메뉴 건너뛰기




Volumn 259, Issue , 2014, Pages 369-379

Fault detection and diagnosis of non-linear non-Gaussian dynamic processes using kernel dynamic independent component analysis

Author keywords

Independent component analysis; Non linear contribution plot; Non linear non Gaussian dynamic processes; TE process

Indexed keywords

CONTRIBUTION PLOTS; DYNAMIC INDEPENDENT COMPONENT ANALYSIS; DYNAMIC PROCESS; FAULT DETECTION AND DIAGNOSIS; NON-LINEAR NON-GAUSSIAN; NONLINEAR CHARACTERISTICS; TE PROCESS; TENNESSEE EASTMAN PROCESS;

EID: 84889679613     PISSN: 00200255     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.ins.2013.06.021     Document Type: Article
Times cited : (153)

References (40)
  • 1
    • 77956075435 scopus 로고    scopus 로고
    • Reconstruction-based contribution for process monitoring with kernel principal component analysis
    • C.F. Alcala, and S.J. Qin Reconstruction-based contribution for process monitoring with kernel principal component analysis Industrial and Engineering Chemistry Research 49 2010 7849 7857
    • (2010) Industrial and Engineering Chemistry Research , vol.49 , pp. 7849-7857
    • Alcala, C.F.1    Qin, S.J.2
  • 2
    • 79952573528 scopus 로고    scopus 로고
    • Analysis and generalization of fault diagnosis methods for process monitoring
    • C.F. Alcala, and S.J. Qin Analysis and generalization of fault diagnosis methods for process monitoring Journal of Process Control 21 2011 322 330
    • (2011) Journal of Process Control , vol.21 , pp. 322-330
    • Alcala, C.F.1    Qin, S.J.2
  • 3
    • 84865606945 scopus 로고    scopus 로고
    • Multi-sensor data fusion using support vector machine for motor fault detection
    • T.P. Banerjee, and S. Das Multi-sensor data fusion using support vector machine for motor fault detection Information Sciences 217 2012 96 107
    • (2012) Information Sciences , vol.217 , pp. 96-107
    • Banerjee, T.P.1    Das, S.2
  • 4
    • 0036466502 scopus 로고    scopus 로고
    • Dynamic process fault monitoring based on neural network and PCA
    • J. Chen, and C.M. Liao Dynamic process fault monitoring based on neural network and PCA Journal of Process Control 12 2002 277 289
    • (2002) Journal of Process Control , vol.12 , pp. 277-289
    • Chen, J.1    Liao, C.M.2
  • 5
    • 77749340024 scopus 로고    scopus 로고
    • Adaptive kernel principal component analysis (KPCA) for monitoring small disturbances of nonlinear processes
    • C.Y. Cheng, C.C. Hsu, and M.C. Chen Adaptive kernel principal component analysis (KPCA) for monitoring small disturbances of nonlinear processes Industrial and Engineering Chemistry Research 49 2010 2254 2262
    • (2010) Industrial and Engineering Chemistry Research , vol.49 , pp. 2254-2262
    • Cheng, C.Y.1    Hsu, C.C.2    Chen, M.C.3
  • 7
    • 10244238854 scopus 로고    scopus 로고
    • Fault identification for process monitoring using kernel principal component analysis
    • J.H. Cho, J.M. Lee, S.W. Choi, D. Lee, and I.B. Lee Fault identification for process monitoring using kernel principal component analysis Chemical Engineering Science 60 2005 279 288
    • (2005) Chemical Engineering Science , vol.60 , pp. 279-288
    • Cho, J.H.1    Lee, J.M.2    Choi, S.W.3    Lee, D.4    Lee, I.B.5
  • 8
    • 0043015539 scopus 로고    scopus 로고
    • Nonlinear principal component analysis-based on principal curves and neural networks
    • D. Dong, and T.J. McAvoy Nonlinear principal component analysis-based on principal curves and neural networks Computers and Chemical Engineering 20 1996 65 78
    • (1996) Computers and Chemical Engineering , vol.20 , pp. 65-78
    • Dong, D.1    McAvoy, T.J.2
  • 10
    • 63249084878 scopus 로고    scopus 로고
    • Improved kernel PCA-based monitoring approach for nonlinear processes
    • Z. Ge, C. Yang, and Z. Song Improved kernel PCA-based monitoring approach for nonlinear processes Chemical Engineering Science 64 2009 2245 2255
    • (2009) Chemical Engineering Science , vol.64 , pp. 2245-2255
    • Ge, Z.1    Yang, C.2    Song, Z.3
  • 11
    • 49249127452 scopus 로고    scopus 로고
    • Robust online monitoring for multimode processes based on nonlinear external analysis
    • Z. Ge, C. Yang, Z. Song, and H. Wang Robust online monitoring for multimode processes based on nonlinear external analysis Industrial and Engineering Chemistry Research 47 2008 4775 4783
    • (2008) Industrial and Engineering Chemistry Research , vol.47 , pp. 4775-4783
    • Ge, Z.1    Yang, C.2    Song, Z.3    Wang, H.4
  • 13
    • 0032629347 scopus 로고    scopus 로고
    • Fast and robust fixed-point algorithms for independent component analysis
    • A. Hyvärinen Fast and robust fixed-point algorithms for independent component analysis IEEE Transactions on Neural Networks 10 1999 626 634
    • (1999) IEEE Transactions on Neural Networks , vol.10 , pp. 626-634
    • Hyvärinen, A.1
  • 14
    • 0042826822 scopus 로고    scopus 로고
    • Independent component analysis: Algorithms and applications
    • A. Hyvärinen, and E. Oja Independent component analysis: algorithms and applications Neural Networks 13 2000 411 430
    • (2000) Neural Networks , vol.13 , pp. 411-430
    • Hyvärinen, A.1    Oja, E.2
  • 15
    • 0026113980 scopus 로고
    • Nonlinear principal component analysis using autoassociative neural networks
    • M.A. Kramer Nonlinear principal component analysis using autoassociative neural networks AIChE Journal 37 1991 233 243
    • (1991) AIChE Journal , vol.37 , pp. 233-243
    • Kramer, M.A.1
  • 17
    • 84864839130 scopus 로고    scopus 로고
    • Adaptive fault detection and diagnosis using an evolving fuzzy classifier
    • A. Lemos, W. Caminhas, and F. Gomide Adaptive fault detection and diagnosis using an evolving fuzzy classifier Information Sciences 220 2013 64 85
    • (2013) Information Sciences , vol.220 , pp. 64-85
    • Lemos, A.1    Caminhas, W.2    Gomide, F.3
  • 18
    • 34548593553 scopus 로고    scopus 로고
    • Fault detection of non-linear processes using kernel independent component analysis
    • J.M. Lee, S.J. Qin, and I.B. Lee Fault detection of non-linear processes using kernel independent component analysis The Canadian Journal of Chemical Engineering 85 2007 526 536
    • (2007) The Canadian Journal of Chemical Engineering , vol.85 , pp. 526-536
    • Lee, J.M.1    Qin, S.J.2    Lee, I.B.3
  • 19
    • 1342285571 scopus 로고    scopus 로고
    • Statistical process monitoring with independent component analysis
    • J.M. Lee, C.K. Yoo, and I.B. Lee Statistical process monitoring with independent component analysis Journal of Process Control 14 2004 467 485
    • (2004) Journal of Process Control , vol.14 , pp. 467-485
    • Lee, J.M.1    Yoo, C.K.2    Lee, I.B.3
  • 20
    • 3042632377 scopus 로고    scopus 로고
    • Statistical monitoring of dynamic processes based on dynamic independent component analysis
    • J.M. Lee, C.K. Yoo, and I.B. Lee Statistical monitoring of dynamic processes based on dynamic independent component analysis Chemical Engineering Science 59 2004 2995 3006
    • (2004) Chemical Engineering Science , vol.59 , pp. 2995-3006
    • Lee, J.M.1    Yoo, C.K.2    Lee, I.B.3
  • 21
    • 84155164868 scopus 로고    scopus 로고
    • A fast fault-identification algorithm for bijective connection graphs using the PMC model
    • T.K. Li, C.H. Tsai, and H.C. Hsu A fast fault-identification algorithm for bijective connection graphs using the PMC model Information Sciences 187 2012 291 297
    • (2012) Information Sciences , vol.187 , pp. 291-297
    • Li, T.K.1    Tsai, C.H.2    Hsu, H.C.3
  • 23
    • 80051579328 scopus 로고    scopus 로고
    • A new robust training algorithm for a class of single-hidden layer feedforward neural networks
    • Z. Man, K. Lee, D. Wang, Z. Cao, and C. Miao A new robust training algorithm for a class of single-hidden layer feedforward neural networks Neurocomputing 74 2011 2491 2501
    • (2011) Neurocomputing , vol.74 , pp. 2491-2501
    • Man, Z.1    Lee, K.2    Wang, D.3    Cao, Z.4    Miao, C.5
  • 24
    • 0030525683 scopus 로고    scopus 로고
    • Non-parametric confidence bounds for process performance monitoring charts
    • E.B. Martin, and A.J. Morris Non-parametric confidence bounds for process performance monitoring charts Journal of Process Control 6 1996 349 358
    • (1996) Journal of Process Control , vol.6 , pp. 349-358
    • Martin, E.B.1    Morris, A.J.2
  • 25
  • 26
    • 0029252734 scopus 로고
    • Multivariate SPC charts for monitoring batch processes
    • P. Nomikos, and J.F. MacGrego Multivariate SPC charts for monitoring batch processes Technometrics 37 1995 4159
    • (1995) Technometrics , vol.37 , pp. 4159
    • Nomikos, P.1    Macgrego, J.F.2
  • 27
    • 0242354134 scopus 로고    scopus 로고
    • Statistical process monitoring: Basics and beyond
    • S.J. Qin Statistical process monitoring: basics and beyond Journal of Chemometrics 17 2003 480 502
    • (2003) Journal of Chemometrics , vol.17 , pp. 480-502
    • Qin, S.J.1
  • 29
    • 77957832720 scopus 로고    scopus 로고
    • Dynamic independent component analysis approach for fault detection and diagnosis
    • G. Stefatos, and A.B. Hamza Dynamic independent component analysis approach for fault detection and diagnosis Expert Systems with Applications 37 2010 8606 8617
    • (2010) Expert Systems with Applications , vol.37 , pp. 8606-8617
    • Stefatos, G.1    Hamza, A.B.2
  • 30
    • 80055033305 scopus 로고    scopus 로고
    • Scaling the kernel function based on the separating boundary in input space: A data-dependent way for improving the performance of kernel methods
    • J. Sun, X. Li, Y. Yang, J. Luo, and Y. Bai Scaling the kernel function based on the separating boundary in input space: a data-dependent way for improving the performance of kernel methods Information Sciences 184 2012 140 154
    • (2012) Information Sciences , vol.184 , pp. 140-154
    • Sun, J.1    Li, X.2    Yang, Y.3    Luo, J.4    Bai, Y.5
  • 31
    • 84861193928 scopus 로고    scopus 로고
    • Machine learning approach for face image retrieval
    • D. Wang, and P. Conilione Machine learning approach for face image retrieval Neural Computing and Applications 21 2012 683 694
    • (2012) Neural Computing and Applications , vol.21 , pp. 683-694
    • Wang, D.1    Conilione, P.2
  • 32
    • 84857191031 scopus 로고    scopus 로고
    • Dimension reduction method of independent component analysis for process monitoring based on minimum mean square error
    • J. Wang, Y. Zhang, H. Cao, and W. Zhu Dimension reduction method of independent component analysis for process monitoring based on minimum mean square error Journal of Process Control 22 2012 477 487
    • (2012) Journal of Process Control , vol.22 , pp. 477-487
    • Wang, J.1    Zhang, Y.2    Cao, H.3    Zhu, W.4
  • 34
    • 77956616296 scopus 로고    scopus 로고
    • Complex system fault diagnosis based on a fuzzy robust wavelet support vector classifier and an adaptive Gaussian particle swarm optimization
    • Q. Wu, and R. Law Complex system fault diagnosis based on a fuzzy robust wavelet support vector classifier and an adaptive Gaussian particle swarm optimization Information Sciences 180 2010 4514 4528
    • (2010) Information Sciences , vol.180 , pp. 4514-4528
    • Wu, Q.1    Law, R.2
  • 35
    • 36749028738 scopus 로고    scopus 로고
    • Batch process monitoring in score space of two-dimensional dynamic principal component analysis (PCA)
    • Y. Yao, and F. Gao Batch process monitoring in score space of two-dimensional dynamic principal component analysis (PCA) Industrial and Engineering Chemistry Research 46 2007 8033 8043
    • (2007) Industrial and Engineering Chemistry Research , vol.46 , pp. 8033-8043
    • Yao, Y.1    Gao, F.2
  • 36
    • 79960559932 scopus 로고    scopus 로고
    • A novel ant-based clustering algorithm using the kernel method
    • L. Zhang, and Q. Cao A novel ant-based clustering algorithm using the kernel method Information Sciences 181 2011 4658 4672
    • (2011) Information Sciences , vol.181 , pp. 4658-4672
    • Zhang, L.1    Cao, Q.2
  • 37
    • 53349175658 scopus 로고    scopus 로고
    • Fault detection and diagnosis of nonlinear processes using improved kernel independent component analysis (KICA) and support vector machine (SVM)
    • Y. Zhang Fault detection and diagnosis of nonlinear processes using improved kernel independent component analysis (KICA) and support vector machine (SVM) Industrial and Engineering Chemistry Research 47 2008 6961 6971
    • (2008) Industrial and Engineering Chemistry Research , vol.47 , pp. 6961-6971
    • Zhang, Y.1
  • 38
    • 58749115727 scopus 로고    scopus 로고
    • Enhanced statistical analysis of nonlinear processes using KPCA, KICA and SVM
    • Y. Zhang Enhanced statistical analysis of nonlinear processes using KPCA, KICA and SVM Chemical Engineering Science 64 2009 801 811
    • (2009) Chemical Engineering Science , vol.64 , pp. 801-811
    • Zhang, Y.1
  • 39
    • 78149468553 scopus 로고    scopus 로고
    • Fault diagnosis of nonlinear processes using multiscale KPCA and multiscale KPLS
    • Y. Zhang, and C. Ma Fault diagnosis of nonlinear processes using multiscale KPCA and multiscale KPLS Chemical Engineering Science 66 2011 64 72
    • (2011) Chemical Engineering Science , vol.66 , pp. 64-72
    • Zhang, Y.1    Ma, C.2
  • 40
    • 70350318936 scopus 로고    scopus 로고
    • Nonlinear batch process monitoring using phase-based kernel-independent component analysis-principal component analysis (KICA-PCA)
    • C. Zhao, F. Gao, and F. Wang Nonlinear batch process monitoring using phase-based kernel-independent component analysis-principal component analysis (KICA-PCA) Industrial and Engineering Chemistry Research 48 2009 9163 9174
    • (2009) Industrial and Engineering Chemistry Research , vol.48 , pp. 9163-9174
    • Zhao, C.1    Gao, F.2    Wang, F.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.