-
2
-
-
34547990286
-
Low-rank matrix factorization with attributes
-
abs/cs/0611124
-
J. Abernethy, F. Bach, T. Evgeniou, and J.-P. Vert. Low-rank matrix factorization with attributes. CoRR, abs/cs/0611124, 2006.
-
(2006)
CoRR
-
-
Abernethy, J.1
Bach, F.2
Evgeniou, T.3
Vert, J.-P.4
-
3
-
-
64149107285
-
A new approach to collaborative filtering:operator estimation with spectral regularization
-
J. Abernethy, F. R. Bach, T. Evgeniou, and J.-P. Vert. A new approach to collaborative filtering:operator estimation with spectral regularization. JMLR, 2009.
-
(2009)
JMLR
-
-
Abernethy, J.1
Bach, F.R.2
Evgeniou, T.3
Vert, J.-P.4
-
4
-
-
70350664430
-
Regression-based latent factor models
-
D. Agarwal and B. Chen. Regression-based latent factor models. In KDD, 2009.
-
(2009)
KDD
-
-
Agarwal, D.1
Chen, B.2
-
5
-
-
77950940282
-
FLDA: Matrix factorization through latent Dirichlet allocation
-
D. Agarwal and B. Chen. fLDA: matrix factorization through latent Dirichlet allocation. In WSDM, 2010.
-
(2010)
WSDM
-
-
Agarwal, D.1
Chen, B.2
-
6
-
-
84863344448
-
Online models for content optimization
-
D. Agarwal, B. Chen, P. Elango, N. Motgi, S. Park, R. Ramakrishnan, S. Roy, and J. Zachariah. Online models for content optimization. In NIPS, 2009.
-
(2009)
NIPS
-
-
Agarwal, D.1
Chen, B.2
Elango, P.3
Motgi, N.4
Park, S.5
Ramakrishnan, R.6
Roy, S.7
Zachariah, J.8
-
7
-
-
0031103679
-
Fab: Content-based, collaborative recommendation
-
M. Balabanovic and Y. Shoham. Fab: content-based, collaborative recommendation. Comm. of the ACM, 1997.
-
(1997)
Comm. of the ACM
-
-
Balabanovic, M.1
Shoham, Y.2
-
8
-
-
36849079891
-
Modeling relationships at multiple scales to improve accuracy of large recommender systems
-
R. Bell, Y. Koren, and C. Volinsky. Modeling relationships at multiple scales to improve accuracy of large recommender systems. In KDD, 2007.
-
(2007)
KDD
-
-
Bell, R.1
Koren, Y.2
Volinsky, C.3
-
9
-
-
0033475053
-
Maximizing generalized linear mixed model likelihoods with an automated monte carlo EM algorithm
-
J. Booth and J. Hobert. Maximizing generalized linear mixed model likelihoods with an automated monte carlo EM algorithm. J. R. Statist. Soc. B, 1999.
-
(1999)
J. R. Statist. Soc. B
-
-
Booth, J.1
Hobert, J.2
-
10
-
-
33749567580
-
Empirical analysis of predictive algorithms for collaborative filtering
-
J. S. Breese, D. Heckerman, and C. M. Kadie. Empirical analysis of predictive algorithms for collaborative filtering. In UAI, 1998.
-
(1998)
UAI
-
-
Breese, J.S.1
Heckerman, D.2
Kadie, C.M.3
-
13
-
-
80052683570
-
Computational advertising and recommender systems
-
A. Z. Broder. Computational advertising and recommender systems. In RecSys, 2008.
-
(2008)
RecSys
-
-
Broder, A.Z.1
-
15
-
-
1642374016
-
Combining content-based and collaborative filters in an online newspaper
-
M. Claypool and A. Gokhale, et al. Combining content-based and collaborative filters in an online newspaper. In RecSys Workshop, 1999.
-
RecSys Workshop, 1999
-
-
Claypool, M.1
Gokhale, A.2
-
17
-
-
0035470889
-
Greedy function approximation: A gradient boosting machine
-
J. Friedman. Greedy function approximation: a gradient boosting machine. Annals of Statistics, 2001.
-
(2001)
Annals of Statistics
-
-
Friedman, J.1
-
18
-
-
77950953809
-
Gibbs sampling
-
A. E. Gelfand. Gibbs sampling. JASA, 1995.
-
(1995)
JASA
-
-
Gelfand, A.E.1
-
19
-
-
0001167387
-
Combining collaborative filtering with personal agents for better recommendations
-
N. Good and J. B. Schafer, et al. Combining collaborative filtering with personal agents for better recommendations. In AAAI, 1999.
-
(1999)
AAAI
-
-
Good, N.1
Schafer, J.B.2
-
22
-
-
71149119166
-
Non-linear matrix factorization with gaussian processes
-
N. Lawrence and R. Urtasun. Non-linear matrix factorization with gaussian processes. In ICML, 2009.
-
(2009)
ICML
-
-
Lawrence, N.1
Urtasun, R.2
-
24
-
-
33749244569
-
Content-boosted collaborative filtering for improved recommendations
-
P. Melville, R. J. Mooney, and R. Nagarajan. Content-boosted collaborative filtering for improved recommendations. In AAAI, 2002.
-
(2002)
AAAI
-
-
Melville, P.1
Mooney, R.J.2
Nagarajan, R.3
-
25
-
-
85084775756
-
Naïve filterbots for robust cold-start recommendations
-
S.-T. Park and D. Pennock, et al. Naïve filterbots for robust cold-start recommendations. In KDD, 2006.
-
(2006)
KDD
-
-
Park, S.-T.1
Pennock, D.2
-
26
-
-
31844451557
-
Fast maximum margin matrix factorization for collaborative prediction
-
J. Rennie and N. Srebro. Fast maximum margin matrix factorization for collaborative prediction. In ICML, 2005.
-
(2005)
ICML
-
-
Rennie, J.1
Srebro, N.2
-
27
-
-
56449131205
-
Bayesian probabilistic matrix factorization using markov chain monte carlo
-
R. Salakhutdinov and A. Mnih. Bayesian probabilistic matrix factorization using markov chain monte carlo. In ICML, 2008.
-
(2008)
ICML
-
-
Salakhutdinov, R.1
Mnih, A.2
-
28
-
-
85161989354
-
Probabilistic matrix factorization
-
R. Salakhutdinov and A. Mnih. Probabilistic matrix factorization. In NIPS, 2008.
-
(2008)
NIPS
-
-
Salakhutdinov, R.1
Mnih, A.2
-
29
-
-
70350679257
-
A generalized linear model for principal component analysis of binary data
-
A. I. Schein, L. K. Saul, and L. H. Ungar. A generalized linear model for principal component analysis of binary data. In AISTATS, 2003.
-
(2003)
AISTATS
-
-
Schein, A.I.1
Saul, L.K.2
Ungar, L.H.3
-
30
-
-
1942516801
-
Weighted low-rank approximations
-
N. Srebro and T. Jaakkola. Weighted low-rank approximations. In ICML, 2003.
-
(2003)
ICML
-
-
Srebro, N.1
Jaakkola, T.2
-
32
-
-
77950941535
-
Matchbox: Large scale online bayesian recommendations
-
D. H. Stern, R. Herbrich, and T. Graepel. Matchbox: large scale online bayesian recommendations. In WWW, 2009.
-
(2009)
WWW
-
-
Stern, D.H.1
Herbrich, R.2
Graepel, T.3
-
34
-
-
36448969351
-
Efficient bayesian hierarchical user modeling for recommendation system
-
Y. Zhang and J. Koren. Efficient bayesian hierarchical user modeling for recommendation system. In SIGIR, 2007.
-
(2007)
SIGIR
-
-
Zhang, Y.1
Koren, J.2
|