메뉴 건너뛰기




Volumn , Issue PART 3, 2013, Pages 1901-1909

Kernelized bayesian matrix factorization

Author keywords

[No Author keywords available]

Indexed keywords

LEARNING ALGORITHMS; LEARNING SYSTEMS;

EID: 84897531872     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (13)

References (32)
  • 1
    • 77950940282 scopus 로고    scopus 로고
    • fLDA: Matrix factorization through latent Dirichlet allocation
    • Agarwal, D. and Chen, B.-C. fLDA: Matrix factorization through latent Dirichlet allocation. In Proceedings of WSDM, pp. 91-100, 2010.
    • (2010) Proceedings of WSDM , pp. 91-100
    • Agarwal, D.1    Chen, B.-C.2
  • 2
    • 84916537550 scopus 로고
    • Bayesian analysis of binary and polychotomous response data
    • Albert, J. H. and Chib, S. Bayesian analysis of binary and polychotomous response data. Journal of the American Statistical Association, 88(422):669-679, 1993.
    • (1993) Journal of the American Statistical Association , vol.88 , Issue.422 , pp. 669-679
    • Albert, J.H.1    Chib, S.2
  • 4
    • 24744435534 scopus 로고    scopus 로고
    • Kernel methods for predieting protein-protein interactions
    • Ben-Hur, A. and Noble, W. S. Kernel methods for predieting protein-protein interactions. Bioinformatics, 21 (Suppl. 1):i38-i46, 2005.
    • (2005) Bioinformatics , vol.21 , Issue.SUPPL. 1
    • Ben-Hur, A.1    Noble, W.S.2
  • 5
    • 0033800498 scopus 로고    scopus 로고
    • VolSurf: A new tool for the pharmacokinetic optimization of lead compounds
    • Cruciani, G., Pastor, M., and Cuba, W. VolSurf: A new tool for the pharmacokinetic optimization of lead compounds. European Journal of Pharmaceutical Sciences, 11(Suppl. 2):S29-S39, 2000.
    • (2000) European Journal of Pharmaceutical Sciences , vol.11 , Issue.SUPPL. 2
    • Cruciani, G.1    Pastor, M.2    Cuba, W.3
  • 6
    • 43349094032 scopus 로고    scopus 로고
    • Probabilistic multi-class multi-kernel learning: On protein fold recognition and remote homology detection
    • Damoulas, T. and Girolami, M. A. Probabilistic multi-class multi-kernel learning: On protein fold recognition and remote homology detection. Bioinformatics, 24(10): 1264-1270, 2008.
    • (2008) Bioinformatics , vol.24 , Issue.10 , pp. 1264-1270
    • Damoulas, T.1    Girolami, M.A.2
  • 7
    • 54249093364 scopus 로고    scopus 로고
    • Development and validation of AMANDA, a new algorithm for selecting highly relevant regions in Molecular Interaction Fields
    • Duran, A., Martinez, G. C., and Pastor, M. Development and validation of AMANDA, a new algorithm for selecting highly relevant regions in Molecular Interaction Fields. Journal of Chemical Information and Modeling, 48(9):1813-1823, 2008.
    • (2008) Journal of Chemical Information and Modeling , vol.48 , Issue.9 , pp. 1813-1823
    • Duran, A.1    Martinez, G.C.2    Pastor, M.3
  • 8
    • 76649137444 scopus 로고    scopus 로고
    • A kernel method for multi-labelled classification
    • Elisseeff, A. and Weston, J. A kernel method for multi-labelled classification. In Proceedings of NIPS, pp. 681-687, 2002.
    • (2002) Proceedings of NIPS , pp. 681-687
    • Elisseeff, A.1    Weston, J.2
  • 9
    • 31844435594 scopus 로고    scopus 로고
    • Hierarchic Bayesian models for kernel learning
    • Girolami, M. and Rogers, S. Hierarchic Bayesian models for kernel learning. In Proceedings of ICML, pp. 241-248, 2005.
    • (2005) Proceedings of ICML , pp. 241-248
    • Girolami, M.1    Rogers, S.2
  • 10
    • 84866459051 scopus 로고    scopus 로고
    • Predicting drug-target interactions from chemical and genomic kernels using Bayesian matrix factorization
    • Gonen, M. Predicting drug-target interactions from chemical and genomic kernels using Bayesian matrix factorization. Bioinformatics, 28(18):2304-2310, 2012a.
    • (2012) Bioinformatics , vol.28 , Issue.18 , pp. 2304-2310
    • Gonen, M.1
  • 11
    • 84867129730 scopus 로고    scopus 로고
    • Bayesian efficient multiple kernel learning
    • Gonen, M. Bayesian efficient multiple kernel learning. In Proceedings of ICML, pp. 1-8, 2012b.
    • (2012) Proceedings of ICML , pp. 1-8
    • Gonen, M.1
  • 13
    • 84861545549 scopus 로고    scopus 로고
    • Comprehensive data-driven analysis of the impact of chemoinformatic structure on the genome-wide biological response profiles of cancer cells to 1159 drugs
    • Khan, S. A., Faisal, A., Mpindi, J. P., Parkkinen, J. A., Kalliokoski, T., Poso, A., Kallioniemi, O. P., Wenner-berg, K., and Kaski, S. Comprehensive data-driven analysis of the impact of chemoinformatic structure on the genome-wide biological response profiles of cancer cells to 1159 drugs. BMC Bioinformatics, 13(112), 2012.
    • (2012) BMC Bioinformatics , vol.13 , Issue.112
    • Khan, S.A.1    Faisal, A.2    Mpindi, J.P.3    Parkkinen, J.A.4    Kalliokoski, T.5    Poso, A.6    Kallioniemi, O.P.7    Wenner-berg, K.8    Kaski, S.9
  • 14
    • 78049527893 scopus 로고    scopus 로고
    • Semi-supervised learning via Gaussian processes
    • Lawrence, N. D. and Jordan, M. I. Semi-supervised learning via Gaussian processes. In Proceedings of NIPS, pp. 753-760, 2005.
    • (2005) Proceedings of NIPS , pp. 753-760
    • Lawrence, N.D.1    Jordan, M.I.2
  • 15
    • 71149119166 scopus 로고    scopus 로고
    • Non-linear matrix factorization with Gaussian processes
    • Lawrence, N. D. and Urtasun, R. Non-linear matrix factorization with Gaussian processes. In Proceedings of ICML, pp. 601-608, 2009.
    • (2009) Proceedings of ICML , pp. 601-608
    • Lawrence, N.D.1    Urtasun, R.2
  • 16
    • 70349257904 scopus 로고    scopus 로고
    • SoRec: Social recommendation using probabilistic matrix factorization
    • Ma, H., Yang, H., Lyu, M. R., and King, I. SoRec: Social recommendation using probabilistic matrix factorization. In Proceedings of CIKM, pp. 931-940, 2008.
    • (2008) Proceedings of CIKM , pp. 931-940
    • Ma, H.1    Yang, H.2    Lyu, M.R.3    King, I.4
  • 19
    • 85161989354 scopus 로고    scopus 로고
    • Probabilistic matrix factorization
    • Salakhutdinov, R. and Mnih, A. Probabilistic matrix factorization. In Proceedings of NIPS, pp. 1257-1264, 2008a.
    • (2008) Proceedings of NIPS , pp. 1257-1264
    • Salakhutdinov, R.1    Mnih, A.2
  • 20
    • 56449131205 scopus 로고    scopus 로고
    • Bayesian probabilistic matrix factorization using Markov chain Monte Carlo
    • Salakhutdinov, R. and Mnih, A. Bayesian probabilistic matrix factorization using Markov chain Monte Carlo. In Proceedings of ICML, pp. 880-887, 2008b.
    • (2008) Proceedings of ICML , pp. 880-887
    • Salakhutdinov, R.1    Mnih, A.2
  • 23
    • 79951750366 scopus 로고    scopus 로고
    • Generalized probabilistic matrix factorizations for collaborative filtering
    • Shan, H. and Banerjee, A. Generalized probabilistic matrix factorizations for collaborative filtering. In Proceedings of ICDM, pp. 1025-1030, 2010.
    • (2010) Proceedings of ICDM , pp. 1025-1030
    • Shan, H.1    Banerjee, A.2
  • 25
    • 78751693089 scopus 로고    scopus 로고
    • On multiple kernel learning with multiple labels
    • Tang, L., Chen, J., and Ye, J. On multiple kernel learning with multiple labels. In Proceedings of IJCAI, pp. 1255-1260, 2009.
    • (2009) Proceedings of IJCAI , pp. 1255-1260
    • Tang, L.1    Chen, J.2    Ye, J.3
  • 26
    • 80052666619 scopus 로고    scopus 로고
    • Collaborative topic modeling for recommending scientific articles
    • Wang, C. and Blei, D. M. Collaborative topic modeling for recommending scientific articles. In Proceedings of KDD, pp. 448-456, 2011.
    • (2011) Proceedings of KDD , pp. 448-456
    • Wang, C.1    Blei, D.M.2
  • 27
    • 84858775082 scopus 로고    scopus 로고
    • Supervised bipartite graph inference
    • Yamanishi, Y. Supervised bipartite graph inference. In Proceedings of NIPS, pp. 1841-1848, 2009.
    • (2009) Proceedings of NIPS , pp. 1841-1848
    • Yamanishi, Y.1
  • 28
    • 46249090791 scopus 로고    scopus 로고
    • Prediction of drug-target interaction networks from the integration of chemical and genomic spaces
    • Yamanishi, Y., Araki, M., Gutteridge, A., Honda, W., and Kaneisha, M. Prediction of drug-target interaction networks from the integration of chemical and genomic spaces. Bioinformatics, 24:i232-i240, 2008.
    • (2008) Bioinformatics , vol.24
    • Yamanishi, Y.1    Araki, M.2    Gutteridge, A.3    Honda, W.4    Kaneisha, M.5
  • 29
    • 77954230951 scopus 로고    scopus 로고
    • Drug-target interaction prediction from chemical, genomic and pharmacological data in an integrated framework
    • Yamanishi, Y., Kotera, M., Kanesiha, M., and Goto, S. Drug-target interaction prediction from chemical, genomic and pharmacological data in an integrated framework. Bioinformatics, 26:i246-i254, 2010.
    • (2010) Bioinformatics , vol.26
    • Yamanishi, Y.1    Kotera, M.2    Kanesiha, M.3    Goto, S.4
  • 30
    • 33947681316 scopus 로고    scopus 로고
    • ML-KNN: A lazy learning approach to multi-label learning
    • Zhang, M.-L. and Zhou, Z.-H. ML-KNN: A lazy learning approach to multi-label learning. Pattern Recognition, 40(7):2038-2048, 2007.
    • (2007) Pattern Recognition , vol.40 , Issue.7 , pp. 2038-2048
    • Zhang, M.-L.1    Zhou, Z.-H.2
  • 31
    • 84881063565 scopus 로고    scopus 로고
    • Multi-kernel multi-label learning with max-margin concept network
    • Zhang, W., Xue, X., Fan, J., Huang, X., Wu, B., and Liu, M. Multi-kernel multi-label learning with max-margin concept network. In Proceedings of IJCAI, pp. 1615-1620, 2012.
    • (2012) Proceedings of IJCAI , pp. 1615-1620
    • Zhang, W.1    Xue, X.2    Fan, J.3    Huang, X.4    Wu, B.5    Liu, M.6
  • 32
    • 84880250677 scopus 로고    scopus 로고
    • Kernelized probabilistic matrix factorization: Exploiting graphs and side information
    • Zhou, T., Shan, H., Banerjee, A., and Sapiro, G. Kernelized probabilistic matrix factorization: Exploiting graphs and side information. In Proceedings of SDM, pp. 403-414, 2012.
    • (2012) Proceedings of SDM , pp. 403-414
    • Zhou, T.1    Shan, H.2    Banerjee, A.3    Sapiro, G.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.