메뉴 건너뛰기




Volumn , Issue , 2011, Pages 13-20

Generalizing matrix factorization through flexible regression priors

Author keywords

latent factor; matrix factorization; recommender systems; regression priors; tree models

Indexed keywords

COLD START; DATA SETS; GENERALIZED MATRIX; LATENT FACTOR; LOW RANK APPROXIMATIONS; MATRIX; MATRIX FACTORIZATION; MATRIX FACTORIZATIONS; MODEL FITTING; REGRESSION MODEL; REGRESSION MODELING; REGRESSION PRIORS; SMOOTH TRANSITIONS; STATE-OF-THE-ART PERFORMANCE; TREE MODELS; VARIABLE SELECTION; WARM START;

EID: 82555181744     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/2043932.2043940     Document Type: Conference Paper
Times cited : (41)

References (34)
  • 2
    • 34547990286 scopus 로고    scopus 로고
    • Low-rank matrix factorization with attributes
    • abs/cs/0611124
    • J. Abernethy, F. Bach, T. Evgeniou, and J.-P. Vert. Low-rank matrix factorization with attributes. CoRR, abs/cs/0611124, 2006.
    • (2006) CoRR
    • Abernethy, J.1    Bach, F.2    Evgeniou, T.3    Vert, J.-P.4
  • 3
    • 64149107285 scopus 로고    scopus 로고
    • A new approach to collaborative filtering:operator estimation with spectral regularization
    • J. Abernethy, F. R. Bach, T. Evgeniou, and J.-P. Vert. A new approach to collaborative filtering:operator estimation with spectral regularization. JMLR, 2009.
    • (2009) JMLR
    • Abernethy, J.1    Bach, F.R.2    Evgeniou, T.3    Vert, J.-P.4
  • 4
    • 70350664430 scopus 로고    scopus 로고
    • Regression-based latent factor models
    • D. Agarwal and B. Chen. Regression-based latent factor models. In KDD, 2009.
    • (2009) KDD
    • Agarwal, D.1    Chen, B.2
  • 5
    • 77950940282 scopus 로고    scopus 로고
    • FLDA: Matrix factorization through latent Dirichlet allocation
    • D. Agarwal and B. Chen. fLDA: matrix factorization through latent Dirichlet allocation. In WSDM, 2010.
    • (2010) WSDM
    • Agarwal, D.1    Chen, B.2
  • 7
    • 0031103679 scopus 로고    scopus 로고
    • Fab: Content-based, collaborative recommendation
    • M. Balabanovic and Y. Shoham. Fab: content-based, collaborative recommendation. Comm. of the ACM, 1997.
    • (1997) Comm. of the ACM
    • Balabanovic, M.1    Shoham, Y.2
  • 8
    • 36849079891 scopus 로고    scopus 로고
    • Modeling relationships at multiple scales to improve accuracy of large recommender systems
    • R. Bell, Y. Koren, and C. Volinsky. Modeling relationships at multiple scales to improve accuracy of large recommender systems. In KDD, 2007.
    • (2007) KDD
    • Bell, R.1    Koren, Y.2    Volinsky, C.3
  • 9
    • 0033475053 scopus 로고    scopus 로고
    • Maximizing generalized linear mixed model likelihoods with an automated monte carlo EM algorithm
    • J. Booth and J. Hobert. Maximizing generalized linear mixed model likelihoods with an automated monte carlo EM algorithm. J. R. Statist. Soc. B, 1999.
    • (1999) J. R. Statist. Soc. B
    • Booth, J.1    Hobert, J.2
  • 10
    • 33749567580 scopus 로고    scopus 로고
    • Empirical analysis of predictive algorithms for collaborative filtering
    • J. S. Breese, D. Heckerman, and C. M. Kadie. Empirical analysis of predictive algorithms for collaborative filtering. In UAI, 1998.
    • (1998) UAI
    • Breese, J.S.1    Heckerman, D.2    Kadie, C.M.3
  • 13
    • 80052683570 scopus 로고    scopus 로고
    • Computational advertising and recommender systems
    • A. Z. Broder. Computational advertising and recommender systems. In RecSys, 2008.
    • (2008) RecSys
    • Broder, A.Z.1
  • 15
    • 1642374016 scopus 로고    scopus 로고
    • Combining content-based and collaborative filters in an online newspaper
    • M. Claypool and A. Gokhale, et al. Combining content-based and collaborative filters in an online newspaper. In RecSys Workshop, 1999.
    • RecSys Workshop, 1999
    • Claypool, M.1    Gokhale, A.2
  • 17
    • 0035470889 scopus 로고    scopus 로고
    • Greedy function approximation: A gradient boosting machine
    • J. Friedman. Greedy function approximation: a gradient boosting machine. Annals of Statistics, 2001.
    • (2001) Annals of Statistics
    • Friedman, J.1
  • 18
    • 77950953809 scopus 로고
    • Gibbs sampling
    • A. E. Gelfand. Gibbs sampling. JASA, 1995.
    • (1995) JASA
    • Gelfand, A.E.1
  • 19
    • 0001167387 scopus 로고    scopus 로고
    • Combining collaborative filtering with personal agents for better recommendations
    • N. Good and J. B. Schafer, et al. Combining collaborative filtering with personal agents for better recommendations. In AAAI, 1999.
    • (1999) AAAI
    • Good, N.1    Schafer, J.B.2
  • 22
    • 71149119166 scopus 로고    scopus 로고
    • Non-linear matrix factorization with gaussian processes
    • N. Lawrence and R. Urtasun. Non-linear matrix factorization with gaussian processes. In ICML, 2009.
    • (2009) ICML
    • Lawrence, N.1    Urtasun, R.2
  • 24
    • 33749244569 scopus 로고    scopus 로고
    • Content-boosted collaborative filtering for improved recommendations
    • P. Melville, R. J. Mooney, and R. Nagarajan. Content-boosted collaborative filtering for improved recommendations. In AAAI, 2002.
    • (2002) AAAI
    • Melville, P.1    Mooney, R.J.2    Nagarajan, R.3
  • 25
    • 85084775756 scopus 로고    scopus 로고
    • Naïve filterbots for robust cold-start recommendations
    • S.-T. Park and D. Pennock, et al. Naïve filterbots for robust cold-start recommendations. In KDD, 2006.
    • (2006) KDD
    • Park, S.-T.1    Pennock, D.2
  • 26
    • 31844451557 scopus 로고    scopus 로고
    • Fast maximum margin matrix factorization for collaborative prediction
    • J. Rennie and N. Srebro. Fast maximum margin matrix factorization for collaborative prediction. In ICML, 2005.
    • (2005) ICML
    • Rennie, J.1    Srebro, N.2
  • 27
    • 56449131205 scopus 로고    scopus 로고
    • Bayesian probabilistic matrix factorization using markov chain monte carlo
    • R. Salakhutdinov and A. Mnih. Bayesian probabilistic matrix factorization using markov chain monte carlo. In ICML, 2008.
    • (2008) ICML
    • Salakhutdinov, R.1    Mnih, A.2
  • 28
    • 85161989354 scopus 로고    scopus 로고
    • Probabilistic matrix factorization
    • R. Salakhutdinov and A. Mnih. Probabilistic matrix factorization. In NIPS, 2008.
    • (2008) NIPS
    • Salakhutdinov, R.1    Mnih, A.2
  • 29
    • 70350679257 scopus 로고    scopus 로고
    • A generalized linear model for principal component analysis of binary data
    • A. I. Schein, L. K. Saul, and L. H. Ungar. A generalized linear model for principal component analysis of binary data. In AISTATS, 2003.
    • (2003) AISTATS
    • Schein, A.I.1    Saul, L.K.2    Ungar, L.H.3
  • 30
    • 1942516801 scopus 로고    scopus 로고
    • Weighted low-rank approximations
    • N. Srebro and T. Jaakkola. Weighted low-rank approximations. In ICML, 2003.
    • (2003) ICML
    • Srebro, N.1    Jaakkola, T.2
  • 31
    • 84898932317 scopus 로고    scopus 로고
    • Maximum margin matrix factorizations
    • N. Srebro, J. Rennie, and T. Jaakkola. Maximum margin matrix factorizations. In NIPS, 2005.
    • (2005) NIPS
    • Srebro, N.1    Rennie, J.2    Jaakkola, T.3
  • 32
    • 77950941535 scopus 로고    scopus 로고
    • Matchbox: Large scale online bayesian recommendations
    • D. H. Stern, R. Herbrich, and T. Graepel. Matchbox: large scale online bayesian recommendations. In WWW, 2009.
    • (2009) WWW
    • Stern, D.H.1    Herbrich, R.2    Graepel, T.3
  • 34
    • 36448969351 scopus 로고    scopus 로고
    • Efficient bayesian hierarchical user modeling for recommendation system
    • Y. Zhang and J. Koren. Efficient bayesian hierarchical user modeling for recommendation system. In SIGIR, 2007.
    • (2007) SIGIR
    • Zhang, Y.1    Koren, J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.