메뉴 건너뛰기




Volumn , Issue , 2010, Pages 91-100

fLDA: Matrix factorization through latent dirichlet allocation

Author keywords

Bayesian hierarchical model; Collaborative filtering; Graphical model; Latent factor model; Recommender systems; Supervised topic model

Indexed keywords

BAYESIAN HIERARCHICAL MODEL; COLLABORATIVE FILTERING; GRAPHICAL MODEL; LATENT FACTOR; RECOMMENDER SYSTEMS; TOPIC MODEL;

EID: 77950940282     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/1718487.1718499     Document Type: Conference Paper
Times cited : (238)

References (31)
  • 2
    • 70350664430 scopus 로고    scopus 로고
    • Regression-based latent factor models
    • D. Agarwal and B.-C. Chen. Regression-based latent factor models. In KDD, 2009.
    • (2009) KDD
    • Agarwal, D.1    Chen, B.-C.2
  • 3
    • 85093235125 scopus 로고    scopus 로고
    • Online models for content optimization
    • D. Agarwal and B.-C. Chen, et al. Online models for content optimization. In NIPS, 2008.
    • (2008) NIPS
    • Agarwal, D.1    Chen, B.-C.2
  • 4
    • 0031103679 scopus 로고    scopus 로고
    • Fab: Content-based, collaborative recommendation
    • M. Balabanovic and Y. Shoham. Fab: content-based, collaborative recommendation. Comm. of the ACM, 1997.
    • (1997) Comm. of the ACM
    • Balabanovic, M.1    Shoham, Y.2
  • 5
    • 36849079891 scopus 로고    scopus 로고
    • Modeling relationships at multiple scales to improve accuracy of large recommender systems
    • R. Bell, Y. Koren, and C. Volinsky. Modeling relationships at multiple scales to improve accuracy of large recommender systems. In KDD, 2007.
    • (2007) KDD
    • Bell, R.1    Koren, Y.2    Volinsky, C.3
  • 6
    • 49749086487 scopus 로고    scopus 로고
    • Scalable collaborative filtering with jointly derived neighborhood interpolation weights
    • R. M. Bell and Y. Koren. Scalable collaborative filtering with jointly derived neighborhood interpolation weights. In ICDM, 2007.
    • (2007) ICDM
    • Bell, R.M.1    Koren, Y.2
  • 7
    • 85161981998 scopus 로고    scopus 로고
    • Supervised topic models
    • D. Blei and J. McAuliffe. Supervised topic models. In NIPS, 2008.
    • (2008) NIPS
    • Blei, D.1    McAuliffe, J.2
  • 8
    • 0141607824 scopus 로고    scopus 로고
    • Latent dirichlet allocation
    • D. M. Blei, A. Y. Ng, and M. I. Jordan. Latent dirichlet allocation. JMLR, 3, 2003.
    • (2003) JMLR , pp. 3
    • Blei, D.M.1    Ng, A.Y.2    Jordan, M.I.3
  • 9
    • 0033475053 scopus 로고    scopus 로고
    • Maximizing generalized linear mixed model likelihoods with an automated monte carlo EM algorithm
    • J. Booth and J. Hobert. Maximizing generalized linear mixed model likelihoods with an automated monte carlo EM algorithm. J. R. Statist. Soc. B, 1999.
    • (1999) J. R. Statist. Soc. B
    • Booth, J.1    Hobert, J.2
  • 10
    • 70350653770 scopus 로고    scopus 로고
    • Large-scale behavioral targeting
    • Y. Chen, D. Pavlov, and J. F. Canny. Large-scale behavioral targeting. In KDD, 2009.
    • (2009) KDD
    • Chen, Y.1    Pavlov, D.2    Canny, J.F.3
  • 11
    • 1642374016 scopus 로고    scopus 로고
    • Combining content-based and collaborative filters in an online newspaper
    • M. Claypool and A. Gokhale, et al. Combining content-based and collaborative filters in an online newspaper. In Recommender Systems Workshop, 1999.
    • Recommender Systems Workshop, 1999
    • Claypool, M.1    Gokhale, A.2
  • 13
    • 77950953809 scopus 로고
    • Gibbs sampling
    • A. E. Gelfand. Gibbs sampling. JASA, 1995.
    • (1995) JASA
    • Gelfand, A.E.1
  • 15
    • 0001167387 scopus 로고    scopus 로고
    • Combining collaborative filtering with personal agents for better recommendations
    • N. Good and J. B. Schafer, et al. Combining collaborative filtering with personal agents for better recommendations. In AAAI, 1999.
    • (1999) AAAI
    • Good, N.1    Schafer, J.B.2
  • 17
    • 32344441911 scopus 로고    scopus 로고
    • A maximum entropy web recommendation system: Combining collaborative and content features
    • X. Jin, Y. Zhou, and B. Mobasher. A maximum entropy web recommendation system: Combining collaborative and content features. In KDD, 2005.
    • (2005) KDD
    • Jin, X.1    Zhou, Y.2    Mobasher, B.3
  • 18
    • 65449121157 scopus 로고    scopus 로고
    • Factorization meets the neighborhood: A multifaceted collaborative filtering model
    • Y. Koren. Factorization meets the neighborhood: a multifaceted collaborative filtering model. In KDD, 2008.
    • (2008) KDD
    • Koren, Y.1
  • 19
    • 71149119166 scopus 로고    scopus 로고
    • Non-linear matrix factorization with gaussian processes
    • N. Lawrence and R. Urtasun. Non-linear matrix factorization with gaussian processes. In ICML, 2009.
    • (2009) ICML
    • Lawrence, N.1    Urtasun, R.2
  • 20
    • 85084775756 scopus 로고    scopus 로고
    • Naïve filterbots for robust cold-start recommendations
    • S.-T. Park and D. Pennock, et al. Naïve filterbots for robust cold-start recommendations. In KDD, 2006.
    • (2006) KDD
    • Park, S.-T.1    Pennock, D.2
  • 21
    • 80052403470 scopus 로고    scopus 로고
    • Multi-hdp: A non parametric bayesian model for tensor factorization
    • I. Porteous, E. Bart, and M. Welling. Multi-hdp: A non parametric bayesian model for tensor factorization. In AAAI, 2008.
    • (2008) AAAI
    • Porteous, I.1    Bart, E.2    Welling, M.3
  • 22
    • 31844451557 scopus 로고    scopus 로고
    • Fast maximum margin matrix factorization for collaborative prediction
    • J. Rennie and N. Srebro. Fast maximum margin matrix factorization for collaborative prediction. In ICML, 2005.
    • (2005) ICML
    • Rennie, J.1    Srebro, N.2
  • 24
    • 56449131205 scopus 로고    scopus 로고
    • Bayesian probabilistic matrix factorization using markov chain monte carlo
    • R. Salakhutdinov and A. Mnih. Bayesian probabilistic matrix factorization using markov chain monte carlo. In ICML'08, 2008.
    • (2008) ICML'08
    • Salakhutdinov, R.1    Mnih, A.2
  • 25
    • 85161989354 scopus 로고    scopus 로고
    • Probabilistic matrix factorization
    • R. Salakhutdinov and A. Mnih. Probabilistic matrix factorization. In NIPS, 2008.
    • (2008) NIPS
    • Salakhutdinov, R.1    Mnih, A.2
  • 26
    • 0036989477 scopus 로고    scopus 로고
    • Methods and metrics for cold-start recommendations
    • A. I. Schein and R. Popescul, et al. Methods and metrics for cold-start recommendations. In SIGIR, 2002.
    • (2002) SIGIR
    • Schein, A.I.1    Popescul, R.2
  • 27
    • 65449121541 scopus 로고    scopus 로고
    • Relational learning via collective matrix factorization
    • A. P. Singh and G. J. Gordon. Relational learning via collective matrix factorization. In KDD, 2008.
    • (2008) KDD
    • Singh, A.P.1    Gordon, G.J.2
  • 28
    • 77950941535 scopus 로고    scopus 로고
    • Matchbox: Large scale online bayesian recommendations
    • D. H. Stern, R. Herbrich, and T. Graepel. Matchbox: large scale online bayesian recommendations. In WWW, 2009.
    • (2009) WWW
    • Stern, D.H.1    Herbrich, R.2    Graepel, T.3
  • 29
    • 77954897402 scopus 로고    scopus 로고
    • Plda: Parallel latent dirichlet allocation for large-scale applications
    • Y. Wang and H. Bai, et al. Plda: Parallel latent dirichlet allocation for large-scale applications. In AAIM, 2009.
    • (2009) AAIM
    • Wang, Y.1    Bai, H.2
  • 30
    • 71149088913 scopus 로고    scopus 로고
    • Large-scale collaborative prediction using a nonparametric random effects model
    • K. Yu, J. Lafferty, and S. Zhu. Large-scale collaborative prediction using a nonparametric random effects model. In ICML, 2009.
    • (2009) ICML
    • Yu, K.1    Lafferty, J.2    Zhu, S.3
  • 31
    • 33645657113 scopus 로고    scopus 로고
    • Improving recommendation lists through topic diversification
    • C.-N. Ziegler, S. M. McNee, J. A. Konstan, and G. Lausen. Improving recommendation lists through topic diversification. In WWW, 2005.
    • (2005) WWW
    • Ziegler, C.-N.1    McNee, S.M.2    Konstan, J.A.3    Lausen, G.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.