메뉴 건너뛰기




Volumn , Issue , 2009, Pages 19-27

Regression-based latent factor models

Author keywords

Dyadic data; Interaction; Latent factor; Metadata; Predictive; Recommender systems; Sparse

Indexed keywords

DYADIC DATA; INTERACTION; LATENT FACTOR; PREDICTIVE; RECOMMENDER SYSTEMS; SPARSE;

EID: 70350664430     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/1557019.1557029     Document Type: Conference Paper
Times cited : (453)

References (28)
  • 1
    • 70350684932 scopus 로고    scopus 로고
    • KDD cup and workshop
    • KDD cup and workshop. 2007.
    • (2007)
  • 2
    • 77950884255 scopus 로고    scopus 로고
    • D. Agarwal, B.-C. Chen, and P. Elango. Spatio-temporal models for estimating click rates. In WWW, 2009.
    • D. Agarwal, B.-C. Chen, and P. Elango. Spatio-temporal models for estimating click rates. In WWW, 2009.
  • 3
    • 85093235125 scopus 로고    scopus 로고
    • Online models for content optimization
    • D. Agarwal and B.-C. Chen, et al. Online models for content optimization. In NIPS, 2008.
    • (2008) NIPS
    • Agarwal, D.1    Chen, B.-C.2
  • 4
    • 70350656503 scopus 로고    scopus 로고
    • D. Agarwal and S. Merugu. Predictive discrete latent factor models. In KDD, 2007.
    • D. Agarwal and S. Merugu. Predictive discrete latent factor models. In KDD, 2007.
  • 6
    • 0031103679 scopus 로고    scopus 로고
    • Fab: Content-based, collaborative recommendation
    • M. Balabanovic and Y. Shoham. Fab: content-based, collaborative recommendation. Comm. of the ACM, 1997.
    • (1997) Comm. of the ACM
    • Balabanovic, M.1    Shoham, Y.2
  • 7
    • 34548691246 scopus 로고    scopus 로고
    • A generalized maximum entropy approach to Bregman co-clustering and matrix approximation
    • A. Banerjee and I. Dhillon, et al. A generalized maximum entropy approach to Bregman co-clustering and matrix approximation. J. of Machine Learning Research, 2007.
    • (2007) J. of Machine Learning Research
    • Banerjee, A.1    Dhillon, I.2
  • 8
    • 36849079891 scopus 로고    scopus 로고
    • R. Bell, Y. Koren, and C. Volinsky. Modeling relationships at multiple scales to improve accuracy of large recommender systems. In KDD, 2007.
    • R. Bell, Y. Koren, and C. Volinsky. Modeling relationships at multiple scales to improve accuracy of large recommender systems. In KDD, 2007.
  • 9
    • 0033475053 scopus 로고    scopus 로고
    • Maximizing generalized linear mixed model likelihoods with an automated monte carlo EM algorithm
    • J. Booth and J. Hobert. Maximizing generalized linear mixed model likelihoods with an automated monte carlo EM algorithm. J.R.Statist. Soc. B, 1999.
    • (1999) J.R.Statist. Soc. B
    • Booth, J.1    Hobert, J.2
  • 10
    • 1642374016 scopus 로고    scopus 로고
    • Combining content-based and collaborative filters in an online newspaper
    • M. Claypool and A. Gokhale, et al. Combining content-based and collaborative filters in an online newspaper. In Recommender Systems Workshop, 1999.
    • (1999) Recommender Systems Workshop
    • Claypool, M.1    Gokhale, A.2
  • 13
    • 84865371361 scopus 로고    scopus 로고
    • A weakly informative default prior distribution for logistic and other regression models
    • A. Gelman and A. Jakulin, et al. A weakly informative default prior distribution for logistic and other regression models. Annals of Applied Statistics, 2008.
    • (2008) Annals of Applied Statistics
    • Gelman, A.1    Jakulin, A.2
  • 14
    • 0001167387 scopus 로고    scopus 로고
    • Combining collaborative filtering with personal agents for better recommendations
    • N. Good and J. B. Schafer, et al. Combining collaborative filtering with personal agents for better recommendations. In AAAI, 1999.
    • (1999) AAAI
    • Good, N.1    Schafer, J.B.2
  • 15
    • 85015559680 scopus 로고    scopus 로고
    • An algorithmic framework for performing collaborative filtering
    • J. L. Herlocker and J. A. Konstan, et al. An algorithmic framework for performing collaborative filtering. In SIGIR, 1999.
    • (1999) SIGIR
    • Herlocker, J.L.1    Konstan, J.A.2
  • 16
    • 85026972772 scopus 로고    scopus 로고
    • Probabilistic latent semantic indexing
    • T. Hofmann. Probabilistic latent semantic indexing. In SIGIR, 1999.
    • (1999) SIGIR
    • Hofmann, T.1
  • 17
    • 84898964201 scopus 로고    scopus 로고
    • Algorithms for non-negative matrix factorization
    • D. L. Lee and S. Seung. Algorithms for non-negative matrix factorization. In NIPS, 2001.
    • (2001) NIPS
    • Lee, D.L.1    Seung, S.2
  • 19
    • 0002788893 scopus 로고    scopus 로고
    • A view of the EM algorithm that justifies incremental, sparse, and other variants
    • R. Neal and G. Hinton. A view of the EM algorithm that justifies incremental, sparse, and other variants. In Learning in Graphical Models, 1998.
    • (1998) Learning in Graphical Models
    • Neal, R.1    Hinton, G.2
  • 20
    • 70350649273 scopus 로고    scopus 로고
    • S.-T. Park and D. Pennock, et al. Naïve filterbots for robust cold-start recommendations. In KDD, 2006.
    • S.-T. Park and D. Pennock, et al. Naïve filterbots for robust cold-start recommendations. In KDD, 2006.
  • 22
    • 31844451557 scopus 로고    scopus 로고
    • Fast maximum margin matrix factorization for collaborative prediction
    • J. Rennie and N. Srebro. Fast maximum margin matrix factorization for collaborative prediction. In ICML, 2005.
    • (2005) ICML
    • Rennie, J.1    Srebro, N.2
  • 23
    • 56449131205 scopus 로고    scopus 로고
    • Bayesian probabilistic matrix factorization using markov chain monte carlo
    • R. Salakhutdinov and A. Mnih. Bayesian probabilistic matrix factorization using markov chain monte carlo. In ICML'08.
    • ICML'08
    • Salakhutdinov, R.1    Mnih, A.2
  • 24
    • 85161989354 scopus 로고    scopus 로고
    • Probabilistic matrix factorization
    • R. Salakhutdinov and A. Mnih. Probabilistic matrix factorization. In NIPS, 2008.
    • (2008) NIPS
    • Salakhutdinov, R.1    Mnih, A.2
  • 25
    • 0036989477 scopus 로고    scopus 로고
    • Methods and metrics for cold-start recommendations
    • A. I. Schein and R. Popescul, et al. Methods and metrics for cold-start recommendations. In SIGIR, 2002.
    • (2002) SIGIR
    • Schein, A.I.1    Popescul, R.2
  • 26
    • 70350679257 scopus 로고    scopus 로고
    • A generalized linear model for principal component analysis of binary data
    • A. I. Schein, L. K. Saul, and L. H. Ungar. A generalized linear model for principal component analysis of binary data. In AISTATS, 2003.
    • (2003) AISTATS
    • Schein, A.I.1    Saul, L.K.2    Ungar, L.H.3
  • 28
    • 36448969351 scopus 로고    scopus 로고
    • Efficient bayesian hierarchical user modeling for recommendation system
    • Y. Zhang and J. Koren. Efficient bayesian hierarchical user modeling for recommendation system. In SIGIR, 2007.
    • (2007) SIGIR
    • Zhang, Y.1    Koren, J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.