메뉴 건너뛰기




Volumn 121, Issue , 2013, Pages 498-511

Comparison of a genetic algorithm and simulated annealing for automatic neural network ensemble development

Author keywords

Ensemble learning; Genetic algorithm; Neural network; Simulated annealing

Indexed keywords

COMBINATION STRATEGIES; ENSEMBLE LEARNING; GENERALIZATION ABILITY; MACHINE LEARNING COMMUNITIES; NEGATIVE CORRELATION LEARNING; NEURAL NETWORK ENSEMBLES; OPTIMIZATION TECHNIQUES; PREDICTION PERFORMANCE;

EID: 84884161728     PISSN: 09252312     EISSN: 18728286     Source Type: Journal    
DOI: 10.1016/j.neucom.2013.05.024     Document Type: Article
Times cited : (61)

References (56)
  • 1
    • 84861479227 scopus 로고    scopus 로고
    • Software measurement data reduction using ensemble techniques
    • Wang H., Khoshgoftaar T.M., Napolitano A. Software measurement data reduction using ensemble techniques. Neurocomputing 2012, 92:124-132.
    • (2012) Neurocomputing , vol.92 , pp. 124-132
    • Wang, H.1    Khoshgoftaar, T.M.2    Napolitano, A.3
  • 3
    • 79954599740 scopus 로고    scopus 로고
    • Local learning-based adaptive soft sensor for catalyst activation prediction
    • Kadlec P., Gabrys B. Local learning-based adaptive soft sensor for catalyst activation prediction. AIChE J. 2011, 57(5):1288-1301.
    • (2011) AIChE J. , vol.57 , Issue.5 , pp. 1288-1301
    • Kadlec, P.1    Gabrys, B.2
  • 6
    • 10444221886 scopus 로고    scopus 로고
    • Diversity creation methods. a survey and categorisation
    • Brown G., Wyatt J., Harris R., Yao X. Diversity creation methods. a survey and categorisation. Inf. Fusion 2005, 6(1):5-20.
    • (2005) Inf. Fusion , vol.6 , Issue.1 , pp. 5-20
    • Brown, G.1    Wyatt, J.2    Harris, R.3    Yao, X.4
  • 7
    • 0034315099 scopus 로고    scopus 로고
    • Evolutionary ensembles with negative correlation learning
    • Liu Y., Yao X., Higuchi T. Evolutionary ensembles with negative correlation learning. IEEE Trans. Evol. Comput. 2000, 4(4):380-387.
    • (2000) IEEE Trans. Evol. Comput. , vol.4 , Issue.4 , pp. 380-387
    • Liu, Y.1    Yao, X.2    Higuchi, T.3
  • 8
    • 78649938427 scopus 로고    scopus 로고
    • On the evolutionary design of heterogeneous bagging models
    • Coelho A.L.V., Nascimento D.S.C. On the evolutionary design of heterogeneous bagging models. Neurocomputing 2010, 73(16-18):3319-3322.
    • (2010) Neurocomputing , vol.73 , Issue.16-18 , pp. 3319-3322
    • Coelho, A.L.V.1    Nascimento, D.S.C.2
  • 9
    • 84862796962 scopus 로고    scopus 로고
    • Margin distribution based bagging pruning
    • Xie Z., Xu Y., Hu Q., Zhu P. Margin distribution based bagging pruning. Neurocomputing 2012, 85(May (15)):11-19.
    • (2012) Neurocomputing , vol.85 , Issue.15 MAY , pp. 11-19
    • Xie, Z.1    Xu, Y.2    Hu, Q.3    Zhu, P.4
  • 10
    • 61849145792 scopus 로고    scopus 로고
    • Neural network ensemble with probabilistic fusion and its application to gait recognition
    • Lee H., Hong S., Kim E. Neural network ensemble with probabilistic fusion and its application to gait recognition. Neurocomputing 2009, 72(7-9):1557-1564.
    • (2009) Neurocomputing , vol.72 , Issue.7-9 , pp. 1557-1564
    • Lee, H.1    Hong, S.2    Kim, E.3
  • 11
    • 84884161251 scopus 로고    scopus 로고
    • Ensemble learning
    • Springer, C. Zhang, Y. Ma (Eds.)
    • Polikar R. Ensemble learning. Ensemble Machine Learning 2012, 1-34. Springer. C. Zhang, Y. Ma (Eds.).
    • (2012) Ensemble Machine Learning , pp. 1-34
    • Polikar, R.1
  • 13
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • Breiman L. Bagging predictors. Mach. Learn. 1996, 24(2):123-140.
    • (1996) Mach. Learn. , vol.24 , Issue.2 , pp. 123-140
    • Breiman, L.1
  • 14
    • 0001963082 scopus 로고    scopus 로고
    • A short introduction to boosting
    • Freund Y., Schapire R. A short introduction to boosting. Jpn. Soc. Artif. Intell. 1999, 14(5):771-780.
    • (1999) Jpn. Soc. Artif. Intell. , vol.14 , Issue.5 , pp. 771-780
    • Freund, Y.1    Schapire, R.2
  • 15
    • 84870252407 scopus 로고    scopus 로고
    • Evolutionary extreme learning machine ensembles with size control
    • Wang D., Alhamdoosh M. Evolutionary extreme learning machine ensembles with size control. Neurocomputing 2013, 102:98-110.
    • (2013) Neurocomputing , vol.102 , pp. 98-110
    • Wang, D.1    Alhamdoosh, M.2
  • 16
    • 14344255621 scopus 로고    scopus 로고
    • Proceedings of the Twenty-First International Conference on Machine Learning (ICML 2004), ACM, Banff, Alberta, Canada
    • R. Caruana, A. Niculescu-Mizil, G. Crew, A. Ksikes, Ensemble selection from libraries of models, in: Proceedings of the Twenty-First International Conference on Machine Learning (ICML 2004), ACM, Banff, Alberta, Canada, 2004, pp. 18-25.
    • (2004) Ensemble selection from libraries of models , pp. 18-25
    • Caruana, R.1    Niculescu-Mizil, A.2    Crew, G.3    Ksikes, A.4
  • 19
    • 79951681587 scopus 로고    scopus 로고
    • Learning ensembles of neural networks by means of a Bayesian artificial immune system
    • Castro P.A.D., Zuben F.J.V. Learning ensembles of neural networks by means of a Bayesian artificial immune system. IEEE Trans. Neural Networks 2011, 22(2):304-316.
    • (2011) IEEE Trans. Neural Networks , vol.22 , Issue.2 , pp. 304-316
    • Castro, P.A.D.1    Zuben, F.J.V.2
  • 20
    • 40149107260 scopus 로고    scopus 로고
    • Classifier ensemble selection using hybrid genetic algorithms
    • Kim Y.-W., Oh I.-S. Classifier ensemble selection using hybrid genetic algorithms. Pattern Recognition Lett. 2008, 29(6):796-802.
    • (2008) Pattern Recognition Lett. , vol.29 , Issue.6 , pp. 796-802
    • Kim, Y.-W.1    Oh, I.-S.2
  • 21
    • 0036567392 scopus 로고    scopus 로고
    • Ensembling neural networks. many could be better than all
    • code available at:
    • Zhou Z.-H., Wu J., Tang W. Ensembling neural networks. many could be better than all. Artif. Intell. 2002, 137(1-2):239-263. code available at: http://lamda.nju.edu.cn/files/Gasen.zip
    • (2002) Artif. Intell. , vol.137 , Issue.1-2 , pp. 239-263
    • Zhou, Z.-H.1    Wu, J.2    Tang, W.3
  • 22
    • 30344473315 scopus 로고    scopus 로고
    • Genetic algorithm optimized neural networks ensemble for estimation of mefenamic acid and paracetamol in tablets
    • Dondeti S., Kannan K., Manavalan R. Genetic algorithm optimized neural networks ensemble for estimation of mefenamic acid and paracetamol in tablets. Acta Chim. Slov. 2005, 52(4):440-449.
    • (2005) Acta Chim. Slov. , vol.52 , Issue.4 , pp. 440-449
    • Dondeti, S.1    Kannan, K.2    Manavalan, R.3
  • 24
    • 33750682003 scopus 로고    scopus 로고
    • Bootstrapped artificial neural networks for synthetic flow generation with a small data sample
    • Jia Y., Culver T.B. Bootstrapped artificial neural networks for synthetic flow generation with a small data sample. J. Hydrol. 2006, 331(3-4):580-590.
    • (2006) J. Hydrol. , vol.331 , Issue.3-4 , pp. 580-590
    • Jia, Y.1    Culver, T.B.2
  • 25
    • 84898416245 scopus 로고    scopus 로고
    • Boosted regression active shape models, in: Proceedings of British Machine, 1-79.10 Vision Conference, BMVA Press
    • D. Cristinacce, T.F. Cootes, Boosted regression active shape models, in: Proceedings of British Machine Vision Conference, BMVA Press, 2007, pp. 79.1-79.10.
    • (2007) , pp. 79
    • Cristinacce, D.1    Cootes, T.F.2
  • 27
    • 67949083521 scopus 로고    scopus 로고
    • Comparison of soft-sensor design methods for industrial plants using small data sets
    • Fortuna L., Graziani S., Xibilia M.G. Comparison of soft-sensor design methods for industrial plants using small data sets. IEEE Trans. Instrum. Meas. 2009, 58(8):2444-2451.
    • (2009) IEEE Trans. Instrum. Meas. , vol.58 , Issue.8 , pp. 2444-2451
    • Fortuna, L.1    Graziani, S.2    Xibilia, M.G.3
  • 28
    • 84864678900 scopus 로고    scopus 로고
    • Particle-swarm-optimization-based selective neural network ensemble and its application to modeling resonant frequency of microstrip antenna
    • InTech, N. Nasimuddin (Ed.)
    • Yu-Bo T., Zhi-Bin X. Particle-swarm-optimization-based selective neural network ensemble and its application to modeling resonant frequency of microstrip antenna. Microstrip Antennas 2011, 69-82. InTech. N. Nasimuddin (Ed.).
    • (2011) Microstrip Antennas , pp. 69-82
    • Yu-Bo, T.1    Zhi-Bin, X.2
  • 32
    • 78650688834 scopus 로고    scopus 로고
    • A new architecture selection method based on tabu search for artificial neural networks
    • Aladag C.H. A new architecture selection method based on tabu search for artificial neural networks. Expert Systems with Applications 2011, 38(4):3287-3293.
    • (2011) Expert Systems with Applications , vol.38 , Issue.4 , pp. 3287-3293
    • Aladag, C.H.1
  • 33
    • 70349602258 scopus 로고    scopus 로고
    • Neural network architecture selection. Can function complexity help?
    • Gómez I., Franco L., Jerez J.M. Neural network architecture selection. Can function complexity help?. Neural Process. Lett. 2009, 30(2):71-87.
    • (2009) Neural Process. Lett. , vol.30 , Issue.2 , pp. 71-87
    • Gómez, I.1    Franco, L.2    Jerez, J.M.3
  • 36
    • 0031171679 scopus 로고
    • Optimal linear combinations of neural networks
    • Hashem S. Optimal linear combinations of neural networks. Neural Networks 1994, 10(4):599-614.
    • (1994) Neural Networks , vol.10 , Issue.4 , pp. 599-614
    • Hashem, S.1
  • 41
    • 33748611921 scopus 로고    scopus 로고
    • Ensemble based systems in decision making
    • Polikar R. Ensemble based systems in decision making. IEEE Circuits Syst. Mag. 2006, 6(3):21-45.
    • (2006) IEEE Circuits Syst. Mag. , vol.6 , Issue.3 , pp. 21-45
    • Polikar, R.1
  • 46
    • 84884153815 scopus 로고    scopus 로고
    • Simulated Annealing, Theory with Applications, Global Optimization, Sciyo
    • R. Chibante (Ed.), Simulated Annealing, Theory with Applications, Global Optimization, Sciyo, 2010.
    • (2010)
    • Chibante, R.1
  • 49
    • 0002432565 scopus 로고
    • Multivariate adaptive regression splines
    • Friedman J.H. Multivariate adaptive regression splines. Ann. Stat. 1991, 19(1):1-67.
    • (1991) Ann. Stat. , vol.19 , Issue.1 , pp. 1-67
    • Friedman, J.H.1
  • 52
    • 30444441291 scopus 로고    scopus 로고
    • Rainfall-runoff models using artificial neural networks for ensemble streamflow prediction
    • Jeong D.-I., Kim Y.-O. Rainfall-runoff models using artificial neural networks for ensemble streamflow prediction. Hydrol. Process. 2005, 19(19):3819-3835.
    • (2005) Hydrol. Process. , vol.19 , Issue.19 , pp. 3819-3835
    • Jeong, D.-I.1    Kim, Y.-O.2
  • 53
    • 84884130193 scopus 로고    scopus 로고
    • A genetic algorithm for function optimization: A matlab implementation, Technical Report, North Carolina State University, Raleigh, NC, USA
    • C.R. Houck, J.A. Joines, M.G. Kay, A genetic algorithm for function optimization: A matlab implementation, Technical Report, North Carolina State University, Raleigh, NC, USA, 1996. http://www.daimi.au.dk/~pmn/Matlab/dochome/toolbox/GAOT/.
    • (1996)
    • Houck, C.R.1    Joines, J.A.2    Kay, M.G.3
  • 54
    • 0033485370 scopus 로고    scopus 로고
    • Ensemble learning via negative correlation
    • Liu Y., Yao X. Ensemble learning via negative correlation. Neural Networks 1999, 12(10):1399-1404.
    • (1999) Neural Networks , vol.12 , Issue.10 , pp. 1399-1404
    • Liu, Y.1    Yao, X.2
  • 55
    • 25444484657 scopus 로고    scopus 로고
    • Managing diversity in regression ensembles
    • Brown G., Wyatt J.L., Tiňo P. Managing diversity in regression ensembles. J. Mach. Learn. Res. 2005, 6:1621-1650.
    • (2005) J. Mach. Learn. Res. , vol.6 , pp. 1621-1650
    • Brown, G.1    Wyatt, J.L.2    Tiňo, P.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.