On the evolutionary design of heterogeneous bagging models. Neurocomputing 2010, 73(16-18):3319-3322.
-
(2010)
Neurocomputing
, vol.73
, Issue.16-18
, pp. 3319-3322
-
-
Coelho, A.L.V.1
Nascimento, D.S.C.2
-
9
-
-
84862796962
-
Margin distribution based bagging pruning
-
Xie Z., Xu Y., Hu Q., Zhu P. Margin distribution based bagging pruning. Neurocomputing 2012, 85(May (15)):11-19.
-
(2012)
Neurocomputing
, vol.85
, Issue.15 MAY
, pp. 11-19
-
-
Xie, Z.1
Xu, Y.2
Hu, Q.3
Zhu, P.4
-
10
-
-
61849145792
-
Neural network ensemble with probabilistic fusion and its application to gait recognition
-
Lee H., Hong S., Kim E. Neural network ensemble with probabilistic fusion and its application to gait recognition. Neurocomputing 2009, 72(7-9):1557-1564.
-
(2009)
Neurocomputing
, vol.72
, Issue.7-9
, pp. 1557-1564
-
-
Lee, H.1
Hong, S.2
Kim, E.3
-
11
-
-
84884161251
-
Ensemble learning
-
Springer, C. Zhang, Y. Ma (Eds.)
-
Polikar R. Ensemble learning. Ensemble Machine Learning 2012, 1-34. Springer. C. Zhang, Y. Ma (Eds.).
-
(2012)
Ensemble Machine Learning
, pp. 1-34
-
-
Polikar, R.1
-
12
-
-
84875964402
-
-
Neurocomputing
-
M.D. Redel-Macías, F. Fernández-Navarro, P.A. Gutiérrez, A.J. Cubero-Atienza, C. Hervás-Martínez, Ensembles of evolutionary product unit or RBF neural networks for the identification of sound for pass-by noise test in vehicles, Neurocomputing 109 (0) (2013) 56-65, http://dx.doi.org/10.1016/j.neucom.2012.03.022.
-
(2013)
Ensembles of evolutionary product unit or RBF neural networks for the identification of sound for pass-by noise test in vehicles
, vol.109
, pp. 56-65
-
-
Redel-Macías, M.D.1
Fernández-Navarro, F.2
Gutiérrez, P.A.3
Cubero-Atienza, A.J.4
Hervás-Martínez, C.5
-
13
-
-
0030211964
-
Bagging predictors
-
Breiman L. Bagging predictors. Mach. Learn. 1996, 24(2):123-140.
-
(1996)
Mach. Learn.
, vol.24
, Issue.2
, pp. 123-140
-
-
Breiman, L.1
-
15
-
-
84870252407
-
Evolutionary extreme learning machine ensembles with size control
-
Wang D., Alhamdoosh M. Evolutionary extreme learning machine ensembles with size control. Neurocomputing 2013, 102:98-110.
-
(2013)
Neurocomputing
, vol.102
, pp. 98-110
-
-
Wang, D.1
Alhamdoosh, M.2
-
16
-
-
14344255621
-
-
Proceedings of the Twenty-First International Conference on Machine Learning (ICML 2004), ACM, Banff, Alberta, Canada
-
R. Caruana, A. Niculescu-Mizil, G. Crew, A. Ksikes, Ensemble selection from libraries of models, in: Proceedings of the Twenty-First International Conference on Machine Learning (ICML 2004), ACM, Banff, Alberta, Canada, 2004, pp. 18-25.
-
(2004)
Ensemble selection from libraries of models
, pp. 18-25
-
-
Caruana, R.1
Niculescu-Mizil, A.2
Crew, G.3
Ksikes, A.4
-
18
-
-
33749247099
-
-
Conference on Machine Learning (ICML 2006), ACM, Pittsburgh, PA
-
G. Martínez-Muñoz, A. Suárez, Pruning in ordered bagging ensembles, in: Proceedings of the 23rd International Conference on Machine Learning (ICML 2006), ACM, Pittsburgh, PA, 2006, pp. 609-616.
-
(2006)
Pruning in ordered bagging ensembles, in: Proceedings of the 23rd International
, pp. 609-616
-
-
Martínez-Muñoz, G.1
Suárez, A.2
-
19
-
-
79951681587
-
Learning ensembles of neural networks by means of a Bayesian artificial immune system
-
Castro P.A.D., Zuben F.J.V. Learning ensembles of neural networks by means of a Bayesian artificial immune system. IEEE Trans. Neural Networks 2011, 22(2):304-316.
-
(2011)
IEEE Trans. Neural Networks
, vol.22
, Issue.2
, pp. 304-316
-
-
Castro, P.A.D.1
Zuben, F.J.V.2
-
20
-
-
40149107260
-
Classifier ensemble selection using hybrid genetic algorithms
-
Kim Y.-W., Oh I.-S. Classifier ensemble selection using hybrid genetic algorithms. Pattern Recognition Lett. 2008, 29(6):796-802.
-
(2008)
Pattern Recognition Lett.
, vol.29
, Issue.6
, pp. 796-802
-
-
Kim, Y.-W.1
Oh, I.-S.2
-
21
-
-
0036567392
-
Ensembling neural networks. many could be better than all
-
code available at:
-
Zhou Z.-H., Wu J., Tang W. Ensembling neural networks. many could be better than all. Artif. Intell. 2002, 137(1-2):239-263. code available at: http://lamda.nju.edu.cn/files/Gasen.zip
-
(2002)
Artif. Intell.
, vol.137
, Issue.1-2
, pp. 239-263
-
-
Zhou, Z.-H.1
Wu, J.2
Tang, W.3
-
22
-
-
30344473315
-
Genetic algorithm optimized neural networks ensemble for estimation of mefenamic acid and paracetamol in tablets
-
Dondeti S., Kannan K., Manavalan R. Genetic algorithm optimized neural networks ensemble for estimation of mefenamic acid and paracetamol in tablets. Acta Chim. Slov. 2005, 52(4):440-449.
-
(2005)
Acta Chim. Slov.
, vol.52
, Issue.4
, pp. 440-449
-
-
Dondeti, S.1
Kannan, K.2
Manavalan, R.3
-
23
-
-
33845291177
-
Trade-off between diversity and accuracy in ensemble generation
-
Springer, Berlin, Heidelberg
-
Chandra A., Chen H., Yao X. Trade-off between diversity and accuracy in ensemble generation. Multi-Objective Machine Learning, Studies in Computational Intelligence 2006, vol. 16:429-464. Springer, Berlin, Heidelberg.
-
(2006)
Multi-Objective Machine Learning, Studies in Computational Intelligence
, vol.16
, pp. 429-464
-
-
Chandra, A.1
Chen, H.2
Yao, X.3
-
24
-
-
33750682003
-
Bootstrapped artificial neural networks for synthetic flow generation with a small data sample
-
Jia Y., Culver T.B. Bootstrapped artificial neural networks for synthetic flow generation with a small data sample. J. Hydrol. 2006, 331(3-4):580-590.
-
(2006)
J. Hydrol.
, vol.331
, Issue.3-4
, pp. 580-590
-
-
Jia, Y.1
Culver, T.B.2
-
25
-
-
84898416245
-
-
Boosted regression active shape models, in: Proceedings of British Machine, 1-79.10 Vision Conference, BMVA Press
-
D. Cristinacce, T.F. Cootes, Boosted regression active shape models, in: Proceedings of British Machine Vision Conference, BMVA Press, 2007, pp. 79.1-79.10.
-
(2007)
, pp. 79
-
-
Cristinacce, D.1
Cootes, T.F.2
-
26
-
-
84863737281
-
-
European Signal Processing Conference, Poznan, Poland
-
M. Ries, O. Nemethova, M. Rupp, Performance evaluation of mobile video quality estimators, in: Proceedings of the 15th European Signal Processing Conference, Poznan, Poland, 2007, pp. 159-163.
-
(2007)
Performance evaluation of mobile video quality estimators, in: Proceedings of the 15th
, pp. 159-163
-
-
Ries, M.1
Nemethova, O.2
Rupp, M.3
-
27
-
-
67949083521
-
Comparison of soft-sensor design methods for industrial plants using small data sets
-
Fortuna L., Graziani S., Xibilia M.G. Comparison of soft-sensor design methods for industrial plants using small data sets. IEEE Trans. Instrum. Meas. 2009, 58(8):2444-2451.
-
(2009)
IEEE Trans. Instrum. Meas.
, vol.58
, Issue.8
, pp. 2444-2451
-
-
Fortuna, L.1
Graziani, S.2
Xibilia, M.G.3
-
28
-
-
84864678900
-
Particle-swarm-optimization-based selective neural network ensemble and its application to modeling resonant frequency of microstrip antenna
-
InTech, N. Nasimuddin (Ed.)
-
Yu-Bo T., Zhi-Bin X. Particle-swarm-optimization-based selective neural network ensemble and its application to modeling resonant frequency of microstrip antenna. Microstrip Antennas 2011, 69-82. InTech. N. Nasimuddin (Ed.).
-
(2011)
Microstrip Antennas
, pp. 69-82
-
-
Yu-Bo, T.1
Zhi-Bin, X.2
-
29
-
-
84899928683
-
-
CRC Press, Boca Raton, (Ch. 26)
-
Re M., Valentini G. Ensemble Methods. A Review, Chapman & Hall/CRC Data Mining and Knowledge Discovery Series 2012, 563-582. CRC Press, Boca Raton, (Ch. 26).
-
(2012)
Ensemble Methods. A Review, Chapman & Hall/CRC Data Mining and Knowledge Discovery Series
, pp. 563-582
-
-
Re, M.1
Valentini, G.2
-
30
-
-
33745949322
-
-
IEEE International Joint Conference on Neural Networks (IJCNN 2005)
-
J. Torres-Sospedra, M. Fernández-Redondo, C. Hernández-Espinosa, A research on combination methods for ensembles of multilayer feedforward, in: Proceedings of IEEE International Joint Conference on Neural Networks (IJCNN 2005), vol. 2, 2005, pp. 1125-1130.
-
(2005)
A research on combination methods for ensembles of multilayer feedforward, in: Proceedings of
, vol.2
, pp. 1125-1130
-
-
Torres-Sospedra, J.1
Fernández-Redondo, M.2
Hernández-Espinosa, C.3
-
31
-
-
0004003832
-
-
MIT Press, Cambridge, MA, USA
-
Kasabov N.K. Foundations of Neural Networks, Fuzzy Systems, and Knowledge Engineering 1996, MIT Press, Cambridge, MA, USA. 1st Edition.
-
(1996)
Foundations of Neural Networks, Fuzzy Systems, and Knowledge Engineering
-
-
Kasabov, N.K.1
-
32
-
-
78650688834
-
A new architecture selection method based on tabu search for artificial neural networks
-
Aladag C.H. A new architecture selection method based on tabu search for artificial neural networks. Expert Systems with Applications 2011, 38(4):3287-3293.
-
(2011)
Expert Systems with Applications
, vol.38
, Issue.4
, pp. 3287-3293
-
-
Aladag, C.H.1
-
33
-
-
70349602258
-
-
Neural network architecture selection. Can function complexity help?
-
Gómez I., Franco L., Jerez J.M. Neural network architecture selection. Can function complexity help?. Neural Process. Lett. 2009, 30(2):71-87.
-
(2009)
Neural Process. Lett.
, vol.30
, Issue.2
, pp. 71-87
-
-
Gómez, I.1
Franco, L.2
Jerez, J.M.3
-
34
-
-
0029235322
-
-
Remote Sensing Symposium (IGARSS '95), Firenze, Italy
-
P.L. Rosin, F. Fierens, Improving neural network generalisation, in: Proceedings of International Geoscience and Remote Sensing Symposium (IGARSS '95), vol. 2, Firenze, Italy, 1995, pp. 1255-1257.
-
(1995)
Improving neural network generalisation, in: Proceedings of International Geoscience and
, vol.2
, pp. 1255-1257
-
-
Rosin, P.L.1
Fierens, F.2
-
36
-
-
0031171679
-
Optimal linear combinations of neural networks
-
Hashem S. Optimal linear combinations of neural networks. Neural Networks 1994, 10(4):599-614.
-
(1994)
Neural Networks
, vol.10
, Issue.4
, pp. 599-614
-
-
Hashem, S.1
-
38
-
-
0003593041
-
-
PWS Publishing, Boston, MA, USA
-
Hagan M.T., Demuth H.B., Beale M. Neural Network Design 1996, PWS Publishing, Boston, MA, USA.
-
(1996)
Neural Network Design
-
-
Hagan, M.T.1
Demuth, H.B.2
Beale, M.3
-
39
-
-
0025536870
-
-
Proceedings of International Joint Conference on Neural Networks (IJCNN 1990)
-
D. Nguyen, B. Widrow, Improving the learning speed of 2-layer neural networks by choosing initial values of the adaptive weights, in: Proceedings of International Joint Conference on Neural Networks (IJCNN 1990), vol. 3, 1990, pp. 21-26.
-
(1990)
Improving the learning speed of 2-layer neural networks by choosing initial values of the adaptive weights
, vol.3
, pp. 21-26
-
-
Nguyen, D.1
Widrow, B.2
-
41
-
-
33748611921
-
Ensemble based systems in decision making
-
Polikar R. Ensemble based systems in decision making. IEEE Circuits Syst. Mag. 2006, 6(3):21-45.
-
(2006)
IEEE Circuits Syst. Mag.
, vol.6
, Issue.3
, pp. 21-45
-
-
Polikar, R.1
-
44
-
-
84864680335
-
-
Evolutionary Computation Conference (GECCO 2012), ACM, Philadelphia, PA, USA
-
S. Soares, C. Antunes, R. Araújo, A genetic algorithm for designing neural network ensembles, in: Proceedings of Fourteenth International Conference on Genetic and Evolutionary Computation Conference (GECCO 2012), ACM, Philadelphia, PA, USA, 2012, pp. 681-688.
-
(2012)
A genetic algorithm for designing neural network ensembles, in: Proceedings of Fourteenth International Conference on Genetic and
, pp. 681-688
-
-
Soares, S.1
Antunes, C.2
Araújo, R.3
-
46
-
-
84884153815
-
-
Simulated Annealing, Theory with Applications, Global Optimization, Sciyo
-
R. Chibante (Ed.), Simulated Annealing, Theory with Applications, Global Optimization, Sciyo, 2010.
-
(2010)
-
-
Chibante, R.1
-
49
-
-
0002432565
-
Multivariate adaptive regression splines
-
Friedman J.H. Multivariate adaptive regression splines. Ann. Stat. 1991, 19(1):1-67.
-
(1991)
Ann. Stat.
, vol.19
, Issue.1
, pp. 1-67
-
-
Friedman, J.H.1
-
51
-
-
0000782329
-
-
Proceedings of Neural Information Processing Systems Conference (NIPS 2000)
-
R. Caruana, S. Lawrence, L. Giles, Overfitting in neural nets: backpropagation, conjugate gradient, and early stopping, in: Proceedings of Neural Information Processing Systems Conference (NIPS 2000), 2000, pp. 402-408.
-
(2000)
Overfitting in neural nets: backpropagation, conjugate gradient, and early stopping
, pp. 402-408
-
-
Caruana, R.1
Lawrence, S.2
Giles, L.3
-
52
-
-
30444441291
-
Rainfall-runoff models using artificial neural networks for ensemble streamflow prediction
-
Jeong D.-I., Kim Y.-O. Rainfall-runoff models using artificial neural networks for ensemble streamflow prediction. Hydrol. Process. 2005, 19(19):3819-3835.
-
(2005)
Hydrol. Process.
, vol.19
, Issue.19
, pp. 3819-3835
-
-
Jeong, D.-I.1
Kim, Y.-O.2
-
53
-
-
84884130193
-
-
A genetic algorithm for function optimization: A matlab implementation, Technical Report, North Carolina State University, Raleigh, NC, USA
-
C.R. Houck, J.A. Joines, M.G. Kay, A genetic algorithm for function optimization: A matlab implementation, Technical Report, North Carolina State University, Raleigh, NC, USA, 1996. http://www.daimi.au.dk/~pmn/Matlab/dochome/toolbox/GAOT/.
-
(1996)
-
-
Houck, C.R.1
Joines, J.A.2
Kay, M.G.3
-
54
-
-
0033485370
-
Ensemble learning via negative correlation
-
Liu Y., Yao X. Ensemble learning via negative correlation. Neural Networks 1999, 12(10):1399-1404.
-
(1999)
Neural Networks
, vol.12
, Issue.10
, pp. 1399-1404
-
-
Liu, Y.1
Yao, X.2
-
56
-
-
84884135416
-
-
University of Wollongong, Wollongong, Australia
-
A. Cordiner, Adaboost Toolbox-A Matlab Toolbox For Adaptive Boosting, Technical Report, School of Computer Science and Software Engineering, University of Wollongong, Wollongong, Australia, 2009. http://dl.dropbox.com/u/6830023/blog/adaboost_toolbox/AdaBoost.zip.
-
(2009)
Adaboost Toolbox-A Matlab Toolbox For Adaptive Boosting, Technical Report, School of Computer Science and Software Engineering
-
-
Cordiner, A.1
|