-
1
-
-
77950940282
-
fLDA: Matrix factorization through latent Dirichlet allocation
-
Agarwal, D. and Chen, B.-C. fLDA: Matrix factorization through latent Dirichlet allocation. In Proceedings of WSDM, pp. 91-100, 2010.
-
(2010)
Proceedings of WSDM
, pp. 91-100
-
-
Agarwal, D.1
Chen, B.-C.2
-
2
-
-
84916537550
-
Bayesian analysis of binary and polychotomous response data
-
Albert, J. H. and Chib, S. Bayesian analysis of binary and polychotomous response data. Journal of the American Statistical Association, 88(422):669-679, 1993.
-
(1993)
Journal of the American Statistical Association
, vol.88
, Issue.422
, pp. 669-679
-
-
Albert, J.H.1
Chib, S.2
-
4
-
-
24744435534
-
Kernel methods for predieting protein-protein interactions
-
Ben-Hur, A. and Noble, W. S. Kernel methods for predieting protein-protein interactions. Bioinformatics, 21 (Suppl. 1):i38-i46, 2005.
-
(2005)
Bioinformatics
, vol.21
, Issue.SUPPL. 1
-
-
Ben-Hur, A.1
Noble, W.S.2
-
5
-
-
0033800498
-
VolSurf: A new tool for the pharmacokinetic optimization of lead compounds
-
Cruciani, G., Pastor, M., and Cuba, W. VolSurf: A new tool for the pharmacokinetic optimization of lead compounds. European Journal of Pharmaceutical Sciences, 11(Suppl. 2):S29-S39, 2000.
-
(2000)
European Journal of Pharmaceutical Sciences
, vol.11
, Issue.SUPPL. 2
-
-
Cruciani, G.1
Pastor, M.2
Cuba, W.3
-
6
-
-
43349094032
-
Probabilistic multi-class multi-kernel learning: On protein fold recognition and remote homology detection
-
Damoulas, T. and Girolami, M. A. Probabilistic multi-class multi-kernel learning: On protein fold recognition and remote homology detection. Bioinformatics, 24(10): 1264-1270, 2008.
-
(2008)
Bioinformatics
, vol.24
, Issue.10
, pp. 1264-1270
-
-
Damoulas, T.1
Girolami, M.A.2
-
7
-
-
54249093364
-
Development and validation of AMANDA, a new algorithm for selecting highly relevant regions in Molecular Interaction Fields
-
Duran, A., Martinez, G. C., and Pastor, M. Development and validation of AMANDA, a new algorithm for selecting highly relevant regions in Molecular Interaction Fields. Journal of Chemical Information and Modeling, 48(9):1813-1823, 2008.
-
(2008)
Journal of Chemical Information and Modeling
, vol.48
, Issue.9
, pp. 1813-1823
-
-
Duran, A.1
Martinez, G.C.2
Pastor, M.3
-
8
-
-
76649137444
-
A kernel method for multi-labelled classification
-
Elisseeff, A. and Weston, J. A kernel method for multi-labelled classification. In Proceedings of NIPS, pp. 681-687, 2002.
-
(2002)
Proceedings of NIPS
, pp. 681-687
-
-
Elisseeff, A.1
Weston, J.2
-
9
-
-
31844435594
-
Hierarchic Bayesian models for kernel learning
-
Girolami, M. and Rogers, S. Hierarchic Bayesian models for kernel learning. In Proceedings of ICML, pp. 241-248, 2005.
-
(2005)
Proceedings of ICML
, pp. 241-248
-
-
Girolami, M.1
Rogers, S.2
-
10
-
-
84866459051
-
Predicting drug-target interactions from chemical and genomic kernels using Bayesian matrix factorization
-
Gonen, M. Predicting drug-target interactions from chemical and genomic kernels using Bayesian matrix factorization. Bioinformatics, 28(18):2304-2310, 2012a.
-
(2012)
Bioinformatics
, vol.28
, Issue.18
, pp. 2304-2310
-
-
Gonen, M.1
-
11
-
-
84867129730
-
Bayesian efficient multiple kernel learning
-
Gonen, M. Bayesian efficient multiple kernel learning. In Proceedings of ICML, pp. 1-8, 2012b.
-
(2012)
Proceedings of ICML
, pp. 1-8
-
-
Gonen, M.1
-
13
-
-
84861545549
-
Comprehensive data-driven analysis of the impact of chemoinformatic structure on the genome-wide biological response profiles of cancer cells to 1159 drugs
-
Khan, S. A., Faisal, A., Mpindi, J. P., Parkkinen, J. A., Kalliokoski, T., Poso, A., Kallioniemi, O. P., Wenner-berg, K., and Kaski, S. Comprehensive data-driven analysis of the impact of chemoinformatic structure on the genome-wide biological response profiles of cancer cells to 1159 drugs. BMC Bioinformatics, 13(112), 2012.
-
(2012)
BMC Bioinformatics
, vol.13
, Issue.112
-
-
Khan, S.A.1
Faisal, A.2
Mpindi, J.P.3
Parkkinen, J.A.4
Kalliokoski, T.5
Poso, A.6
Kallioniemi, O.P.7
Wenner-berg, K.8
Kaski, S.9
-
14
-
-
78049527893
-
Semi-supervised learning via Gaussian processes
-
Lawrence, N. D. and Jordan, M. I. Semi-supervised learning via Gaussian processes. In Proceedings of NIPS, pp. 753-760, 2005.
-
(2005)
Proceedings of NIPS
, pp. 753-760
-
-
Lawrence, N.D.1
Jordan, M.I.2
-
15
-
-
71149119166
-
Non-linear matrix factorization with Gaussian processes
-
Lawrence, N. D. and Urtasun, R. Non-linear matrix factorization with Gaussian processes. In Proceedings of ICML, pp. 601-608, 2009.
-
(2009)
Proceedings of ICML
, pp. 601-608
-
-
Lawrence, N.D.1
Urtasun, R.2
-
16
-
-
70349257904
-
SoRec: Social recommendation using probabilistic matrix factorization
-
Ma, H., Yang, H., Lyu, M. R., and King, I. SoRec: Social recommendation using probabilistic matrix factorization. In Proceedings of CIKM, pp. 931-940, 2008.
-
(2008)
Proceedings of CIKM
, pp. 931-940
-
-
Ma, H.1
Yang, H.2
Lyu, M.R.3
King, I.4
-
19
-
-
85161989354
-
Probabilistic matrix factorization
-
Salakhutdinov, R. and Mnih, A. Probabilistic matrix factorization. In Proceedings of NIPS, pp. 1257-1264, 2008a.
-
(2008)
Proceedings of NIPS
, pp. 1257-1264
-
-
Salakhutdinov, R.1
Mnih, A.2
-
20
-
-
56449131205
-
Bayesian probabilistic matrix factorization using Markov chain Monte Carlo
-
Salakhutdinov, R. and Mnih, A. Bayesian probabilistic matrix factorization using Markov chain Monte Carlo. In Proceedings of ICML, pp. 880-887, 2008b.
-
(2008)
Proceedings of ICML
, pp. 880-887
-
-
Salakhutdinov, R.1
Mnih, A.2
-
21
-
-
0003408420
-
-
MIT Press, Cambridge, MA
-
Scholkopf, B. and Smola, A. J. Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond. MIT Press, Cambridge, MA, 2002.
-
(2002)
Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond
-
-
Scholkopf, B.1
Smola, A.J.2
-
22
-
-
4444292685
-
-
MIT Press, Cam-bridge, MA
-
Scholkopf, B., Tsuda, K., and Vert, J.-P. (eds.). Kernel Methods in Computational Biology. MIT Press, Cam-bridge, MA, 2004.
-
(2004)
Kernel Methods in Computational Biology
-
-
Scholkopf, B.1
Tsuda, K.2
Vert, J.-P.3
-
23
-
-
79951750366
-
Generalized probabilistic matrix factorizations for collaborative filtering
-
Shan, H. and Banerjee, A. Generalized probabilistic matrix factorizations for collaborative filtering. In Proceedings of ICDM, pp. 1025-1030, 2010.
-
(2010)
Proceedings of ICDM
, pp. 1025-1030
-
-
Shan, H.1
Banerjee, A.2
-
25
-
-
78751693089
-
On multiple kernel learning with multiple labels
-
Tang, L., Chen, J., and Ye, J. On multiple kernel learning with multiple labels. In Proceedings of IJCAI, pp. 1255-1260, 2009.
-
(2009)
Proceedings of IJCAI
, pp. 1255-1260
-
-
Tang, L.1
Chen, J.2
Ye, J.3
-
26
-
-
80052666619
-
Collaborative topic modeling for recommending scientific articles
-
Wang, C. and Blei, D. M. Collaborative topic modeling for recommending scientific articles. In Proceedings of KDD, pp. 448-456, 2011.
-
(2011)
Proceedings of KDD
, pp. 448-456
-
-
Wang, C.1
Blei, D.M.2
-
27
-
-
84858775082
-
Supervised bipartite graph inference
-
Yamanishi, Y. Supervised bipartite graph inference. In Proceedings of NIPS, pp. 1841-1848, 2009.
-
(2009)
Proceedings of NIPS
, pp. 1841-1848
-
-
Yamanishi, Y.1
-
28
-
-
46249090791
-
Prediction of drug-target interaction networks from the integration of chemical and genomic spaces
-
Yamanishi, Y., Araki, M., Gutteridge, A., Honda, W., and Kaneisha, M. Prediction of drug-target interaction networks from the integration of chemical and genomic spaces. Bioinformatics, 24:i232-i240, 2008.
-
(2008)
Bioinformatics
, vol.24
-
-
Yamanishi, Y.1
Araki, M.2
Gutteridge, A.3
Honda, W.4
Kaneisha, M.5
-
29
-
-
77954230951
-
Drug-target interaction prediction from chemical, genomic and pharmacological data in an integrated framework
-
Yamanishi, Y., Kotera, M., Kanesiha, M., and Goto, S. Drug-target interaction prediction from chemical, genomic and pharmacological data in an integrated framework. Bioinformatics, 26:i246-i254, 2010.
-
(2010)
Bioinformatics
, vol.26
-
-
Yamanishi, Y.1
Kotera, M.2
Kanesiha, M.3
Goto, S.4
-
30
-
-
33947681316
-
ML-KNN: A lazy learning approach to multi-label learning
-
Zhang, M.-L. and Zhou, Z.-H. ML-KNN: A lazy learning approach to multi-label learning. Pattern Recognition, 40(7):2038-2048, 2007.
-
(2007)
Pattern Recognition
, vol.40
, Issue.7
, pp. 2038-2048
-
-
Zhang, M.-L.1
Zhou, Z.-H.2
-
31
-
-
84881063565
-
Multi-kernel multi-label learning with max-margin concept network
-
Zhang, W., Xue, X., Fan, J., Huang, X., Wu, B., and Liu, M. Multi-kernel multi-label learning with max-margin concept network. In Proceedings of IJCAI, pp. 1615-1620, 2012.
-
(2012)
Proceedings of IJCAI
, pp. 1615-1620
-
-
Zhang, W.1
Xue, X.2
Fan, J.3
Huang, X.4
Wu, B.5
Liu, M.6
-
32
-
-
84880250677
-
Kernelized probabilistic matrix factorization: Exploiting graphs and side information
-
Zhou, T., Shan, H., Banerjee, A., and Sapiro, G. Kernelized probabilistic matrix factorization: Exploiting graphs and side information. In Proceedings of SDM, pp. 403-414, 2012.
-
(2012)
Proceedings of SDM
, pp. 403-414
-
-
Zhou, T.1
Shan, H.2
Banerjee, A.3
Sapiro, G.4
|