메뉴 건너뛰기




Volumn 331, Issue , 2016, Pages 45-66

Dynamic higher-order cumulants analysis for state monitoring based on a novel lag selection

Author keywords

Dynamic process; Higher order cumulants analysis (HCA); Lag selection; Process monitoring

Indexed keywords

INDEPENDENT COMPONENT ANALYSIS; MONITORING; PROCESS MONITORING;

EID: 84947814415     PISSN: 00200255     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.ins.2015.10.029     Document Type: Article
Times cited : (22)

References (43)
  • 1
    • 67649194392 scopus 로고    scopus 로고
    • Multivariate statistical batch process monitoring using dynamic independent component analysis
    • H. Albazzaz, and X. Wang Multivariate statistical batch process monitoring using dynamic independent component analysis Comput. Aid. Chem. Eng. 21 2006 1341 1346 10.1016/S1570-7946(06)80233-6
    • (2006) Comput. Aid. Chem. Eng. , vol.21 , pp. 1341-1346
    • Albazzaz, H.1    Wang, X.2
  • 2
    • 79952573528 scopus 로고    scopus 로고
    • Analysis and generalization of fault diagnosis methods for process monitoring
    • C.F. Alcala, and S.J. Qin Analysis and generalization of fault diagnosis methods for process monitoring J. Process Control 21 2011 322 330 10.1016/j.jprocont.2010.10.005
    • (2011) J. Process Control , vol.21 , pp. 322-330
    • Alcala, C.F.1    Qin, S.J.2
  • 3
    • 27144539455 scopus 로고    scopus 로고
    • Performance evaluation of an advanced local search evolutionary algorithm
    • A. Auger, and N. Hansen Performance evaluation of an advanced local search evolutionary algorithm The 2005 IEEE Congress Evolut. Comput. 2 2005 1777 1784 10.1109/CEC.2005.1554903
    • (2005) The 2005 IEEE Congress Evolut. Comput. , vol.2 , pp. 1777-1784
    • Auger, A.1    Hansen, N.2
  • 4
    • 84888433338 scopus 로고    scopus 로고
    • A process monitoring method based on noisy independent component analysis
    • L. Cai, X. Tian, and S. Chen A process monitoring method based on noisy independent component analysis Neurocomputing 127 2014 231 246 10.1016/j.neucom.2013.07.029
    • (2014) Neurocomputing , vol.127 , pp. 231-246
    • Cai, L.1    Tian, X.2    Chen, S.3
  • 5
    • 0036466502 scopus 로고    scopus 로고
    • Dynamic process fault monitoring based on neural network and PCA
    • J. Chen, and C.-M. Liao Dynamic process fault monitoring based on neural network and PCA J. Process Control 12 2002 277 289 10.1016/S0959-1524(01)00027-0
    • (2002) J. Process Control , vol.12 , pp. 277-289
    • Chen, J.1    Liao, C.-M.2
  • 6
    • 0034643075 scopus 로고    scopus 로고
    • Fault diagnosis in chemical processes using fisher discriminant analysis, discriminant partial least squares, and principal component analysis
    • L.H. Chiang, E.L. Russell, and R.D. Braatz Fault diagnosis in chemical processes using fisher discriminant analysis, discriminant partial least squares, and principal component analysis Chemomet. Intell. Lab. Syst. 50 2000 243 252 10.1016/S0169-7439(99)00061-1
    • (2000) Chemomet. Intell. Lab. Syst. , vol.50 , pp. 243-252
    • Chiang, L.H.1    Russell, E.L.2    Braatz, R.D.3
  • 8
    • 10044259622 scopus 로고    scopus 로고
    • Nonlinear dynamic process monitoring based on dynamic kernel PCA
    • S. Choi, and I. Lee Nonlinear dynamic process monitoring based on dynamic kernel PCA Chem. Eng. Sci. 59 2004 5897 5908 10.1016/j.ces.2004.07.019
    • (2004) Chem. Eng. Sci. , vol.59 , pp. 5897-5908
    • Choi, S.1    Lee, I.2
  • 9
    • 3843106846 scopus 로고    scopus 로고
    • Diagnosis of poor control-loop performance using higher-order statistics
    • M.S. Choudhury, S. Shah, and N. Thornhill Diagnosis of poor control-loop performance using higher-order statistics Automatica 40 2004 1719 1728 10.1016/j.automatica.2004.03.022
    • (2004) Automatica , vol.40 , pp. 1719-1728
    • Choudhury, M.S.1    Shah, S.2    Thornhill, N.3
  • 10
    • 84884155797 scopus 로고    scopus 로고
    • Nonlinear process fault pattern recognition using statistics kernel PCA similarity factor
    • X. Deng, and X. Tian Nonlinear process fault pattern recognition using statistics kernel PCA similarity factor Neurocomputing 121 2013 298 308 10.1016/j.neucom.2013.04.042
    • (2013) Neurocomputing , vol.121 , pp. 298-308
    • Deng, X.1    Tian, X.2
  • 11
    • 0043015539 scopus 로고    scopus 로고
    • Nonlinear principal component analysis based on principal curves and neural networks
    • D. Dong, and T. McAvoy Nonlinear principal component analysis based on principal curves and neural networks Comput. Chem. Eng. 20 1996 65 78 10.1016/0098-1354(95)00003-K
    • (1996) Comput. Chem. Eng. , vol.20 , pp. 65-78
    • Dong, D.1    McAvoy, T.2
  • 12
    • 0027561446 scopus 로고
    • A plant-wide industrial process control problem
    • J. Downs, and E. Vogel A plant-wide industrial process control problem Comput. Chem. Eng. 17 1993 245 255 10.1016/0098-1354(93)80018-I
    • (1993) Comput. Chem. Eng. , vol.17 , pp. 245-255
    • Downs, J.1    Vogel, E.2
  • 13
    • 84889594466 scopus 로고    scopus 로고
    • Online monitoring of nonlinear multivariate industrial processes using filtering KICA-PCA
    • J. Fan, S.J. Qin, and Y. Wang Online monitoring of nonlinear multivariate industrial processes using filtering KICA-PCA Control Eng. Prac. 22 2014 205 216 10.1016/j.conengprac.2013.06.017
    • (2014) Control Eng. Prac. , vol.22 , pp. 205-216
    • Fan, J.1    Qin, S.J.2    Wang, Y.3
  • 14
    • 84889679613 scopus 로고    scopus 로고
    • Fault detection and diagnosis of non-linear non-Gaussian dynamic processes using kernel dynamic independent component analysis
    • J. Fan, and Y. Wang Fault detection and diagnosis of non-linear non-Gaussian dynamic processes using kernel dynamic independent component analysis Inf. Sci. 259 2014 369 379 10.1016/j.ins.2013.06.021
    • (2014) Inf. Sci. , vol.259 , pp. 369-379
    • Fan, J.1    Wang, Y.2
  • 15
    • 34247109083 scopus 로고    scopus 로고
    • Process monitoring based on independent component analysis-principal component analysis (ICA-PCA) and similarity factors
    • Z. Ge, and Z. Song Process monitoring based on independent component analysis-principal component analysis (ICA-PCA) and similarity factors Ind. Eng. Chem. Res. 46 2007 2054 2063 10.1021/ie061083g
    • (2007) Ind. Eng. Chem. Res. , vol.46 , pp. 2054-2063
    • Ge, Z.1    Song, Z.2
  • 16
    • 84874770366 scopus 로고    scopus 로고
    • Performance-driven ensemble learning ICA model for improved non-Gaussian process monitoring
    • Z. Ge, and Z. Song Performance-driven ensemble learning ICA model for improved non-Gaussian process monitoring Chemomet. Intell. Lab. Syst. 123 2013 1 8 10.1016/j.chemolab.2013.02.001
    • (2013) Chemomet. Intell. Lab. Syst. , vol.123 , pp. 1-8
    • Ge, Z.1    Song, Z.2
  • 17
    • 0025474247 scopus 로고
    • Cumulant-based order determination of non-Gaussian ARMA models
    • G. Giannakis, and J. Mendel Cumulant-based order determination of non-gaussian ARMA models IEEE Trans. Acoustics, Speech Signal Proces. 38 1990 1411 1423 10.1109/29.57576
    • (1990) IEEE Trans. Acoustics, Speech Signal Proces. , vol.38 , pp. 1411-1423
    • Giannakis, G.1    Mendel, J.2
  • 18
    • 0025463348 scopus 로고
    • Signal detection and classification using matched filtering and higher order statistics
    • G. Giannakis, and M. Tsatsanis Signal detection and classification using matched filtering and higher order statistics IEEE Trans. Acoustics, Speech Signal Proces. 38 1990 1284 1296 10.1109/29.57557
    • (1990) IEEE Trans. Acoustics, Speech Signal Proces. , vol.38 , pp. 1284-1296
    • Giannakis, G.1    Tsatsanis, M.2
  • 19
    • 84863726256 scopus 로고    scopus 로고
    • An intelligent augmentation of particle swarm optimization with multiple adaptive methods
    • M. Hu, T. Wu, and J.D. Weir An intelligent augmentation of particle swarm optimization with multiple adaptive methods Inf. Sci. 213 2012 68 83 10.1016/j.ins.2012.05.020
    • (2012) Inf. Sci. , vol.213 , pp. 68-83
    • Hu, M.1    Wu, T.2    Weir, J.D.3
  • 20
    • 0032629347 scopus 로고    scopus 로고
    • Fast and robust fixed-point algorithms for independent component analysis
    • A. Hyvärinen Fast and robust fixed-point algorithms for independent component analysis IEEE Trans. Neural Netw. 10 1999 626 634 10.1109/72.761722
    • (1999) IEEE Trans. Neural Netw. , vol.10 , pp. 626-634
    • Hyvärinen, A.1
  • 21
    • 0042826822 scopus 로고    scopus 로고
    • Independent component analysis: Algorithms and applications
    • A. Hyvärinen, and E. Oja Independent component analysis: algorithms and applications Neural Netw. 13 2000 411 430 10.1016/S0893-6080(00)00026-5
    • (2000) Neural Netw. , vol.13 , pp. 411-430
    • Hyvärinen, A.1    Oja, E.2
  • 23
    • 84880623050 scopus 로고    scopus 로고
    • Weighted kernel principal component analysis based on probability density estimation and moving window and its application in nonlinear chemical process monitoring
    • Q. Jiang, and X. Yan Weighted kernel principal component analysis based on probability density estimation and moving window and its application in nonlinear chemical process monitoring Chemomet. Intell. Lab. Syst. 127 2013 121 131 10.1016/j.chemolab.2013.06.013
    • (2013) Chemomet. Intell. Lab. Syst. , vol.127 , pp. 121-131
    • Jiang, Q.1    Yan, X.2
  • 24
    • 84857675671 scopus 로고    scopus 로고
    • Dynamic model-based fault diagnosis for (bio)chemical batch processes
    • P.V. den Kerkhof, G. Gins, J. Vanlaer, and J.F.V. Impe Dynamic model-based fault diagnosis for (bio)chemical batch processes Comput. Chem. Eng. 40 2012 12 21 10.1016/j.compchemeng.2012.01.013
    • (2012) Comput. Chem. Eng. , vol.40 , pp. 12-21
    • Den Kerkhof, P.V.1    Gins, G.2    Vanlaer, J.3    Impe, J.F.V.4
  • 25
    • 0028892168 scopus 로고
    • Disturbance detection and isolation by dynamic principal component analysis
    • W. Ku, R.H. Storer, and C. Georgakis Disturbance detection and isolation by dynamic principal component analysis Chemometr. Intell. Lab. Syst. 30 1995 179 196 10.1016/0169-7439(95)00076-3
    • (1995) Chemometr. Intell. Lab. Syst. , vol.30 , pp. 179-196
    • Ku, W.1    Storer, R.H.2    Georgakis, C.3
  • 26
    • 33749473097 scopus 로고    scopus 로고
    • Fault detection and diagnosis based on modified independent component analysis
    • J.-M. Lee, S.J. Qin, and I.-B. Lee Fault detection and diagnosis based on modified independent component analysis AIChE J. 52 2006 3501 3514 10.1002/aic.10978
    • (2006) AIChE J. , vol.52 , pp. 3501-3514
    • Lee, J.-M.1    Qin, S.J.2    Lee, I.-B.3
  • 27
    • 34548593553 scopus 로고    scopus 로고
    • Fault detection of non-linear processes using kernel independent component analysis
    • J.-M. Lee, S.J. Qin, and I.-B. Lee Fault detection of non-linear processes using kernel independent component analysis The Canadian J. Chem. Eng. 85 2007 526 536 10.1002/cjce.5450850414
    • (2007) The Canadian J. Chem. Eng. , vol.85 , pp. 526-536
    • Lee, J.-M.1    Qin, S.J.2    Lee, I.-B.3
  • 28
    • 0346911568 scopus 로고    scopus 로고
    • Nonlinear process monitoring using kernel principal component analysis
    • J.-M. Lee, C. Yoo, S.W. Choi, P.A. Vanrolleghem, and I.-B. Lee Nonlinear process monitoring using kernel principal component analysis Chem. Eng. Sci. 59 2004 223 234 10.1016/j.ces.2003.09.012
    • (2004) Chem. Eng. Sci. , vol.59 , pp. 223-234
    • Lee, J.-M.1    Yoo, C.2    Choi, S.W.3    Vanrolleghem, P.A.4    Lee, I.-B.5
  • 29
    • 3042632377 scopus 로고    scopus 로고
    • Statistical monitoring of dynamic processes based on dynamic independent component analysis
    • J.-M. Lee, C. Yoo, and I.-B. Lee Statistical monitoring of dynamic processes based on dynamic independent component analysis Chem. Eng. Sci. 59 2004 2995 3006 10.1016/j.ces.2004.04.031
    • (2004) Chem. Eng. Sci. , vol.59 , pp. 2995-3006
    • Lee, J.-M.1    Yoo, C.2    Lee, I.-B.3
  • 30
    • 1342285571 scopus 로고    scopus 로고
    • Statistical process monitoring with independent component analysis
    • J.-M. Lee, C.-K. Yoo, and I.-B. Lee Statistical process monitoring with independent component analysis J. Process Control 14 2004 467 485 10.1016/j.jprocont.2003.09.004
    • (2004) J. Process Control , vol.14 , pp. 467-485
    • Lee, J.-M.1    Yoo, C.-K.2    Lee, I.-B.3
  • 31
    • 0030525683 scopus 로고    scopus 로고
    • Non-parametric confidence bounds for process performance monitoring charts
    • E. Martin, and A. Morris Non-parametric confidence bounds for process performance monitoring charts J. Process Control 6 1996 349 358 10.1016/0959-1524(96)00010-8
    • (1996) J. Process Control , vol.6 , pp. 349-358
    • Martin, E.1    Morris, A.2
  • 32
    • 84877112226 scopus 로고    scopus 로고
    • Defining the structure of DPCA models and its impact on process monitoring and prediction activities
    • T.J. Rato, and M.S. Reis Defining the structure of DPCA models and its impact on process monitoring and prediction activities Chemomet. Intell. Lab. Syst. 125 2013 74 86 10.1016/j.chemolab.2013.03.009
    • (2013) Chemomet. Intell. Lab. Syst. , vol.125 , pp. 74-86
    • Rato, T.J.1    Reis, M.S.2
  • 34
    • 0028517418 scopus 로고
    • Estimation and detection in non-Gaussian noise using higher order statistics
    • B. Sadler, G. Giannakis, and K.-S. Lii Estimation and detection in non-Gaussian noise using higher order statistics IEEE Trans. Signal Proces. 42 1994 2729 2741 10.1109/78.324738
    • (1994) IEEE Trans. Signal Proces. , vol.42 , pp. 2729-2741
    • Sadler, B.1    Giannakis, G.2    Lii, K.-S.3
  • 35
    • 80051697507 scopus 로고    scopus 로고
    • Fault detection, identification and diagnosis using CUSUM based PCA
    • M. Shams, H. Budman, and T. Duever Fault detection, identification and diagnosis using CUSUM based PCA Chem. Eng. Sci. 66 2011 4488 4498 10.1016/j.ces.2011.05.028
    • (2011) Chem. Eng. Sci. , vol.66 , pp. 4488-4498
    • Shams, M.1    Budman, H.2    Duever, T.3
  • 36
    • 77957832720 scopus 로고    scopus 로고
    • Dynamic independent component analysis approach for fault detection and diagnosis
    • G. Stefatos, and A.B. Hamza Dynamic independent component analysis approach for fault detection and diagnosis Expert Syst. Appl. 37 2010 8606 8617 10.1016/j.eswa.2010.06.101
    • (2010) Expert Syst. Appl. , vol.37 , pp. 8606-8617
    • Stefatos, G.1    Hamza, A.B.2
  • 38
    • 0033230994 scopus 로고    scopus 로고
    • Selection of the number of principal components: The variance of the reconstruction error criterion with a comparison to other methods
    • S. Valle, W. Li, and S.J. Qin Selection of the number of principal components: the variance of the reconstruction error criterion with a comparison to other methods Ind. Eng. Chem. Res. 38 1999 4389 4401 10.1021/ie990110i
    • (1999) Ind. Eng. Chem. Res. , vol.38 , pp. 4389-4401
    • Valle, S.1    Li, W.2    Qin, S.J.3
  • 39
    • 84857191031 scopus 로고    scopus 로고
    • Dimension reduction method of independent component analysis for process monitoring based on minimum mean square error
    • J. Wang, Y. Zhang, H. Cao, and W. Zhu Dimension reduction method of independent component analysis for process monitoring based on minimum mean square error J. Proc. Control 22 2012 477 487 10.1016/j.jprocont.2011.11.005
    • (2012) J. Proc. Control , vol.22 , pp. 477-487
    • Wang, J.1    Zhang, Y.2    Cao, H.3    Zhu, W.4
  • 40
    • 77951299089 scopus 로고    scopus 로고
    • Multivariate statistical process monitoring using an improved independent component analysis
    • L. Wang, and H. Shi Multivariate statistical process monitoring using an improved independent component analysis Chem. Eng. Res. Des. 88 2010 403 414 10.1016/j.cherd.2009.09.002
    • (2010) Chem. Eng. Res. Des. , vol.88 , pp. 403-414
    • Wang, L.1    Shi, H.2
  • 41
    • 84896500286 scopus 로고    scopus 로고
    • Online monitoring of multivariate processes using higher-order cumulants analysis
    • Y. Wang, J. Fan, and Y. Yao Online monitoring of multivariate processes using higher-order cumulants analysis Ind. Eng. Chem. Res. 53 2014 4328 4338 10.1021/ie401834e
    • (2014) Ind. Eng. Chem. Res. , vol.53 , pp. 4328-4338
    • Wang, Y.1    Fan, J.2    Yao, Y.3
  • 42
    • 2342615505 scopus 로고    scopus 로고
    • On-line monitoring of batch processes using multi-way independent component analysis
    • C.K. Yoo, J.M. Lee, P.A. Vanrolleghem, and I.B. Lee On-line monitoring of batch processes using multi-way independent component analysis Chemomet. Intell. Lab. Syst. 71 2004 151 163 10.1016/j.chemolab.2004.02.002
    • (2004) Chemomet. Intell. Lab. Syst. , vol.71 , pp. 151-163
    • Yoo, C.K.1    Lee, J.M.2    Vanrolleghem, P.A.3    Lee, I.B.4
  • 43
    • 77954386508 scopus 로고    scopus 로고
    • Fault detection of non-Gaussian processes based on modified independent component analysis
    • Y. Zhang, and Y. Zhang Fault detection of non-Gaussian processes based on modified independent component analysis Chem. Eng. Sci. 65 2010 4630 4639 10.1016/j.ces.2010.05.010
    • (2010) Chem. Eng. Sci. , vol.65 , pp. 4630-4639
    • Zhang, Y.1    Zhang, Y.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.