-
1
-
-
80655123026
-
Regularization learning of neural networks for generalization
-
Algorithmic Learning Theory, Springer-Verlag, Berlin/Heidelberg
-
S. Akaho. Regularization learning of neural networks for generalization. In Algorithmic Learning Theory, volume 743 of Lecture Notes in Computer Science, pages 99-110. Springer-Verlag, Berlin/Heidelberg, 1993.
-
(1993)
Lecture Notes in Computer Science
, vol.743
, pp. 99-110
-
-
Akaho, S.1
-
3
-
-
0029234404
-
Improving generalization by using genetic algorithms to determine the neural network size
-
March 7-9
-
G. Bebis and M. Georgwpoulos. Improving generalization by using genetic algorithms to determine the neural network size. In Southcon/95. Conference Record, pages 392-397, March 7-9 1995.
-
(1995)
Southcon/95. Conference Record
, pp. 392-397
-
-
Bebis, G.1
Georgwpoulos, M.2
-
4
-
-
0030211964
-
Bagging predictors
-
L. Breiman. Bagging predictors. Machine Learning, 24(2):123-140, August 1996. (Pubitemid 126724382)
-
(1996)
Machine Learning
, vol.24
, Issue.2
, pp. 123-140
-
-
Breiman, L.1
-
6
-
-
10444221886
-
Diversity creation methods: A survey and categorisation
-
G. Brown, J. Wyatt, R. Harris, and X. Yao. Diversity creation methods: A survey and categorisation. Information Fusion, 6(1):5-20, 2005.
-
(2005)
Information Fusion
, vol.6
, Issue.1
, pp. 5-20
-
-
Brown, G.1
Wyatt, J.2
Harris, R.3
Yao, X.4
-
7
-
-
77956130964
-
-
Technical Report CETC 2005-100 (TR), Canmet Energy Technology Centre, Varennes, Canada, June
-
M. Champagne, M. Amazouz, and R. Platon. The application of soft sensors in the pulp and paper and cement manufacturing sectors for process and energy performance improvement: Opportunity analysis and technology assessment. Technical Report CETC 2005-100 (TR), Canmet Energy Technology Centre, Varennes, Canada, June 2005.
-
(2005)
The Application of Soft Sensors in the Pulp and Paper and Cement Manufacturing Sectors for Process and Energy Performance Improvement: Opportunity Analysis and Technology Assessment
-
-
Champagne, M.1
Amazouz, M.2
Platon, R.3
-
8
-
-
33845291177
-
Trade-off between diversity and accuracy in ensemble generation
-
Y. Jin, editor, Multi-Objective Machine Learning, Springer Berlin / Heidelberg
-
A. Chandra, H. Chen, and X. Yao. Trade-off between diversity and accuracy in ensemble generation. In Y. Jin, editor, Multi-Objective Machine Learning, volume 16 of Studies in Computational Intelligence, pages 429-464. Springer Berlin / Heidelberg, 2006.
-
(2006)
Studies in Computational Intelligence
, vol.16
, pp. 429-464
-
-
Chandra, A.1
Chen, H.2
Yao, X.3
-
9
-
-
80053403826
-
Ensemble methods in machine learning
-
J. Kittler and F. Roli, editors, Multiple Classifier Systems, Proceedings of the First International Workshop on (MCS 2000), Springer-Verlag, Berlin/Heidelberg
-
T. G. Dietterich. Ensemble methods in machine learning. In J. Kittler and F. Roli, editors, Multiple Classifier Systems, Proceedings of the First International Workshop on (MCS 2000), volume 1857 of Lecture Notes in Computer Science, pages 1-15. Springer-Verlag, Berlin/Heidelberg, 2000.
-
(2000)
Lecture Notes in Computer Science
, vol.1857
, pp. 1-15
-
-
Dietterich, T.G.1
-
11
-
-
44349146289
-
-
Springer-Verlag New York, Inc., Secaucus, NJ, USA
-
L. Fortuna, S. Graziani, A. Rizzo, and M. G. Xibilia. Soft Sensors for Monitoring and Control of Industrial Processes. Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2007.
-
(2007)
Soft Sensors for Monitoring and Control of Industrial Processes
-
-
Fortuna, L.1
Graziani, S.2
Rizzo, A.3
Xibilia, M.G.4
-
12
-
-
67949083521
-
Comparison of soft-sensor design methods for industrial plants using small data sets
-
August
-
L. Fortuna, S. Graziani, and M. G. Xibilia. Comparison of soft-sensor design methods for industrial plants using small data sets. IEEE Transactions on Instrumentation and Measurement, 58(8):2444-2451, August 2009.
-
(2009)
IEEE Transactions on Instrumentation and Measurement
, vol.58
, Issue.8
, pp. 2444-2451
-
-
Fortuna, L.1
Graziani, S.2
Xibilia, M.G.3
-
14
-
-
79953832419
-
A reduced order soft sensor approach and its application to a continuous digester
-
In Press, Corrected Proof
-
H. J. Galicia, Q. P. He, and J. Wang. A reduced order soft sensor approach and its application to a continuous digester. Journal of Process Control, In Press, Corrected Proof, 2011.
-
(2011)
Journal of Process Control
-
-
Galicia, H.J.1
He, Q.P.2
Wang, J.3
-
15
-
-
0013230715
-
Noise Injection: Theoretical Prospects
-
Y. Grandvalet, S. Canu, and S. Boucheron. Noise injection: Theoretical prospects. Neural Computation, 9(5):1093-1108, July 1997. (Pubitemid 127462793)
-
(1997)
Neural Computation
, vol.9
, Issue.5
, pp. 1093-1108
-
-
Grandvalet, Y.1
Canu, S.2
Boucheron, S.3
-
16
-
-
56149125295
-
On-line estimation of key process variables based on kernel partial least squares in an industrial cokes wastewater treatment plant
-
January
-
S. HanWoo, C. O. Jeon, Y.-S. Yun, H. Choi, C.-S. Lee, and D. S. Lee. On-line estimation of key process variables based on kernel partial least squares in an industrial cokes wastewater treatment plant. Journal of Hazardous Materials, 161(1):538-544, January 2009.
-
(2009)
Journal of Hazardous Materials
, vol.161
, Issue.1
, pp. 538-544
-
-
HanWoo, S.1
Jeon, C.O.2
Yun, Y.-S.3
Choi, H.4
Lee, C.-S.5
Lee, D.S.6
-
17
-
-
70349658745
-
Noise injection for training artificial neural networks: A comparison with weight decay and early stopping
-
September
-
R. M. Z. Y. Jiang, L. L. Pesce, and K. Drukker. Noise injection for training artificial neural networks: A comparison with weight decay and early stopping. The International Journal of Medical Physics Research and Practice, 36(10):4810-4818, September 2009.
-
(2009)
The International Journal of Medical Physics Research and Practice
, vol.36
, Issue.10
, pp. 4810-4818
-
-
Jiang, R.M.Z.Y.1
Pesce, L.L.2
Drukker, K.3
-
19
-
-
67349089877
-
Data-driven soft sensors in the process industry
-
P. Kadlec, B. Gabrys, and S. Strandt. Data-driven soft sensors in the process industry. Computers & Chemical Engineering, 33(4):795-814, 2009.
-
(2009)
Computers & Chemical Engineering
, vol.33
, Issue.4
, pp. 795-814
-
-
Kadlec, P.1
Gabrys, B.2
Strandt, S.3
-
20
-
-
0000029122
-
A simple weight decay can improve generalization
-
J. Moody, S. Hanson, and R. Lippmann, editors, Morgan Kauffmann Publishers, San Mateo, CA, USA
-
A. Krogh and J. A. Hertz. A simple weight decay can improve generalization. In J. Moody, S. Hanson, and R. Lippmann, editors, Advances in Neural Information Processing Systems, volume 4, pages 950-957. Morgan Kauffmann Publishers, San Mateo, CA, USA, 1995.
-
(1995)
Advances in Neural Information Processing Systems
, vol.4
, pp. 950-957
-
-
Krogh, A.1
Hertz, J.A.2
-
21
-
-
71349085411
-
Model optimization of svm for a fermentation soft sensor
-
April
-
G. Liu, D. Zhou, H. Xu, and C. Mei. Model optimization of svm for a fermentation soft sensor. Expert Systems With Applications, 37(4):2708-2713, April 2010.
-
(2010)
Expert Systems with Applications
, vol.37
, Issue.4
, pp. 2708-2713
-
-
Liu, G.1
Zhou, D.2
Xu, H.3
Mei, C.4
-
23
-
-
33748611921
-
Ensemble based systems in decision making
-
R. Polikar. Ensemble based systems in decision making. IEEE Circuits and Systems Magazine, 6(3):21-45, 2006.
-
(2006)
IEEE Circuits and Systems Magazine
, vol.6
, Issue.3
, pp. 21-45
-
-
Polikar, R.1
-
24
-
-
0030374103
-
Bootstrapping with noise: An effective regularization technique
-
Y. Raviv and N. Intrator. Bootstrapping with noise: An effective regularization technique. Connection Science, 8(3):355-372, 1996.
-
(1996)
Connection Science
, vol.8
, Issue.3
, pp. 355-372
-
-
Raviv, Y.1
Intrator, N.2
-
25
-
-
0029727747
-
Generalization error of ensemble estimators
-
June
-
N. Ueda and R. Nakano. Generalization error of ensemble estimators. In Neural Networks, 1996., IEEE International Conference on, volume 1, pages 90-95, June 1996.
-
(1996)
Neural Networks, 1996., IEEE International Conference on
, vol.1
, pp. 90-95
-
-
Ueda, N.1
Nakano, R.2
-
26
-
-
76849103529
-
Data-driven soft sensor approach for quality prediction in a refining process
-
February
-
D. Wang, J. Liu, and R. Srinivasan. Data-driven soft sensor approach for quality prediction in a refining process. IEEE Transactions on Industrial Informatics, 6(1):11-17, February 2010.
-
(2010)
IEEE Transactions on Industrial Informatics
, vol.6
, Issue.1
, pp. 11-17
-
-
Wang, D.1
Liu, J.2
Srinivasan, R.3
-
28
-
-
34548619946
-
A neural network ensemble method with jittered training data for time series forecasting
-
December
-
G. P. Zhang. A neural network ensemble method with jittered training data for time series forecasting. Information Sciences, 177(23):5329-5346, December 2007.
-
(2007)
Information Sciences
, vol.177
, Issue.23
, pp. 5329-5346
-
-
Zhang, G.P.1
|