메뉴 건너뛰기




Volumn 53, Issue 11, 2014, Pages 4328-4338

Online monitoring of multivariate processes using higher-order cumulants analysis

Author keywords

[No Author keywords available]

Indexed keywords

MULTIVARIANT ANALYSIS;

EID: 84896500286     PISSN: 08885885     EISSN: 15205045     Source Type: Journal    
DOI: 10.1021/ie401834e     Document Type: Article
Times cited : (27)

References (45)
  • 1
    • 0037443803 scopus 로고    scopus 로고
    • A review of process fault detection and diagnosis Part III: Process history based methods
    • Venkatasubramanian, V.; Rengaswamy, R.; Kavuri, S. N.; Yin, K. A review of process fault detection and diagnosis Part III: Process history based methods Comput. Chem. Eng. 2003, 27, 327-346
    • (2003) Comput. Chem. Eng. , vol.27 , pp. 327-346
    • Venkatasubramanian, V.1    Rengaswamy, R.2    Kavuri, S.N.3    Yin, K.4
  • 2
    • 0242354134 scopus 로고    scopus 로고
    • Statistical process monitoring: Basics and beyond
    • Qin, S. J. Statistical process monitoring: basics and beyond J. Chemom. 2003, 17, 480-502
    • (2003) J. Chemom. , vol.17 , pp. 480-502
    • Qin, S.J.1
  • 3
    • 77957599856 scopus 로고    scopus 로고
    • Total projection to latent structures for process monitoring
    • Zhou, D. H.; Li, G.; Qin, S. J. Total projection to latent structures for process monitoring AIChE J. 2011, 56, 168-178
    • (2011) AIChE J. , vol.56 , pp. 168-178
    • Zhou, D.H.1    Li, G.2    Qin, S.J.3
  • 4
    • 70349329819 scopus 로고    scopus 로고
    • Multiway Gaussian mixture model based multiphase batch process monitoring
    • Yu, J.; Qin, S. J. Multiway Gaussian mixture model based multiphase batch process monitoring Ind. Eng. Chem. Res. 2009, 48, 8585-8594
    • (2009) Ind. Eng. Chem. Res. , vol.48 , pp. 8585-8594
    • Yu, J.1    Qin, S.J.2
  • 5
    • 80051912783 scopus 로고    scopus 로고
    • Generalized reconstruction-based contributions for output-relevant fault diagnosis with application to the Tennessee Eastman process
    • Li, G.; Alcala, C. F.; Qin, S. J.; Zhou, D. H. Generalized reconstruction-based contributions for output-relevant fault diagnosis with application to the Tennessee Eastman process IEEE Trans. Control Syst. Technol. 2011, 19, 1114-1127
    • (2011) IEEE Trans. Control Syst. Technol. , vol.19 , pp. 1114-1127
    • Li, G.1    Alcala, C.F.2    Qin, S.J.3    Zhou, D.H.4
  • 7
    • 0028483476 scopus 로고
    • Monitoring batch processes using multiway principal component analysis
    • Nomikos, P.; MacGregor, J. F. Monitoring batch processes using multiway principal component analysis AIChE J. 1994, 40, 1361-1375
    • (1994) AIChE J. , vol.40 , pp. 1361-1375
    • Nomikos, P.1    Macgregor, J.F.2
  • 8
    • 0028892168 scopus 로고
    • Disturbance detection and isolation by dynamic principal component analysis
    • Ku, W.; Storer, R. H.; Georgakis, C. Disturbance detection and isolation by dynamic principal component analysis Chemom. Intell. Lab. Syst. 1995, 30, 179-196
    • (1995) Chemom. Intell. Lab. Syst. , vol.30 , pp. 179-196
    • Ku, W.1    Storer, R.H.2    Georgakis, C.3
  • 9
    • 0036466502 scopus 로고    scopus 로고
    • Dynamic process fault monitoring based on neural network and PCA
    • Chen, J.; Liao, C.-M. Dynamic process fault monitoring based on neural network and PCA J. Process Control 2002, 12, 277-289
    • (2002) J. Process Control , vol.12 , pp. 277-289
    • Chen, J.1    Liao, C.-M.2
  • 10
    • 0346911568 scopus 로고    scopus 로고
    • Nonlinear process monitoring using kernel principal component analysis
    • Lee, J. M.; Yoo, C. K.; Choi, S. W.; Vanrolleghem, P. A.; Lee, I. B. Nonlinear process monitoring using kernel principal component analysis Chem. Eng. Sci. 2004, 59, 223-234
    • (2004) Chem. Eng. Sci. , vol.59 , pp. 223-234
    • Lee, J.M.1    Yoo, C.K.2    Choi, S.W.3    Vanrolleghem, P.A.4    Lee, I.B.5
  • 11
    • 77956075435 scopus 로고    scopus 로고
    • Reconstruction-based contribution for process monitoring with kernel principal component analysis
    • Alcala, C. F.; Qin, S. J. Reconstruction-based contribution for process monitoring with kernel principal component analysis Ind. Eng. Chem. Res. 2010, 49, 7849-7857
    • (2010) Ind. Eng. Chem. Res. , vol.49 , pp. 7849-7857
    • Alcala, C.F.1    Qin, S.J.2
  • 12
    • 77749340024 scopus 로고    scopus 로고
    • Adaptive kernel principal component analysis (KPCA) for monitoring small disturbances of nonlinear processes
    • Cheng, C. Y.; Hsu, C. C.; Chen, M. C. Adaptive kernel principal component analysis (KPCA) for monitoring small disturbances of nonlinear processes Ind. Eng. Chem. Res. 2010, 49, 2254-2262
    • (2010) Ind. Eng. Chem. Res. , vol.49 , pp. 2254-2262
    • Cheng, C.Y.1    Hsu, C.C.2    Chen, M.C.3
  • 13
    • 80051697507 scopus 로고    scopus 로고
    • Fault detection, identification and diagnosis using CUSUM based PCA
    • Shams, M. A. B.; Budman, H. M.; Duever, T. A. Fault detection, identification and diagnosis using CUSUM based PCA Chem. Eng. Sci. 2011, 66, 4488-4498
    • (2011) Chem. Eng. Sci. , vol.66 , pp. 4488-4498
    • Shams, M.A.B.1    Budman, H.M.2    Duever, T.A.3
  • 14
    • 78149468553 scopus 로고    scopus 로고
    • Fault diagnosis of nonlinear processes using multiscale KPCA and multiscale KPLS
    • Zhang, Y.; Ma, C. Fault diagnosis of nonlinear processes using multiscale KPCA and multiscale KPLS Chem. Eng. Sci. 2011, 66, 64-72
    • (2011) Chem. Eng. Sci. , vol.66 , pp. 64-72
    • Zhang, Y.1    Ma, C.2
  • 15
    • 0028416938 scopus 로고
    • Independent component analysis, a new concept
    • Comon, P. Independent component analysis, a new concept Signal Process. 1994, 36, 287-314
    • (1994) Signal Process. , vol.36 , pp. 287-314
    • Comon, P.1
  • 16
    • 0032629347 scopus 로고    scopus 로고
    • Fast and robust fixed-point algorithms for independent component analysis
    • Hyvärinen, A. Fast and robust fixed-point algorithms for independent component analysis IEEE Trans. Neural Networks 1999, 10, 626-634
    • (1999) IEEE Trans. Neural Networks , vol.10 , pp. 626-634
    • Hyvärinen, A.1
  • 17
    • 0042826822 scopus 로고    scopus 로고
    • Independent component analysis: Algorithms and applications
    • Hyvärinen, A.; Oja, E. Independent component analysis: Algorithms and applications Neural Networks 2000, 13, 411-430
    • (2000) Neural Networks , vol.13 , pp. 411-430
    • Hyvärinen, A.1    Oja, E.2
  • 18
    • 1342285571 scopus 로고    scopus 로고
    • Statistical process monitoring with independent component analysis
    • Lee, J. M.; Yoo, C. K.; Lee, I. B. Statistical process monitoring with independent component analysis J. Process Control 2004, 14, 467-485
    • (2004) J. Process Control , vol.14 , pp. 467-485
    • Lee, J.M.1    Yoo, C.K.2    Lee, I.B.3
  • 19
    • 33749473097 scopus 로고    scopus 로고
    • Fault detection and diagnosis of multivariate process based on modified independent component analysis
    • Lee, J. M.; Qin, S. J.; Lee, I. B. Fault detection and diagnosis of multivariate process based on modified independent component analysis AIChE J. 2006, 52, 3501-3514
    • (2006) AIChE J. , vol.52 , pp. 3501-3514
    • Lee, J.M.1    Qin, S.J.2    Lee, I.B.3
  • 20
    • 84857191031 scopus 로고    scopus 로고
    • Dimension reduction method of independent component analysis for process monitoring based on minimum mean square error
    • Wang, J.; Zhang, Y.; Cao, H.; Zhu, W. Dimension reduction method of independent component analysis for process monitoring based on minimum mean square error J. Process Control 2012, 22, 477-487
    • (2012) J. Process Control , vol.22 , pp. 477-487
    • Wang, J.1    Zhang, Y.2    Cao, H.3    Zhu, W.4
  • 21
    • 3042632377 scopus 로고    scopus 로고
    • Statistical monitoring of dynamic processes based on dynamic independent component analysis
    • Lee, J.-M.; Yoo, C.; Lee, I.-B. Statistical monitoring of dynamic processes based on dynamic independent component analysis Chem. Eng. Sci. 2004, 59, 2995-3006
    • (2004) Chem. Eng. Sci. , vol.59 , pp. 2995-3006
    • Lee, J.-M.1    Yoo, C.2    Lee, I.-B.3
  • 22
    • 34548593553 scopus 로고    scopus 로고
    • Fault detection of non-linear processes using kernel independent component analysis
    • Lee, J. M.; Qin, S. J.; Lee, I. B. Fault detection of non-linear processes using kernel independent component analysis Can. J. Chem. Eng. 2007, 85, 526-536
    • (2007) Can. J. Chem. Eng. , vol.85 , pp. 526-536
    • Lee, J.M.1    Qin, S.J.2    Lee, I.B.3
  • 23
    • 49249127452 scopus 로고    scopus 로고
    • Robust Online Monitoring for Multimode Processes Based on Nonlinear External Analysis
    • Ge, Z.; Yang, C.; Song, Z.; Wang, H. Robust Online Monitoring for Multimode Processes Based on Nonlinear External Analysis Ind. Eng. Chem. Res. 2008, 47, 4775-4783
    • (2008) Ind. Eng. Chem. Res. , vol.47 , pp. 4775-4783
    • Ge, Z.1    Yang, C.2    Song, Z.3    Wang, H.4
  • 24
    • 58749115727 scopus 로고    scopus 로고
    • Enhanced statistical analysis of nonlinear processes using KPCA, KICA and SVM
    • Zhang, Y. Enhanced statistical analysis of nonlinear processes using KPCA, KICA and SVM Chem. Eng. Sci. 2009, 64, 801-811
    • (2009) Chem. Eng. Sci. , vol.64 , pp. 801-811
    • Zhang, Y.1
  • 25
    • 70350318936 scopus 로고    scopus 로고
    • Nonlinear batch process monitoring using phase-based kernel-independent component analysis-principal component analysis (KICA-PCA)
    • Zhao, C.; Gao, F.; Wang, F. Nonlinear batch process monitoring using phase-based kernel-independent component analysis-principal component analysis (KICA-PCA) Ind. Eng. Chem. Res. 2009, 48, 9163-9174
    • (2009) Ind. Eng. Chem. Res. , vol.48 , pp. 9163-9174
    • Zhao, C.1    Gao, F.2    Wang, F.3
  • 26
    • 77957832720 scopus 로고    scopus 로고
    • Dynamic independent component analysis approach for fault detection and diagnosis
    • Stefatos, G.; Hamza, A. B. Dynamic independent component analysis approach for fault detection and diagnosis Expert Syst. Appl. 2010, 37, 8606-8617
    • (2010) Expert Syst. Appl. , vol.37 , pp. 8606-8617
    • Stefatos, G.1    Hamza, A.B.2
  • 27
    • 84859903438 scopus 로고    scopus 로고
    • Hidden Markov model based adaptive independent component analysis approach for complex chemical process monitoring and fault detection
    • Rashid, M. M.; Yu, J. Hidden Markov model based adaptive independent component analysis approach for complex chemical process monitoring and fault detection Ind. Eng. Chem. Res. 2012, 51, 5506-5514
    • (2012) Ind. Eng. Chem. Res. , vol.51 , pp. 5506-5514
    • Rashid, M.M.1    Yu, J.2
  • 28
    • 84861950250 scopus 로고    scopus 로고
    • Multivariate industrial process monitoring based on the integration method of canonical variate analysis and independent component analysis
    • Yang, Y.; Chen, Y.; Chen, X.; Liu, X. Multivariate industrial process monitoring based on the integration method of canonical variate analysis and independent component analysis Chemom. Intell. Lab. Syst. 2012, 116, 94-101
    • (2012) Chemom. Intell. Lab. Syst. , vol.116 , pp. 94-101
    • Yang, Y.1    Chen, Y.2    Chen, X.3    Liu, X.4
  • 29
    • 84861191986 scopus 로고    scopus 로고
    • A new dissimilarity method integrating multidimensional mutual information and independent component analysis for non-Gaussian dynamic process monitoring
    • Rashid, M. M.; Yu, J. A new dissimilarity method integrating multidimensional mutual information and independent component analysis for non-Gaussian dynamic process monitoring Chemom. Intell. Lab. Syst. 2012, 115, 44-58
    • (2012) Chemom. Intell. Lab. Syst. , vol.115 , pp. 44-58
    • Rashid, M.M.1    Yu, J.2
  • 30
    • 84889594466 scopus 로고    scopus 로고
    • Online monitoring of nonlinear multivariate industrial process using filtering KICA-PCA
    • Fan, J.; Qin, S. J.; Wang, Y. Online monitoring of nonlinear multivariate industrial process using filtering KICA-PCA Control Eng. Pract. 2014, 22, 205-216
    • (2014) Control Eng. Pract. , vol.22 , pp. 205-216
    • Fan, J.1    Qin, S.J.2    Wang, Y.3
  • 31
    • 84889679613 scopus 로고    scopus 로고
    • Fault detection and diagnosis of non-linear non-Gaussian dynamic processes using kernel dynamic independent component analysis
    • Fan, J.; Wang, Y. Fault detection and diagnosis of non-linear non-Gaussian dynamic processes using kernel dynamic independent component analysis Inf. Sci. 2014, 259, 369-379
    • (2014) Inf. Sci. , vol.259 , pp. 369-379
    • Fan, J.1    Wang, Y.2
  • 32
    • 84879146242 scopus 로고    scopus 로고
    • Combined indices for ICA and their applications to multivariate process fault diagnosis (in Chinese)
    • Fan, J.; Wang, Y.; Qin, S. J. Combined indices for ICA and their applications to multivariate process fault diagnosis (in Chinese) Acta Autom. Sin. 2013, 39, 494-501
    • (2013) Acta Autom. Sin. , vol.39 , pp. 494-501
    • Fan, J.1    Wang, Y.2    Qin, S.J.3
  • 33
    • 79952573528 scopus 로고    scopus 로고
    • Analysis and generalization of fault diagnosis methods for process monitoring
    • Alcala, C. F.; Qin, S. J. Analysis and generalization of fault diagnosis methods for process monitoring J. Process Control 2011, 21, 322-330
    • (2011) J. Process Control , vol.21 , pp. 322-330
    • Alcala, C.F.1    Qin, S.J.2
  • 34
    • 0026119462 scopus 로고
    • Tutorial on higher-order statistics (spectra) in signal processing and system theory: Theoretical results and some applications
    • Mendel, J. M. Tutorial on higher-order statistics (spectra) in signal processing and system theory: Theoretical results and some applications IEEE Trans. Signal Process. 1991, 79, 278-305
    • (1991) IEEE Trans. Signal Process. , vol.79 , pp. 278-305
    • Mendel, J.M.1
  • 36
    • 0025463348 scopus 로고
    • Signal detection and classification using matched filtering and higher order statistics
    • Giannakis, G. B.; Tsatsanis, M. K. Signal detection and classification using matched filtering and higher order statistics IEEE Trans. Acoust., Speech, Signal Process. 1990, 38, 1284-1296
    • (1990) IEEE Trans. Acoust., Speech, Signal Process. , vol.38 , pp. 1284-1296
    • Giannakis, G.B.1    Tsatsanis, M.K.2
  • 37
    • 0028517418 scopus 로고
    • Estimation and detection in non-Gaussian noise using higher order statistics
    • Sadler, B. M.; Giannakis, G. B.; Lii, K.-S. Estimation and detection in non-Gaussian noise using higher order statistics IEEE Trans. Signal Process. 1994, 42, 2729-2741
    • (1994) IEEE Trans. Signal Process. , vol.42 , pp. 2729-2741
    • Sadler, B.M.1    Giannakis, G.B.2    Lii, K.-S.3
  • 38
    • 3843106846 scopus 로고    scopus 로고
    • Diagnosis of poor control-loop performance using higher-order statistics
    • Choudhury, M. A. A. S.; Shah, S. L.; Thornhill, N. F. Diagnosis of poor control-loop performance using higher-order statistics Automatica 2004, 40, 1719-1728
    • (2004) Automatica , vol.40 , pp. 1719-1728
    • Choudhury, M.A.A.S.1    Shah, S.L.2    Thornhill, N.F.3
  • 39
    • 0027561446 scopus 로고
    • A plant-wide industrial process control problem
    • Downs, J. J.; Vogel, E. F. A plant-wide industrial process control problem Comput. Chem. Eng. 1993, 17, 245-255
    • (1993) Comput. Chem. Eng. , vol.17 , pp. 245-255
    • Downs, J.J.1    Vogel, E.F.2
  • 40
    • 0029256836 scopus 로고
    • Plant-wide control of the Tennessee Eastman problem
    • Lyman, P. R.; Georgakis, C. Plant-wide control of the Tennessee Eastman problem Comput. Chem. Eng. 1995, 19, 321-331
    • (1995) Comput. Chem. Eng. , vol.19 , pp. 321-331
    • Lyman, P.R.1    Georgakis, C.2
  • 42
    • 0033230994 scopus 로고    scopus 로고
    • Selection of the number of principal components: The variance of the reconstruction error criterion with a comparison to other methods
    • Valle, S.; Li, W.; Qin, S. J. Selection of the number of principal components: the variance of the reconstruction error criterion with a comparison to other methods Ind. Eng. Chem. Res. 1999, 38, 4389-4401
    • (1999) Ind. Eng. Chem. Res. , vol.38 , pp. 4389-4401
    • Valle, S.1    Li, W.2    Qin, S.J.3
  • 43
    • 0030525683 scopus 로고    scopus 로고
    • Non-parametric confidence bounds for process performance monitoring charts
    • Martin, E. B.; Morris, A. J. Non-parametric confidence bounds for process performance monitoring charts J. Process Control 1996, 6, 349-358
    • (1996) J. Process Control , vol.6 , pp. 349-358
    • Martin, E.B.1    Morris, A.J.2
  • 44
    • 0027561446 scopus 로고
    • A plant-wide industrial process control problem
    • Downs, J. J.; Vogel, E. F. A plant-wide industrial process control problem Comput. Chem. Eng. 1993, 17, 245-255
    • (1993) Comput. Chem. Eng. , vol.17 , pp. 245-255
    • Downs, J.J.1    Vogel, E.F.2
  • 45
    • 0029256836 scopus 로고
    • Plant-wide control of the Tennessee Eastman problem
    • Lyman, P. R.; Georgakis, C. Plant-wide control of the Tennessee Eastman problem Comput. Chem. Eng. 1995, 19, 321-331
    • (1995) Comput. Chem. Eng. , vol.19 , pp. 321-331
    • Lyman, P.R.1    Georgakis, C.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.