-
1
-
-
0037443803
-
A review of process fault detection and diagnosis Part III: Process history based methods
-
Venkatasubramanian, V.; Rengaswamy, R.; Kavuri, S. N.; Yin, K. A review of process fault detection and diagnosis Part III: Process history based methods Comput. Chem. Eng. 2003, 27, 327-346
-
(2003)
Comput. Chem. Eng.
, vol.27
, pp. 327-346
-
-
Venkatasubramanian, V.1
Rengaswamy, R.2
Kavuri, S.N.3
Yin, K.4
-
2
-
-
0242354134
-
Statistical process monitoring: Basics and beyond
-
Qin, S. J. Statistical process monitoring: basics and beyond J. Chemom. 2003, 17, 480-502
-
(2003)
J. Chemom.
, vol.17
, pp. 480-502
-
-
Qin, S.J.1
-
3
-
-
77957599856
-
Total projection to latent structures for process monitoring
-
Zhou, D. H.; Li, G.; Qin, S. J. Total projection to latent structures for process monitoring AIChE J. 2011, 56, 168-178
-
(2011)
AIChE J.
, vol.56
, pp. 168-178
-
-
Zhou, D.H.1
Li, G.2
Qin, S.J.3
-
4
-
-
70349329819
-
Multiway Gaussian mixture model based multiphase batch process monitoring
-
Yu, J.; Qin, S. J. Multiway Gaussian mixture model based multiphase batch process monitoring Ind. Eng. Chem. Res. 2009, 48, 8585-8594
-
(2009)
Ind. Eng. Chem. Res.
, vol.48
, pp. 8585-8594
-
-
Yu, J.1
Qin, S.J.2
-
5
-
-
80051912783
-
Generalized reconstruction-based contributions for output-relevant fault diagnosis with application to the Tennessee Eastman process
-
Li, G.; Alcala, C. F.; Qin, S. J.; Zhou, D. H. Generalized reconstruction-based contributions for output-relevant fault diagnosis with application to the Tennessee Eastman process IEEE Trans. Control Syst. Technol. 2011, 19, 1114-1127
-
(2011)
IEEE Trans. Control Syst. Technol.
, vol.19
, pp. 1114-1127
-
-
Li, G.1
Alcala, C.F.2
Qin, S.J.3
Zhou, D.H.4
-
6
-
-
45949123735
-
Principal component analysis
-
Wold, S.; Esbensen, K.; Geladi, P. Principal component analysis Chemom. Intell. Lab. Syst. 1987, 2, 37-52
-
(1987)
Chemom. Intell. Lab. Syst.
, vol.2
, pp. 37-52
-
-
Wold, S.1
Esbensen, K.2
Geladi, P.3
-
7
-
-
0028483476
-
Monitoring batch processes using multiway principal component analysis
-
Nomikos, P.; MacGregor, J. F. Monitoring batch processes using multiway principal component analysis AIChE J. 1994, 40, 1361-1375
-
(1994)
AIChE J.
, vol.40
, pp. 1361-1375
-
-
Nomikos, P.1
Macgregor, J.F.2
-
8
-
-
0028892168
-
Disturbance detection and isolation by dynamic principal component analysis
-
Ku, W.; Storer, R. H.; Georgakis, C. Disturbance detection and isolation by dynamic principal component analysis Chemom. Intell. Lab. Syst. 1995, 30, 179-196
-
(1995)
Chemom. Intell. Lab. Syst.
, vol.30
, pp. 179-196
-
-
Ku, W.1
Storer, R.H.2
Georgakis, C.3
-
9
-
-
0036466502
-
Dynamic process fault monitoring based on neural network and PCA
-
Chen, J.; Liao, C.-M. Dynamic process fault monitoring based on neural network and PCA J. Process Control 2002, 12, 277-289
-
(2002)
J. Process Control
, vol.12
, pp. 277-289
-
-
Chen, J.1
Liao, C.-M.2
-
10
-
-
0346911568
-
Nonlinear process monitoring using kernel principal component analysis
-
Lee, J. M.; Yoo, C. K.; Choi, S. W.; Vanrolleghem, P. A.; Lee, I. B. Nonlinear process monitoring using kernel principal component analysis Chem. Eng. Sci. 2004, 59, 223-234
-
(2004)
Chem. Eng. Sci.
, vol.59
, pp. 223-234
-
-
Lee, J.M.1
Yoo, C.K.2
Choi, S.W.3
Vanrolleghem, P.A.4
Lee, I.B.5
-
11
-
-
77956075435
-
Reconstruction-based contribution for process monitoring with kernel principal component analysis
-
Alcala, C. F.; Qin, S. J. Reconstruction-based contribution for process monitoring with kernel principal component analysis Ind. Eng. Chem. Res. 2010, 49, 7849-7857
-
(2010)
Ind. Eng. Chem. Res.
, vol.49
, pp. 7849-7857
-
-
Alcala, C.F.1
Qin, S.J.2
-
12
-
-
77749340024
-
Adaptive kernel principal component analysis (KPCA) for monitoring small disturbances of nonlinear processes
-
Cheng, C. Y.; Hsu, C. C.; Chen, M. C. Adaptive kernel principal component analysis (KPCA) for monitoring small disturbances of nonlinear processes Ind. Eng. Chem. Res. 2010, 49, 2254-2262
-
(2010)
Ind. Eng. Chem. Res.
, vol.49
, pp. 2254-2262
-
-
Cheng, C.Y.1
Hsu, C.C.2
Chen, M.C.3
-
13
-
-
80051697507
-
Fault detection, identification and diagnosis using CUSUM based PCA
-
Shams, M. A. B.; Budman, H. M.; Duever, T. A. Fault detection, identification and diagnosis using CUSUM based PCA Chem. Eng. Sci. 2011, 66, 4488-4498
-
(2011)
Chem. Eng. Sci.
, vol.66
, pp. 4488-4498
-
-
Shams, M.A.B.1
Budman, H.M.2
Duever, T.A.3
-
14
-
-
78149468553
-
Fault diagnosis of nonlinear processes using multiscale KPCA and multiscale KPLS
-
Zhang, Y.; Ma, C. Fault diagnosis of nonlinear processes using multiscale KPCA and multiscale KPLS Chem. Eng. Sci. 2011, 66, 64-72
-
(2011)
Chem. Eng. Sci.
, vol.66
, pp. 64-72
-
-
Zhang, Y.1
Ma, C.2
-
15
-
-
0028416938
-
Independent component analysis, a new concept
-
Comon, P. Independent component analysis, a new concept Signal Process. 1994, 36, 287-314
-
(1994)
Signal Process.
, vol.36
, pp. 287-314
-
-
Comon, P.1
-
16
-
-
0032629347
-
Fast and robust fixed-point algorithms for independent component analysis
-
Hyvärinen, A. Fast and robust fixed-point algorithms for independent component analysis IEEE Trans. Neural Networks 1999, 10, 626-634
-
(1999)
IEEE Trans. Neural Networks
, vol.10
, pp. 626-634
-
-
Hyvärinen, A.1
-
17
-
-
0042826822
-
Independent component analysis: Algorithms and applications
-
Hyvärinen, A.; Oja, E. Independent component analysis: Algorithms and applications Neural Networks 2000, 13, 411-430
-
(2000)
Neural Networks
, vol.13
, pp. 411-430
-
-
Hyvärinen, A.1
Oja, E.2
-
18
-
-
1342285571
-
Statistical process monitoring with independent component analysis
-
Lee, J. M.; Yoo, C. K.; Lee, I. B. Statistical process monitoring with independent component analysis J. Process Control 2004, 14, 467-485
-
(2004)
J. Process Control
, vol.14
, pp. 467-485
-
-
Lee, J.M.1
Yoo, C.K.2
Lee, I.B.3
-
19
-
-
33749473097
-
Fault detection and diagnosis of multivariate process based on modified independent component analysis
-
Lee, J. M.; Qin, S. J.; Lee, I. B. Fault detection and diagnosis of multivariate process based on modified independent component analysis AIChE J. 2006, 52, 3501-3514
-
(2006)
AIChE J.
, vol.52
, pp. 3501-3514
-
-
Lee, J.M.1
Qin, S.J.2
Lee, I.B.3
-
20
-
-
84857191031
-
Dimension reduction method of independent component analysis for process monitoring based on minimum mean square error
-
Wang, J.; Zhang, Y.; Cao, H.; Zhu, W. Dimension reduction method of independent component analysis for process monitoring based on minimum mean square error J. Process Control 2012, 22, 477-487
-
(2012)
J. Process Control
, vol.22
, pp. 477-487
-
-
Wang, J.1
Zhang, Y.2
Cao, H.3
Zhu, W.4
-
21
-
-
3042632377
-
Statistical monitoring of dynamic processes based on dynamic independent component analysis
-
Lee, J.-M.; Yoo, C.; Lee, I.-B. Statistical monitoring of dynamic processes based on dynamic independent component analysis Chem. Eng. Sci. 2004, 59, 2995-3006
-
(2004)
Chem. Eng. Sci.
, vol.59
, pp. 2995-3006
-
-
Lee, J.-M.1
Yoo, C.2
Lee, I.-B.3
-
22
-
-
34548593553
-
Fault detection of non-linear processes using kernel independent component analysis
-
Lee, J. M.; Qin, S. J.; Lee, I. B. Fault detection of non-linear processes using kernel independent component analysis Can. J. Chem. Eng. 2007, 85, 526-536
-
(2007)
Can. J. Chem. Eng.
, vol.85
, pp. 526-536
-
-
Lee, J.M.1
Qin, S.J.2
Lee, I.B.3
-
23
-
-
49249127452
-
Robust Online Monitoring for Multimode Processes Based on Nonlinear External Analysis
-
Ge, Z.; Yang, C.; Song, Z.; Wang, H. Robust Online Monitoring for Multimode Processes Based on Nonlinear External Analysis Ind. Eng. Chem. Res. 2008, 47, 4775-4783
-
(2008)
Ind. Eng. Chem. Res.
, vol.47
, pp. 4775-4783
-
-
Ge, Z.1
Yang, C.2
Song, Z.3
Wang, H.4
-
24
-
-
58749115727
-
Enhanced statistical analysis of nonlinear processes using KPCA, KICA and SVM
-
Zhang, Y. Enhanced statistical analysis of nonlinear processes using KPCA, KICA and SVM Chem. Eng. Sci. 2009, 64, 801-811
-
(2009)
Chem. Eng. Sci.
, vol.64
, pp. 801-811
-
-
Zhang, Y.1
-
25
-
-
70350318936
-
Nonlinear batch process monitoring using phase-based kernel-independent component analysis-principal component analysis (KICA-PCA)
-
Zhao, C.; Gao, F.; Wang, F. Nonlinear batch process monitoring using phase-based kernel-independent component analysis-principal component analysis (KICA-PCA) Ind. Eng. Chem. Res. 2009, 48, 9163-9174
-
(2009)
Ind. Eng. Chem. Res.
, vol.48
, pp. 9163-9174
-
-
Zhao, C.1
Gao, F.2
Wang, F.3
-
26
-
-
77957832720
-
Dynamic independent component analysis approach for fault detection and diagnosis
-
Stefatos, G.; Hamza, A. B. Dynamic independent component analysis approach for fault detection and diagnosis Expert Syst. Appl. 2010, 37, 8606-8617
-
(2010)
Expert Syst. Appl.
, vol.37
, pp. 8606-8617
-
-
Stefatos, G.1
Hamza, A.B.2
-
27
-
-
84859903438
-
Hidden Markov model based adaptive independent component analysis approach for complex chemical process monitoring and fault detection
-
Rashid, M. M.; Yu, J. Hidden Markov model based adaptive independent component analysis approach for complex chemical process monitoring and fault detection Ind. Eng. Chem. Res. 2012, 51, 5506-5514
-
(2012)
Ind. Eng. Chem. Res.
, vol.51
, pp. 5506-5514
-
-
Rashid, M.M.1
Yu, J.2
-
28
-
-
84861950250
-
Multivariate industrial process monitoring based on the integration method of canonical variate analysis and independent component analysis
-
Yang, Y.; Chen, Y.; Chen, X.; Liu, X. Multivariate industrial process monitoring based on the integration method of canonical variate analysis and independent component analysis Chemom. Intell. Lab. Syst. 2012, 116, 94-101
-
(2012)
Chemom. Intell. Lab. Syst.
, vol.116
, pp. 94-101
-
-
Yang, Y.1
Chen, Y.2
Chen, X.3
Liu, X.4
-
29
-
-
84861191986
-
A new dissimilarity method integrating multidimensional mutual information and independent component analysis for non-Gaussian dynamic process monitoring
-
Rashid, M. M.; Yu, J. A new dissimilarity method integrating multidimensional mutual information and independent component analysis for non-Gaussian dynamic process monitoring Chemom. Intell. Lab. Syst. 2012, 115, 44-58
-
(2012)
Chemom. Intell. Lab. Syst.
, vol.115
, pp. 44-58
-
-
Rashid, M.M.1
Yu, J.2
-
30
-
-
84889594466
-
Online monitoring of nonlinear multivariate industrial process using filtering KICA-PCA
-
Fan, J.; Qin, S. J.; Wang, Y. Online monitoring of nonlinear multivariate industrial process using filtering KICA-PCA Control Eng. Pract. 2014, 22, 205-216
-
(2014)
Control Eng. Pract.
, vol.22
, pp. 205-216
-
-
Fan, J.1
Qin, S.J.2
Wang, Y.3
-
31
-
-
84889679613
-
Fault detection and diagnosis of non-linear non-Gaussian dynamic processes using kernel dynamic independent component analysis
-
Fan, J.; Wang, Y. Fault detection and diagnosis of non-linear non-Gaussian dynamic processes using kernel dynamic independent component analysis Inf. Sci. 2014, 259, 369-379
-
(2014)
Inf. Sci.
, vol.259
, pp. 369-379
-
-
Fan, J.1
Wang, Y.2
-
32
-
-
84879146242
-
Combined indices for ICA and their applications to multivariate process fault diagnosis (in Chinese)
-
Fan, J.; Wang, Y.; Qin, S. J. Combined indices for ICA and their applications to multivariate process fault diagnosis (in Chinese) Acta Autom. Sin. 2013, 39, 494-501
-
(2013)
Acta Autom. Sin.
, vol.39
, pp. 494-501
-
-
Fan, J.1
Wang, Y.2
Qin, S.J.3
-
33
-
-
79952573528
-
Analysis and generalization of fault diagnosis methods for process monitoring
-
Alcala, C. F.; Qin, S. J. Analysis and generalization of fault diagnosis methods for process monitoring J. Process Control 2011, 21, 322-330
-
(2011)
J. Process Control
, vol.21
, pp. 322-330
-
-
Alcala, C.F.1
Qin, S.J.2
-
34
-
-
0026119462
-
Tutorial on higher-order statistics (spectra) in signal processing and system theory: Theoretical results and some applications
-
Mendel, J. M. Tutorial on higher-order statistics (spectra) in signal processing and system theory: Theoretical results and some applications IEEE Trans. Signal Process. 1991, 79, 278-305
-
(1991)
IEEE Trans. Signal Process.
, vol.79
, pp. 278-305
-
-
Mendel, J.M.1
-
35
-
-
0025474247
-
Cumulant-based order determination of non-Gaussian ARMA models
-
Giannakis, G. B.; Mendel, J. M. Cumulant-based order determination of non-Gaussian ARMA models IEEE Trans. Acoust., Speech, Signal Process. 1990, 38, 1411-1423
-
(1990)
IEEE Trans. Acoust., Speech, Signal Process.
, vol.38
, pp. 1411-1423
-
-
Giannakis, G.B.1
Mendel, J.M.2
-
36
-
-
0025463348
-
Signal detection and classification using matched filtering and higher order statistics
-
Giannakis, G. B.; Tsatsanis, M. K. Signal detection and classification using matched filtering and higher order statistics IEEE Trans. Acoust., Speech, Signal Process. 1990, 38, 1284-1296
-
(1990)
IEEE Trans. Acoust., Speech, Signal Process.
, vol.38
, pp. 1284-1296
-
-
Giannakis, G.B.1
Tsatsanis, M.K.2
-
37
-
-
0028517418
-
Estimation and detection in non-Gaussian noise using higher order statistics
-
Sadler, B. M.; Giannakis, G. B.; Lii, K.-S. Estimation and detection in non-Gaussian noise using higher order statistics IEEE Trans. Signal Process. 1994, 42, 2729-2741
-
(1994)
IEEE Trans. Signal Process.
, vol.42
, pp. 2729-2741
-
-
Sadler, B.M.1
Giannakis, G.B.2
Lii, K.-S.3
-
38
-
-
3843106846
-
Diagnosis of poor control-loop performance using higher-order statistics
-
Choudhury, M. A. A. S.; Shah, S. L.; Thornhill, N. F. Diagnosis of poor control-loop performance using higher-order statistics Automatica 2004, 40, 1719-1728
-
(2004)
Automatica
, vol.40
, pp. 1719-1728
-
-
Choudhury, M.A.A.S.1
Shah, S.L.2
Thornhill, N.F.3
-
39
-
-
0027561446
-
A plant-wide industrial process control problem
-
Downs, J. J.; Vogel, E. F. A plant-wide industrial process control problem Comput. Chem. Eng. 1993, 17, 245-255
-
(1993)
Comput. Chem. Eng.
, vol.17
, pp. 245-255
-
-
Downs, J.J.1
Vogel, E.F.2
-
40
-
-
0029256836
-
Plant-wide control of the Tennessee Eastman problem
-
Lyman, P. R.; Georgakis, C. Plant-wide control of the Tennessee Eastman problem Comput. Chem. Eng. 1995, 19, 321-331
-
(1995)
Comput. Chem. Eng.
, vol.19
, pp. 321-331
-
-
Lyman, P.R.1
Georgakis, C.2
-
42
-
-
0033230994
-
Selection of the number of principal components: The variance of the reconstruction error criterion with a comparison to other methods
-
Valle, S.; Li, W.; Qin, S. J. Selection of the number of principal components: the variance of the reconstruction error criterion with a comparison to other methods Ind. Eng. Chem. Res. 1999, 38, 4389-4401
-
(1999)
Ind. Eng. Chem. Res.
, vol.38
, pp. 4389-4401
-
-
Valle, S.1
Li, W.2
Qin, S.J.3
-
43
-
-
0030525683
-
Non-parametric confidence bounds for process performance monitoring charts
-
Martin, E. B.; Morris, A. J. Non-parametric confidence bounds for process performance monitoring charts J. Process Control 1996, 6, 349-358
-
(1996)
J. Process Control
, vol.6
, pp. 349-358
-
-
Martin, E.B.1
Morris, A.J.2
-
44
-
-
0027561446
-
A plant-wide industrial process control problem
-
Downs, J. J.; Vogel, E. F. A plant-wide industrial process control problem Comput. Chem. Eng. 1993, 17, 245-255
-
(1993)
Comput. Chem. Eng.
, vol.17
, pp. 245-255
-
-
Downs, J.J.1
Vogel, E.F.2
-
45
-
-
0029256836
-
Plant-wide control of the Tennessee Eastman problem
-
Lyman, P. R.; Georgakis, C. Plant-wide control of the Tennessee Eastman problem Comput. Chem. Eng. 1995, 19, 321-331
-
(1995)
Comput. Chem. Eng.
, vol.19
, pp. 321-331
-
-
Lyman, P.R.1
Georgakis, C.2
|