-
1
-
-
4944253785
-
New statistical process control chart for batch operations based on independent component analysis
-
Al-Bazzaz, H., & Wang, X. Z. (2004). New statistical process control chart for batch operations based on independent component analysis. Industrial & Engineering Chemistry Research, 43(21), 6731-6741.
-
(2004)
Industrial & Engineering Chemistry Research
, vol.43
, Issue.21
, pp. 6731-6741
-
-
Al-Bazzaz, H.1
Wang, X.Z.2
-
3
-
-
50249102451
-
Multivariate statistical process control and signature analysis using eigenfactor detection methods
-
Costa Mesa, CA
-
Chen, K. H., Boning, D. S., & Welch, R. E. (2001). Multivariate statistical process control and signature analysis using eigenfactor detection methods. In Proceedings of symposium on the interface of computer science and statistics, Costa Mesa, CA.
-
(2001)
Proceedings of Symposium on the Interface of Computer Science and Statistics
-
-
Chen, K.H.1
Boning, D.S.2
Welch, R.E.3
-
4
-
-
0036466502
-
Dynamic process fault monitoring based on neural network and PCA
-
DOI 10.1016/S0959-1524(01)00027-0, PII S0959152401000270
-
Chen, J., & Liao, C. M. (2002). Dynamic process fault monitoring based on neural network and PCA. Journal of Process Control, 12(2), 277-289. (Pubitemid 33110475)
-
(2002)
Journal of Process Control
, vol.12
, Issue.2
, pp. 277-289
-
-
Chen, J.1
Liao, C.-M.2
-
5
-
-
0037411806
-
Exploring process data with the use of robust outlier detection algorithms
-
Chiang, L. H., Pell, R. J., & Seasholtz, M. B. (2003). Exploring process data with the use of robust outlier detection algorithms. Journal of Process Control, 13(5), 437-449.
-
(2003)
Journal of Process Control
, vol.13
, Issue.5
, pp. 437-449
-
-
Chiang, L.H.1
Pell, R.J.2
Seasholtz, M.B.3
-
7
-
-
33750303476
-
A possibilistic clustering approach to novel fault detection and isolation
-
Detroja, K. P., Gudi, R. D., & Patwardhan, S. C. (2006). A possibilistic clustering approach to novel fault detection and isolation. Journal of Process Control, 16(10), 1055-1073.
-
(2006)
Journal of Process Control
, vol.16
, Issue.10
, pp. 1055-1073
-
-
Detroja, K.P.1
Gudi, R.D.2
Patwardhan, S.C.3
-
8
-
-
0027561446
-
A plant-wide industrial process control problem
-
Downs, J. J., & Vogel, E. F. (1993). A plant-wide industrial process control problem. Computers & Chemical Engineering, 17, 245-255.
-
(1993)
Computers & Chemical Engineering
, vol.17
, pp. 245-255
-
-
Downs, J.J.1
Vogel, E.F.2
-
9
-
-
34247109083
-
Process monitoring based on independent component analysis-principal component analysis (ICA-PCA) and similarity factors
-
Ge, Z., & Song, Z. (2007). Process monitoring based on independent component analysis-principal component analysis (ICA-PCA) and similarity factors. Industrial & Engineering Chemistry Research, 46, 2054-2063.
-
(2007)
Industrial & Engineering Chemistry Research
, vol.46
, pp. 2054-2063
-
-
Ge, Z.1
Song, Z.2
-
11
-
-
0042826822
-
Independent component analysis: Algorithms and applications
-
DOI 10.1016/S0893-6080(00)00026-5, PII S0893608000000265
-
Hyvarinen, A., & Oja, E. (2000). Independent component analysis: Algorithms and applications. Neural Networks, 13, 411-430. (Pubitemid 30447427)
-
(2000)
Neural Networks
, vol.13
, Issue.4-5
, pp. 411-430
-
-
Hyvarinen, A.1
Oja, E.2
-
13
-
-
1042281570
-
Combination of independent component analysis and principal component analysis for multivariate statistical process control
-
Kano, M., Tanaka, S., Hasebe, S., Hashimoto, I., & Ohno, H. (2002). Combination of independent component analysis and principal component analysis for multivariate statistical process control. In Proceedings of international symposium on design, operation and control of chemical plants (pp. 319-324).
-
(2002)
Proceedings of International Symposium on Design, Operation and Control of Chemical Plants
, pp. 319-324
-
-
Kano, M.1
Tanaka, S.2
Hasebe, S.3
Hashimoto, I.4
Ohno, H.5
-
14
-
-
0028892168
-
Disturbance detection and isolation by dynamic principal component analysis
-
Ku, W., Storer, R. H., & Georgakis, C. (1995). Disturbance detection and isolation by dynamic principal component analysis. Chemometrics and Intelligent Laboratory Systems, 30, 179-196.
-
(1995)
Chemometrics and Intelligent Laboratory Systems
, vol.30
, pp. 179-196
-
-
Ku, W.1
Storer, R.H.2
Georgakis, C.3
-
15
-
-
0034351040
-
Plantwide control - a review and a new design procedure
-
Larsson, T., & Skogestad, S. (2000). Plantwide control: A review and a new design procedure. Modeling, Identification and Control, 21, 209-240. (Pubitemid 32869740)
-
(2000)
Modeling, Identification and Control
, vol.21
, Issue.4
, pp. 209-240
-
-
Larsson, T.1
Skogestad, S.2
-
16
-
-
1342285571
-
Statistical process monitoring with independent component anlaysis
-
Lee, J. M., Yoo, C., & Lee, I. B. (2004). Statistical process monitoring with independent component anlaysis. Journal of Process Control, 14(5), 467-485.
-
(2004)
Journal of Process Control
, vol.14
, Issue.5
, pp. 467-485
-
-
Lee, J.M.1
Yoo, C.2
Lee, I.B.3
-
18
-
-
0035546347
-
Consistent dynamic PCA based on errors-in-variables subspace identification
-
Li, W., & Qin, S. J. (2001). Consistent dynamic PCA based on errors-in-variables subspace identification. Journal of Process Control, 11(6), 661-678.
-
(2001)
Journal of Process Control
, vol.11
, Issue.6
, pp. 661-678
-
-
Li, W.1
Qin, S.J.2
-
19
-
-
33751399694
-
Fault diagnosis using dynamic trend analysis: A review and recent developments
-
Maurya, M. R., Rengaswamy, R., & Venkatasubramanian, V. (2007). Fault diagnosis using dynamic trend analysis: A review and recent developments. Engineering Applications of Artificial Intelligence, 20(2), 133-146.
-
(2007)
Engineering Applications of Artificial Intelligence
, vol.20
, Issue.2
, pp. 133-146
-
-
Maurya, M.R.1
Rengaswamy, R.2
Venkatasubramanian, V.3
-
22
-
-
33645389475
-
Evaluation of a pattern matching method for the Tennessee Eastman challenge process
-
Singhal, A., & Seborg, D. E. (2006). Evaluation of a pattern matching method for the Tennessee Eastman challenge process. Journal of Process Control, 16(6), 601-613.
-
(2006)
Journal of Process Control
, vol.16
, Issue.6
, pp. 601-613
-
-
Singhal, A.1
Seborg, D.E.2
-
23
-
-
33751408455
-
Artificial intelligence for monitoring and supervisory control of process systems
-
Uraikul, V., Chan, C. W., & Tontiwachwuthikul, P. (2007). Artificial intelligence for monitoring and supervisory control of process systems. Engineering Applications of Artificial Intelligence, 20(2), 115-131.
-
(2007)
Engineering Applications of Artificial Intelligence
, vol.20
, Issue.2
, pp. 115-131
-
-
Uraikul, V.1
Chan, C.W.2
Tontiwachwuthikul, P.3
-
25
-
-
77957831443
-
Multivariate statistical methods in quality management
-
Yang, K., & Trewn, J. (2004). Multivariate statistical methods in quality management. Mc Graw Hill Professional.
-
(2004)
Mc Graw Hill Professional
-
-
Yang, K.1
Trewn, J.2
-
26
-
-
35548936129
-
Detecting faults in heterogeneous and dynamic systems using DSP and an agent-based architecture
-
Zaki, O., Brown, K., Fletcher, J., & Lane, D. (2007). Detecting faults in heterogeneous and dynamic systems using DSP and an agent-based architecture. Engineering Applications of Artificial Intelligence, 20(8), 1112-1124.
-
(2007)
Engineering Applications of Artificial Intelligence
, vol.20
, Issue.8
, pp. 1112-1124
-
-
Zaki, O.1
Brown, K.2
Fletcher, J.3
Lane, D.4
-
27
-
-
0033346546
-
Dynamic process monitoring using multiscale PCA
-
Zhang, H., Tangirala, A. K., & Shah, S. L. (1999). Dynamic process monitoring using multiscale PCA. In Proceedings of IEEE Canadian conference on electrical and computer engineering (Vol. 3, pp. 1579-1584).
-
(1999)
Proceedings of IEEE Canadian conference on electrical and computer engineering
, vol.3
, pp. 1579-1584
-
-
Zhang, H.1
Tangirala, A.K.2
Shah, S.L.3
|