메뉴 건너뛰기




Volumn 127, Issue , 2014, Pages 231-246

A process monitoring method based on noisy independent component analysis

Author keywords

Fault detection rate; Fault detection time; Fourth order cumulant; Independent component analysis; Kurtosis; Process monitoring

Indexed keywords

CONTINUOUS STIRRED TANK REACTOR; FAULT DETECTION RATE; FOURTH ORDER CUMULANT; INDEPENDENT COMPONENT ANALYSIS(ICA); INDEPENDENT COMPONENTS; JOINT DIAGONALIZATION; KURTOSIS; MONITORING METHODS; RECURSIVE ESTIMATE;

EID: 84888433338     PISSN: 09252312     EISSN: 18728286     Source Type: Journal    
DOI: 10.1016/j.neucom.2013.07.029     Document Type: Article
Times cited : (66)

References (40)
  • 1
    • 84862799924 scopus 로고    scopus 로고
    • A particle filter driven dynamic Gaussian mixture model approach for complex process monitoring and fault diagnosis
    • April (4)
    • Yu J. A particle filter driven dynamic Gaussian mixture model approach for complex process monitoring and fault diagnosis. Journal of Process Control 2012, 22(April (4)):778-788.
    • (2012) Journal of Process Control , vol.22 , pp. 778-788
    • Yu, J.1
  • 2
    • 84860523095 scopus 로고    scopus 로고
    • Fault detection in dynamic processes using a simplified monitoring-specific CVA state space modelling approach
    • June (11)
    • Stubbs S., Zhang J., Morris J. Fault detection in dynamic processes using a simplified monitoring-specific CVA state space modelling approach. Computers & Chemical Engineering 2012, 41(June (11)):77-87.
    • (2012) Computers & Chemical Engineering , vol.41 , pp. 77-87
    • Stubbs, S.1    Zhang, J.2    Morris, J.3
  • 3
    • 79955989585 scopus 로고    scopus 로고
    • Mixture control chart patterns recognition using independent component analysis and support vector machine
    • May (11)
    • Lu C.J., Shao Y.E., Li P.H. Mixture control chart patterns recognition using independent component analysis and support vector machine. Neurocomputing 2011, 74(May (11)):1908-1914.
    • (2011) Neurocomputing , vol.74 , pp. 1908-1914
    • Lu, C.J.1    Shao, Y.E.2    Li, P.H.3
  • 4
    • 78149468553 scopus 로고    scopus 로고
    • Fault diagnosis of nonlinear processes using multiscale KPCA and multiscale KPLS
    • January (1)
    • Zhang Y.W., Ma C. Fault diagnosis of nonlinear processes using multiscale KPCA and multiscale KPLS. Chemical Engineering Science 2011, 66(January (1)):64-72.
    • (2011) Chemical Engineering Science , vol.66 , pp. 64-72
    • Zhang, Y.W.1    Ma, C.2
  • 5
    • 80053188234 scopus 로고    scopus 로고
    • Variable window adaptive kernel principal component analysis for nonlinear nonstationary process monitoring
    • October (3)
    • Khediri I.B., Limam M., Weihs C. Variable window adaptive kernel principal component analysis for nonlinear nonstationary process monitoring. Computers and Industrial Engineering 2011, 61(October (3)):437-446.
    • (2011) Computers and Industrial Engineering , vol.61 , pp. 437-446
    • Khediri, I.B.1    Limam, M.2    Weihs, C.3
  • 6
    • 77749340024 scopus 로고    scopus 로고
    • Adaptive kernel principal component analysis for monitoring small disturbances of nonlinear processes
    • January (5)
    • Cheng C.Y., Hsu C.C., Chen M.C. Adaptive kernel principal component analysis for monitoring small disturbances of nonlinear processes. Industrial and Engineering Chemistry Research 2010, 49(January (5)):2254-2262.
    • (2010) Industrial and Engineering Chemistry Research , vol.49 , pp. 2254-2262
    • Cheng, C.Y.1    Hsu, C.C.2    Chen, M.C.3
  • 7
    • 33749473097 scopus 로고    scopus 로고
    • Fault detection and diagnosis based on modified independent component analysis
    • October (10)
    • Lee J.M., Qin S.J., Lee I.B. Fault detection and diagnosis based on modified independent component analysis. AIChE Journal 2006, 52(October (10)):3501-3514.
    • (2006) AIChE Journal , vol.52 , pp. 3501-3514
    • Lee, J.M.1    Qin, S.J.2    Lee, I.B.3
  • 8
    • 84861191986 scopus 로고    scopus 로고
    • A new dissimilarity method integrating multidimensional mutual information and independent component analysis for non-Gaussian dynamic process monitoring
    • June (15)
    • Rashid M.M., Yu J. A new dissimilarity method integrating multidimensional mutual information and independent component analysis for non-Gaussian dynamic process monitoring. Chemometrics and Intelligent Laboratory Systems 2012, 115(June (15)):44-58.
    • (2012) Chemometrics and Intelligent Laboratory Systems , vol.115 , pp. 44-58
    • Rashid, M.M.1    Yu, J.2
  • 9
    • 0042826822 scopus 로고    scopus 로고
    • Independent component analysis. algorithms and applications
    • Hyvärinen A., Oja E. Independent component analysis. algorithms and applications. Neural Networks 2000, 13(4-5):411-430.
    • (2000) Neural Networks , vol.13 , Issue.4-5 , pp. 411-430
    • Hyvärinen, A.1    Oja, E.2
  • 10
    • 77955274753 scopus 로고    scopus 로고
    • Integrating independent component analysis and support vector machine for multivariate process monitoring
    • August (1)
    • Hsu C.C., Chen M.C., Chen L.S. Integrating independent component analysis and support vector machine for multivariate process monitoring. Computers and Industrial Engineering 2010, 59(August (1)):145-156.
    • (2010) Computers and Industrial Engineering , vol.59 , pp. 145-156
    • Hsu, C.C.1    Chen, M.C.2    Chen, L.S.3
  • 11
    • 0037394190 scopus 로고    scopus 로고
    • Monitoring independent components for fault detection
    • April (4)
    • Kano M., Tanaka S., Hsebe S., Hashimoto I., Ohno H. Monitoring independent components for fault detection. AIChE Journal 2003, 49(April (4)):969-976.
    • (2003) AIChE Journal , vol.49 , pp. 969-976
    • Kano, M.1    Tanaka, S.2    Hsebe, S.3    Hashimoto, I.4    Ohno, H.5
  • 12
    • 1342285571 scopus 로고    scopus 로고
    • Statistical process monitoring with independent component analysis
    • August (5)
    • Lee J.M., Yoo C.K., Lee I.B. Statistical process monitoring with independent component analysis. Journal of Process Control 2004, 14(August (5)):467-485.
    • (2004) Journal of Process Control , vol.14 , pp. 467-485
    • Lee, J.M.1    Yoo, C.K.2    Lee, I.B.3
  • 13
    • 79960836522 scopus 로고    scopus 로고
    • Integrating independent component analysis and local outlier factor for plant-wide process monitoring
    • August (7)
    • Lee J., Kang B., Kang S.H. Integrating independent component analysis and local outlier factor for plant-wide process monitoring. Journal of Process Control 2011, 21(August (7)):1011-1021.
    • (2011) Journal of Process Control , vol.21 , pp. 1011-1021
    • Lee, J.1    Kang, B.2    Kang, S.H.3
  • 14
    • 77954386508 scopus 로고    scopus 로고
    • Fault detection of non-Gaussian processes based on modified independent component analysis
    • August (16)
    • Zhang Y.W., Zhang Y. Fault detection of non-Gaussian processes based on modified independent component analysis. Chemical Engineering Science 2010, 65(August (16)):4630-4639.
    • (2010) Chemical Engineering Science , vol.65 , pp. 4630-4639
    • Zhang, Y.W.1    Zhang, Y.2
  • 15
    • 0032629347 scopus 로고    scopus 로고
    • Fast and robust fixed-point algorithms for independent component analysis
    • May (3)
    • Hyvärinen A. Fast and robust fixed-point algorithms for independent component analysis. IEEE Transactions on Neural Networks 1999, 10(May (3)):626-634.
    • (1999) IEEE Transactions on Neural Networks , vol.10 , pp. 626-634
    • Hyvärinen, A.1
  • 16
    • 84857191031 scopus 로고    scopus 로고
    • Dimension reduction method of independent component analysis for process monitoring based on minimum mean square error
    • February (2)
    • Wang J.C., Zhang Y.B., Cao H., Zhu W.Z. Dimension reduction method of independent component analysis for process monitoring based on minimum mean square error. Journal of Process Control 2012, 22(February (2)):477-487.
    • (2012) Journal of Process Control , vol.22 , pp. 477-487
    • Wang, J.C.1    Zhang, Y.B.2    Cao, H.3    Zhu, W.Z.4
  • 17
    • 77954660281 scopus 로고    scopus 로고
    • State-space independent component analysis for nonlinear dynamic process monitoring
    • August (1)
    • Odiowei P.P., Cao Y. State-space independent component analysis for nonlinear dynamic process monitoring. Chemometrics and Intelligent Laboratory Systems 2010, 103(August (1)):59-65.
    • (2010) Chemometrics and Intelligent Laboratory Systems , vol.103 , pp. 59-65
    • Odiowei, P.P.1    Cao, Y.2
  • 18
    • 71349084565 scopus 로고    scopus 로고
    • Intelligent ICA-SVM fault detector for non-Gaussian multivariate process monitoring
    • April (4)
    • Hsu C.C., Chen M.C., Chen L.S. Intelligent ICA-SVM fault detector for non-Gaussian multivariate process monitoring. Expert Systems with Applications 2010, 37(April (4)):3264-3273.
    • (2010) Expert Systems with Applications , vol.37 , pp. 3264-3273
    • Hsu, C.C.1    Chen, M.C.2    Chen, L.S.3
  • 19
    • 52649119206 scopus 로고    scopus 로고
    • Statistical-based monitoring of multivariate non-Gaussian systems
    • September (9)
    • Liu X., Xie L., Kruger U., Littler T., Wang S. Statistical-based monitoring of multivariate non-Gaussian systems. AIChE Journal 2008, 54(September (9)):2379-2391.
    • (2008) AIChE Journal , vol.54 , pp. 2379-2391
    • Liu, X.1    Xie, L.2    Kruger, U.3    Littler, T.4    Wang, S.5
  • 20
    • 58749115727 scopus 로고    scopus 로고
    • Enhanced statistical analysis of nonlinear processes using KPCA, KICA and SVM
    • March (5)
    • Zhang Y.W. Enhanced statistical analysis of nonlinear processes using KPCA, KICA and SVM. Chemical Engineering Science 2009, 64(March (5)):801-811.
    • (2009) Chemical Engineering Science , vol.64 , pp. 801-811
    • Zhang, Y.W.1
  • 21
    • 61849101892 scopus 로고    scopus 로고
    • Multiway kernel independent component analysis based on feature samples for batch process monitoring
    • March (7-9)
    • Tian X.M., Zhang X.L., Deng X.G., Chen S. Multiway kernel independent component analysis based on feature samples for batch process monitoring. Neurocomputing 2009, 72(March (7-9)):1584-1596.
    • (2009) Neurocomputing , vol.72 , pp. 1584-1596
    • Tian, X.M.1    Zhang, X.L.2    Deng, X.G.3    Chen, S.4
  • 22
    • 84867425712 scopus 로고    scopus 로고
    • Non-Gaussian process fault detection method based on modified KICA
    • (in Chinese)
    • Cai L.F., Tian X.M., Zhang N. Non-Gaussian process fault detection method based on modified KICA. CIESC Journal 2012, 63(9):2864-2868. (in Chinese).
    • (2012) CIESC Journal , vol.63 , Issue.9 , pp. 2864-2868
    • Cai, L.F.1    Tian, X.M.2    Zhang, N.3
  • 23
    • 84859903438 scopus 로고    scopus 로고
    • Hidden Markov model based adaptive independent component analysis approach for complex chemical process monitoring and fault detection
    • March (15)
    • Rashid M.M., Yu J. Hidden Markov model based adaptive independent component analysis approach for complex chemical process monitoring and fault detection. Industrial & Engineering Chemistry Research 2012, 51(March (15)):5506-5514.
    • (2012) Industrial & Engineering Chemistry Research , vol.51 , pp. 5506-5514
    • Rashid, M.M.1    Yu, J.2
  • 24
    • 84870805093 scopus 로고    scopus 로고
    • Monitoring of time-varying processes using kernel independent component analysis
    • January
    • Zhang Y.W., An J.Y., Zhang H.L. Monitoring of time-varying processes using kernel independent component analysis. Chemical Engineering Science 2013, 88(January):23-32.
    • (2013) Chemical Engineering Science , vol.88 , pp. 23-32
    • Zhang, Y.W.1    An, J.Y.2    Zhang, H.L.3
  • 25
    • 79955839741 scopus 로고    scopus 로고
    • Robust data-driven modeling approach for real-time final product quality prediction in batch process operation
    • May (2)
    • Wang D. Robust data-driven modeling approach for real-time final product quality prediction in batch process operation. IEEE Transactions on Industrial Informatics 2011, 7(May (2)):371-377.
    • (2011) IEEE Transactions on Industrial Informatics , vol.7 , pp. 371-377
    • Wang, D.1
  • 26
    • 0032212795 scopus 로고    scopus 로고
    • Robust techniques for independent component analysis (ICA) with noisy data
    • November (1-3)
    • Cichocki A., Douglas S.C., Amari S. Robust techniques for independent component analysis (ICA) with noisy data. Neurocomputing 1998, 22(November (1-3)):113-129.
    • (1998) Neurocomputing , vol.22 , pp. 113-129
    • Cichocki, A.1    Douglas, S.C.2    Amari, S.3
  • 27
    • 0041324208 scopus 로고    scopus 로고
    • Gaussian moments for noisy independent component analysis
    • June (6)
    • Hyvärinen A. Gaussian moments for noisy independent component analysis. IEEE Signal Processing Letters 1999, 6(June (6)):145-147.
    • (1999) IEEE Signal Processing Letters , vol.6 , pp. 145-147
    • Hyvärinen, A.1
  • 28
    • 0037844871 scopus 로고    scopus 로고
    • A robust approach to independent component analysis of signals with high-level noise measurements
    • May (3)
    • Cao J.T., Murata N., Amari S., Cichocki A., Takeda T. A robust approach to independent component analysis of signals with high-level noise measurements. IEEE Transactions on Neural Networks 2003, 14(May (3)):631-645.
    • (2003) IEEE Transactions on Neural Networks , vol.14 , pp. 631-645
    • Cao, J.T.1    Murata, N.2    Amari, S.3    Cichocki, A.4    Takeda, T.5
  • 30
    • 53049106679 scopus 로고    scopus 로고
    • Gaussian moments for noisy unifying model
    • October (16-18)
    • Yang Y.M., Guo C.H. Gaussian moments for noisy unifying model. Neurocomputing 2008, 71(October (16-18)):3656-3659.
    • (2008) Neurocomputing , vol.71 , pp. 3656-3659
    • Yang, Y.M.1    Guo, C.H.2
  • 31
    • 83255161971 scopus 로고    scopus 로고
    • RLS adaptive noise cancellation via QR decomposition for noisy ICA
    • November
    • Zhang M.L., Wang S.Z., Jia X.Y. RLS adaptive noise cancellation via QR decomposition for noisy ICA. Advanced Materials Research 2012, 403-408(November):1291-1296.
    • (2012) Advanced Materials Research , pp. 1291-1296
    • Zhang, M.L.1    Wang, S.Z.2    Jia, X.Y.3
  • 32
    • 0036648367 scopus 로고    scopus 로고
    • Non-orthogonal joint diagonalization in the least-squares sense with application in blind source separation
    • July (7)
    • Yeredor A. Non-orthogonal joint diagonalization in the least-squares sense with application in blind source separation. IEEE Transactions on Signal Processing 2002, 50(July (7)):1545-1553.
    • (2002) IEEE Transactions on Signal Processing , vol.50 , pp. 1545-1553
    • Yeredor, A.1
  • 33
    • 55849139468 scopus 로고    scopus 로고
    • A new signal separation technique using double referenced system
    • Proceedings of IEEE Symposium on Computers and Communications 2008 (Marrakech, Morocco), July 6-8
    • A. Jbari, A. Adib, D. Aboutajdine, A new signal separation technique using double referenced system, in: Proceedings of IEEE Symposium on Computers and Communications 2008 (Marrakech, Morocco), July 6-8, 2008, pp. 670-673.
    • (2008) , pp. 670-673
    • Jbari, A.1    Adib, A.2    Aboutajdine, D.3
  • 35
    • 1242286406 scopus 로고    scopus 로고
    • Independent component analysis based on nonparametric density estimation
    • January (1)
    • Boscolo R., Pan H., Roychowdhury V.P. Independent component analysis based on nonparametric density estimation. IEEE Transactions on Neural Networks 2004, 15(January (1)):55-65.
    • (2004) IEEE Transactions on Neural Networks , vol.15 , pp. 55-65
    • Boscolo, R.1    Pan, H.2    Roychowdhury, V.P.3
  • 36
    • 0000056917 scopus 로고    scopus 로고
    • Adaptive on-line learning algorithms for blind separation-maximum entropy and minimum mutual information
    • October (7)
    • Yang H.H., Amari S.I. Adaptive on-line learning algorithms for blind separation-maximum entropy and minimum mutual information. Neural Computation 1997, 9(October (7)):1457-1482.
    • (1997) Neural Computation , vol.9 , pp. 1457-1482
    • Yang, H.H.1    Amari, S.I.2
  • 37
    • 0034621334 scopus 로고    scopus 로고
    • Fault detection in industrial processes using canonical variate analysis and dynamic principal component analysis
    • May (1)
    • Russell E.L., Chiang L.H., Braatz R.D. Fault detection in industrial processes using canonical variate analysis and dynamic principal component analysis. Chemometrics and Intelligent Laboratory Systems 2000, 51(May (1)):81-93.
    • (2000) Chemometrics and Intelligent Laboratory Systems , vol.51 , pp. 81-93
    • Russell, E.L.1    Chiang, L.H.2    Braatz, R.D.3
  • 38
    • 72149111135 scopus 로고    scopus 로고
    • Fault detection and diagnosis in process data using one-class support vector machines
    • December (10)
    • Mahadevan S., Shah S.L. Fault detection and diagnosis in process data using one-class support vector machines. Journal of Process Control 2009, 19(December (10)):1627-1639.
    • (2009) Journal of Process Control , vol.19 , pp. 1627-1639
    • Mahadevan, S.1    Shah, S.L.2
  • 39
    • 0036769410 scopus 로고    scopus 로고
    • Pattern matching in historical data
    • September (9)
    • Johannesmeyer M.C., Singhal A., Seborg D.E. Pattern matching in historical data. AIChE Journal 2002, 48(September (9)):2022-2038.
    • (2002) AIChE Journal , vol.48 , pp. 2022-2038
    • Johannesmeyer, M.C.1    Singhal, A.2    Seborg, D.E.3
  • 40
    • 34548593553 scopus 로고    scopus 로고
    • Fault detection of non-linear process using kernel independent component analysis
    • August (4)
    • Lee J.M., Qin S.J., Lee I.B. Fault detection of non-linear process using kernel independent component analysis. Canadian Journal of Chemical Engineering 2007, 85(August (4)):526-536.
    • (2007) Canadian Journal of Chemical Engineering , vol.85 , pp. 526-536
    • Lee, J.M.1    Qin, S.J.2    Lee, I.B.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.