메뉴 건너뛰기




Volumn , Issue , 2011, Pages 1615-1620

Multi-kernel multi-label learning with max-margin concept network

Author keywords

[No Author keywords available]

Indexed keywords

CLASSIFIER TRAINING; CONCEPT NETWORKS; MAXIMAL MARGIN; MULTI-KERNEL; MULTI-LABEL LEARNING; ONLINE MODES; REAL DATA SETS; TRAINING SAMPLE;

EID: 84881063565     PISSN: 10450823     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.5591/978-1-57735-516-8/IJCAI11-271     Document Type: Conference Paper
Times cited : (10)

References (26)
  • 1
    • 14344252374 scopus 로고    scopus 로고
    • Multiple kernel learning, conic duality, and the smo algorithm
    • Francis R. Bach, Gert R. G. Lanckriet, and Michael I. Jordan. Multiple kernel learning, conic duality, and the smo algorithm. In ICML, 2004.
    • (2004) ICML
    • Bach, F.R.1    Lanckriet, G.R.G.2    Jordan, M.I.3
  • 2
    • 3042597440 scopus 로고    scopus 로고
    • Learning multi-label scene classification
    • DOI 10.1016/j.patcog.2004.03.009, PII S0031320304001074
    • M. R. Boutell, J. Luo, X. Shen, and C. M. Brown. Learning multi-label scene classification. Pattern Recognition, 37(9):1757-1771, 2004. (Pubitemid 38804465)
    • (2004) Pattern Recognition , vol.37 , Issue.9 , pp. 1757-1771
    • Boutell, M.R.1    Luo, J.2    Shen, X.3    Brown, C.M.4
  • 3
    • 0002205930 scopus 로고    scopus 로고
    • Inductive learning algorithms and representation for text categorization
    • S. T. Dumais, J. Platt, D. Heckerman, and M. Sahami. Inductive learning algorithms and representation for text categorization. In 7th ACM IKM, 1998.
    • (1998) 7th ACM IKM
    • Dumais, S.T.1    Platt, J.2    Heckerman, D.3    Sahami, M.4
  • 4
    • 76649137444 scopus 로고    scopus 로고
    • A kernel method for multi-labelled classification
    • Andre Elisseeff and Jason Weston. A kernel method for multi-labelled classification. In NIPS, 2002.
    • (2002) NIPS
    • Elisseeff, A.1    Weston, J.2
  • 5
    • 33745767102 scopus 로고    scopus 로고
    • Collective multi-label classification
    • Nadia Ghamrawi and Andrew McCallum. Collective multi-label classification. In CIKM, 2005.
    • (2005) CIKM
    • Ghamrawi, N.1    McCallum, A.2
  • 7
    • 14344263221 scopus 로고    scopus 로고
    • Multi-task feature and kernel selection for svms
    • Tony Jebara. Multi-task feature and kernel selection for svms. In ICML, 2004.
    • (2004) ICML
    • Jebara, T.1
  • 8
    • 77953193733 scopus 로고    scopus 로고
    • Drosophila gene expression pattern annotation through multi-instance multi-label learning
    • Ying-Xin Li, Shuiwang Ji, Sudhir Kumar, Jieping Ye, and Zhi-Hua Zhou. Drosophila gene expression pattern annotation through multi-instance multi-label learning. In IJCAI, 2009.
    • (2009) IJCAI
    • Li, Y.-X.1    Ji, S.2    Kumar, S.3    Ye, J.4    Zhou, Z.-H.5
  • 9
    • 77958559950 scopus 로고    scopus 로고
    • Learning the optimal neighborhood kernel for classification
    • Jun Liu, Jianhui Chen, Songcan Chen, and Jieping Ye. Learning the optimal neighborhood kernel for classification. In IJCAI, pages 1144-1149, 2009.
    • (2009) IJCAI , pp. 1144-1149
    • Liu, J.1    Chen, J.2    Chen, S.3    Ye, J.4
  • 10
    • 85162000125 scopus 로고    scopus 로고
    • Reverse multi-label learning
    • James Petterson and Tiberio Caetano. Reverse multi-label learning. In NIPS, 2010.
    • (2010) NIPS
    • Petterson, J.1    Caetano, T.2
  • 14
    • 85162059405 scopus 로고    scopus 로고
    • More data means less inference: A pseudo-max approach to structured learning
    • David Sontag, Ofer Meshi, Tommi Jaakkola, and Amir Globerson. More data means less inference: A pseudo-max approach to structured learning. In NIPS, 2010.
    • (2010) NIPS
    • Sontag, D.1    Meshi, O.2    Jaakkola, T.3    Globerson, A.4
  • 15
    • 84881247382 scopus 로고    scopus 로고
    • Multi-label learning with weak label
    • Yu-Yin Sun, Yin Zhang, and Zhi-Hua Zhou. Multi-label learning with weak label. In AAAI, 2010.
    • (2010) AAAI
    • Sun, Y.-Y.1    Zhang, Y.2    Zhou, Z.-H.3
  • 16
    • 78751693089 scopus 로고    scopus 로고
    • On multiple kernel learning with multiple labels
    • Lei Tang, Jianhui Chen, and Jieping Ye. On multiple kernel learning with multiple labels. In IJCAI, 2009.
    • (2009) IJCAI
    • Tang, L.1    Chen, J.2    Ye, J.3
  • 18
    • 14344250451 scopus 로고    scopus 로고
    • Support vector machine learning for interdependent and structured output spaces
    • Ioannis Tsochantaridis, Thomas Hofmann, Thorsten Joachims, and Yasemin Altun. Support vector machine learning for interdependent and structured output spaces. In ICML, 2004.
    • (2004) ICML
    • Tsochantaridis, I.1    Hofmann, T.2    Joachims, T.3    Altun, Y.4
  • 20
    • 0039722607 scopus 로고    scopus 로고
    • The effect of the input density distribution on kernel-based classifiers
    • Christopher Williams and Matthias Seeger. The effect of the input density distribution on kernel-based classifiers. In ICML, 2000.
    • (2000) ICML
    • Williams, C.1    Seeger, M.2
  • 22
    • 77956004771 scopus 로고    scopus 로고
    • Semantic context modeling with maximal margin conditional random fields for automatic image annotation
    • Yu Xiang, Xiangdong Zhou, Zuotao Liu, Tat-Seng Chua, and Chong-Wah Ngo. Semantic context modeling with maximal margin conditional random fields for automatic image annotation. In CVPR, 2010.
    • (2010) CVPR
    • Xiang, Y.1    Zhou, X.2    Liu, Z.3    Chua, T.-S.4    Ngo, C.-W.5
  • 23
    • 77955906893 scopus 로고    scopus 로고
    • Structured max-margin learning for multi-label image annotation
    • Xiangyang Xue, Hangzai Luo, and Jianping Fan. Structured max-margin learning for multi-label image annotation. In CIVR, 2010.
    • (2010) CIVR
    • Xue, X.1    Luo, H.2    Fan, J.3
  • 24
    • 36849011561 scopus 로고    scopus 로고
    • Model-shared subspace boosting for multi-label classification
    • Rong Yan, Jelena Tesic, and John Smith. Model-shared subspace boosting for multi-label classification. In KDD, pages 834-843, 2007.
    • (2007) KDD , pp. 834-843
    • Yan, R.1    Tesic, J.2    Smith, J.3
  • 25
    • 33947681316 scopus 로고    scopus 로고
    • Ml-knn: A lazy learning approach to multi-label learning
    • Min-Ling Zhang and Zhi-Hua Zhou. Ml-knn: A lazy learning approach to multi-label learning. Pattern Recognition, 40(7):2038-2048, 2007.
    • (2007) Pattern Recognition , vol.40 , Issue.7 , pp. 2038-2048
    • Zhang, M.-L.1    Zhou, Z.-H.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.