-
1
-
-
14344252374
-
Multiple kernel learning, conic duality, and the smo algorithm
-
Francis R. Bach, Gert R. G. Lanckriet, and Michael I. Jordan. Multiple kernel learning, conic duality, and the smo algorithm. In ICML, 2004.
-
(2004)
ICML
-
-
Bach, F.R.1
Lanckriet, G.R.G.2
Jordan, M.I.3
-
2
-
-
3042597440
-
Learning multi-label scene classification
-
DOI 10.1016/j.patcog.2004.03.009, PII S0031320304001074
-
M. R. Boutell, J. Luo, X. Shen, and C. M. Brown. Learning multi-label scene classification. Pattern Recognition, 37(9):1757-1771, 2004. (Pubitemid 38804465)
-
(2004)
Pattern Recognition
, vol.37
, Issue.9
, pp. 1757-1771
-
-
Boutell, M.R.1
Luo, J.2
Shen, X.3
Brown, C.M.4
-
3
-
-
0002205930
-
Inductive learning algorithms and representation for text categorization
-
S. T. Dumais, J. Platt, D. Heckerman, and M. Sahami. Inductive learning algorithms and representation for text categorization. In 7th ACM IKM, 1998.
-
(1998)
7th ACM IKM
-
-
Dumais, S.T.1
Platt, J.2
Heckerman, D.3
Sahami, M.4
-
4
-
-
76649137444
-
A kernel method for multi-labelled classification
-
Andre Elisseeff and Jason Weston. A kernel method for multi-labelled classification. In NIPS, 2002.
-
(2002)
NIPS
-
-
Elisseeff, A.1
Weston, J.2
-
5
-
-
33745767102
-
Collective multi-label classification
-
Nadia Ghamrawi and Andrew McCallum. Collective multi-label classification. In CIKM, 2005.
-
(2005)
CIKM
-
-
Ghamrawi, N.1
McCallum, A.2
-
7
-
-
14344263221
-
Multi-task feature and kernel selection for svms
-
Tony Jebara. Multi-task feature and kernel selection for svms. In ICML, 2004.
-
(2004)
ICML
-
-
Jebara, T.1
-
8
-
-
77953193733
-
Drosophila gene expression pattern annotation through multi-instance multi-label learning
-
Ying-Xin Li, Shuiwang Ji, Sudhir Kumar, Jieping Ye, and Zhi-Hua Zhou. Drosophila gene expression pattern annotation through multi-instance multi-label learning. In IJCAI, 2009.
-
(2009)
IJCAI
-
-
Li, Y.-X.1
Ji, S.2
Kumar, S.3
Ye, J.4
Zhou, Z.-H.5
-
9
-
-
77958559950
-
Learning the optimal neighborhood kernel for classification
-
Jun Liu, Jianhui Chen, Songcan Chen, and Jieping Ye. Learning the optimal neighborhood kernel for classification. In IJCAI, pages 1144-1149, 2009.
-
(2009)
IJCAI
, pp. 1144-1149
-
-
Liu, J.1
Chen, J.2
Chen, S.3
Ye, J.4
-
10
-
-
85162000125
-
Reverse multi-label learning
-
James Petterson and Tiberio Caetano. Reverse multi-label learning. In NIPS, 2010.
-
(2010)
NIPS
-
-
Petterson, J.1
Caetano, T.2
-
11
-
-
80052887532
-
Correlative multi-label video annotation
-
Guo-Jun Qi, Xian-Sheng Hua, Yong Rui, Jinhui Tang, Tao Mei, and Hong-Jiang Zhang. Correlative multi-label video annotation. In ACM MM, 2007.
-
(2007)
ACM MM
-
-
Qi, G.-J.1
Hua, X.-S.2
Rui, Y.3
Tang, J.4
Mei, T.5
Zhang, H.-J.6
-
13
-
-
84881045451
-
Large scale multiple kernel learning
-
S. Sonnenburg, G. Rtsch, C. Schfer, and B. Schlkopf. Large scale multiple kernel learning. JMLR, (7), 2007.
-
(2007)
JMLR
, Issue.7
-
-
Sonnenburg, S.1
Rtsch, G.2
Schfer, C.3
Schlkopf, B.4
-
14
-
-
85162059405
-
More data means less inference: A pseudo-max approach to structured learning
-
David Sontag, Ofer Meshi, Tommi Jaakkola, and Amir Globerson. More data means less inference: A pseudo-max approach to structured learning. In NIPS, 2010.
-
(2010)
NIPS
-
-
Sontag, D.1
Meshi, O.2
Jaakkola, T.3
Globerson, A.4
-
15
-
-
84881247382
-
Multi-label learning with weak label
-
Yu-Yin Sun, Yin Zhang, and Zhi-Hua Zhou. Multi-label learning with weak label. In AAAI, 2010.
-
(2010)
AAAI
-
-
Sun, Y.-Y.1
Zhang, Y.2
Zhou, Z.-H.3
-
16
-
-
78751693089
-
On multiple kernel learning with multiple labels
-
Lei Tang, Jianhui Chen, and Jieping Ye. On multiple kernel learning with multiple labels. In IJCAI, 2009.
-
(2009)
IJCAI
-
-
Tang, L.1
Chen, J.2
Ye, J.3
-
18
-
-
14344250451
-
Support vector machine learning for interdependent and structured output spaces
-
Ioannis Tsochantaridis, Thomas Hofmann, Thorsten Joachims, and Yasemin Altun. Support vector machine learning for interdependent and structured output spaces. In ICML, 2004.
-
(2004)
ICML
-
-
Tsochantaridis, I.1
Hofmann, T.2
Joachims, T.3
Altun, Y.4
-
20
-
-
0039722607
-
The effect of the input density distribution on kernel-based classifiers
-
Christopher Williams and Matthias Seeger. The effect of the input density distribution on kernel-based classifiers. In ICML, 2000.
-
(2000)
ICML
-
-
Williams, C.1
Seeger, M.2
-
22
-
-
77956004771
-
Semantic context modeling with maximal margin conditional random fields for automatic image annotation
-
Yu Xiang, Xiangdong Zhou, Zuotao Liu, Tat-Seng Chua, and Chong-Wah Ngo. Semantic context modeling with maximal margin conditional random fields for automatic image annotation. In CVPR, 2010.
-
(2010)
CVPR
-
-
Xiang, Y.1
Zhou, X.2
Liu, Z.3
Chua, T.-S.4
Ngo, C.-W.5
-
23
-
-
77955906893
-
Structured max-margin learning for multi-label image annotation
-
Xiangyang Xue, Hangzai Luo, and Jianping Fan. Structured max-margin learning for multi-label image annotation. In CIVR, 2010.
-
(2010)
CIVR
-
-
Xue, X.1
Luo, H.2
Fan, J.3
-
24
-
-
36849011561
-
Model-shared subspace boosting for multi-label classification
-
Rong Yan, Jelena Tesic, and John Smith. Model-shared subspace boosting for multi-label classification. In KDD, pages 834-843, 2007.
-
(2007)
KDD
, pp. 834-843
-
-
Yan, R.1
Tesic, J.2
Smith, J.3
-
25
-
-
33947681316
-
Ml-knn: A lazy learning approach to multi-label learning
-
Min-Ling Zhang and Zhi-Hua Zhou. Ml-knn: A lazy learning approach to multi-label learning. Pattern Recognition, 40(7):2038-2048, 2007.
-
(2007)
Pattern Recognition
, vol.40
, Issue.7
, pp. 2038-2048
-
-
Zhang, M.-L.1
Zhou, Z.-H.2
|