-
1
-
-
33751547539
-
How many drug targets are there?
-
J.P. Overington, and et al. How many drug targets are there? Nat Rev. Drug Discov. 5 2006 993 996
-
(2006)
Nat Rev. Drug Discov.
, vol.5
, pp. 993-996
-
-
Overington, J.P.1
-
2
-
-
0034604451
-
Crystal structure of rhodopsin: A G protein-coupled receptor
-
K. Pawlczewski, and et al. Crystal structure of rhodopsin: a G protein-coupled receptor Science 289 2000 739 745
-
(2000)
Science
, vol.289
, pp. 739-745
-
-
Pawlczewski, K.1
-
3
-
-
38949158505
-
Conformational thermostabilization of the beta1-adrenergic receptor in a detergent-resistant form
-
M.J. Serrano-Vega, and et al. Conformational thermostabilization of the beta1-adrenergic receptor in a detergent-resistant form Proc. Natl. Acad. Sci. U. S. A. 105 2008 877 882
-
(2008)
Proc. Natl. Acad. Sci. U. S. A.
, vol.105
, pp. 877-882
-
-
Serrano-Vega, M.J.1
-
4
-
-
36448995359
-
High-resolution crystal structure of an engineered human β2-adrenergic G protein-coupled receptor
-
V. Cherezov, and et al. High-resolution crystal structure of an engineered human β2-adrenergic G protein-coupled receptor Science 318 2007 1258 1265
-
(2007)
Science
, vol.318
, pp. 1258-1265
-
-
Cherezov, V.1
-
5
-
-
47949129742
-
Structure of a β1-adrenergic G-protein coupled receptor
-
T. Warne, and et al. Structure of a β1-adrenergic G-protein coupled receptor Nature 454 2008 486 491
-
(2008)
Nature
, vol.454
, pp. 486-491
-
-
Warne, T.1
-
6
-
-
56749103466
-
The 2.6 Angstrom crystal structure of a human A2A adenosine receptor bound to an antagonist
-
V.-P. Jaakola, and et al. The 2.6 Angstrom crystal structure of a human A2A adenosine receptor bound to an antagonist Science 322 2008 1211 1217
-
(2008)
Science
, vol.322
, pp. 1211-1217
-
-
Jaakola, V.-P.1
-
7
-
-
84881173408
-
Structure of class B GPCR corticotropin-releasing factor receptor 1
-
K. Hollenstein, and et al. Structure of class B GPCR corticotropin-releasing factor receptor 1 Nature 499 2013 438 443
-
(2013)
Nature
, vol.499
, pp. 438-443
-
-
Hollenstein, K.1
-
8
-
-
84881193006
-
Structure of the human glucagon class B G-protein-coupled receptor
-
F.Y. Siu, and et al. Structure of the human glucagon class B G-protein-coupled receptor Nature 499 2013 444 449
-
(2013)
Nature
, vol.499
, pp. 444-449
-
-
Siu, F.Y.1
-
9
-
-
84897580006
-
Structure of a class C GPCR metabotropic glutamate receptor 1 bound to an allosteric modulator
-
H. Wu, and et al. Structure of a class C GPCR metabotropic glutamate receptor 1 bound to an allosteric modulator Science 344 2014 58 64
-
(2014)
Science
, vol.344
, pp. 58-64
-
-
Wu, H.1
-
10
-
-
84904994581
-
Structure of class C GPCR metabotropic glutamate receptor 5 transmembrane domain
-
A.S. Doré, and et al. Structure of class C GPCR metabotropic glutamate receptor 5 transmembrane domain Nature 511 2014 557 562
-
(2014)
Nature
, vol.511
, pp. 557-562
-
-
Doré, A.S.1
-
11
-
-
84878112106
-
Structure of the human smoothened receptor bound to an antitumour agent
-
C. Wang, and et al. Structure of the human smoothened receptor bound to an antitumour agent Nature 497 2013 338 343
-
(2013)
Nature
, vol.497
, pp. 338-343
-
-
Wang, C.1
-
12
-
-
78651411166
-
Structure of a nanobody-stabilised active state of the β(2) adrenoreceptor
-
S.G. Rasmussen, and et al. Structure of a nanobody-stabilised active state of the β(2) adrenoreceptor Nature 469 2011 175 180
-
(2011)
Nature
, vol.469
, pp. 175-180
-
-
Rasmussen, S.G.1
-
13
-
-
79959564813
-
Agonist-bound adenosine A2A receptor structures reveal common features of GPCR activation
-
G. Lebon, and et al. Agonist-bound adenosine A2A receptor structures reveal common features of GPCR activation Nature 474 2011 521 525
-
(2011)
Nature
, vol.474
, pp. 521-525
-
-
Lebon, G.1
-
14
-
-
78651405537
-
The structural basis for agonist and partial agonist action on a beta(1)-adrenergic receptor
-
T. Warne, and et al. The structural basis for agonist and partial agonist action on a beta(1)-adrenergic receptor Nature 469 2011 241 244
-
(2011)
Nature
, vol.469
, pp. 241-244
-
-
Warne, T.1
-
15
-
-
80051658642
-
Crystal structure of the β2 adrenergic receptor-Gs protein complex
-
S.G. Rasmussen, and et al. Crystal structure of the β2 adrenergic receptor-Gs protein complex Nature 477 2011 549 555
-
(2011)
Nature
, vol.477
, pp. 549-555
-
-
Rasmussen, S.G.1
-
16
-
-
84898901491
-
Unifying family A GPCR theories of activation
-
B.G. Tehan, and et al. Unifying family A GPCR theories of activation Pharmacol. Ther. 143 2014 51 60
-
(2014)
Pharmacol. Ther.
, vol.143
, pp. 51-60
-
-
Tehan, B.G.1
-
17
-
-
84867840947
-
Structure of the agonist-bound neurotensin receptor NTS1
-
J.F. White, and et al. Structure of the agonist-bound neurotensin receptor NTS1 Nature 490 2012 508 513
-
(2012)
Nature
, vol.490
, pp. 508-513
-
-
White, J.F.1
-
18
-
-
84907221192
-
High-resolution structure of the human GPR40 receptor bound to allosteric agonist TAK-875
-
A. Srivastava, and et al. High-resolution structure of the human GPR40 receptor bound to allosteric agonist TAK-875 Nature 513 2014 124 127
-
(2014)
Nature
, vol.513
, pp. 124-127
-
-
Srivastava, A.1
-
19
-
-
84884673669
-
Structure of the CCR5 chemokine receptor-HIV entry inhibitor maraviroc complex
-
Q. Tan, and et al. Structure of the CCR5 chemokine receptor-HIV entry inhibitor maraviroc complex Science 341 2013 1387 1390
-
(2013)
Science
, vol.341
, pp. 1387-1390
-
-
Tan, Q.1
-
20
-
-
84871411930
-
High-resolution crystal structure of human protease-activated receptor 1
-
C. Zhang, and et al. High-resolution crystal structure of human protease-activated receptor 1 Nature 492 2012 387 392
-
(2012)
Nature
, vol.492
, pp. 387-392
-
-
Zhang, C.1
-
21
-
-
84925506175
-
Crystal structure of the human OX2 orexin receptor bound to the insomnia drug suvorexant
-
J. Yin, and et al. Crystal structure of the human OX2 orexin receptor bound to the insomnia drug suvorexant Nature 519 2015 247 250
-
(2015)
Nature
, vol.519
, pp. 247-250
-
-
Yin, J.1
-
22
-
-
84873685831
-
Molecular signatures of G-protein-coupled receptors
-
A.J. Venkatakrishnan, and et al. Molecular signatures of G-protein-coupled receptors Nature 494 2013 185 194
-
(2013)
Nature
, vol.494
, pp. 185-194
-
-
Venkatakrishnan, A.J.1
-
23
-
-
85027927015
-
Structures of the cxcr4 chemokine GPCR with small-molecule and cyclic peptide antagonists
-
B. Wu, and et al. Structures of the cxcr4 chemokine GPCR with small-molecule and cyclic peptide antagonists Science 330 2010 1066 1071
-
(2010)
Science
, vol.330
, pp. 1066-1071
-
-
Wu, B.1
-
24
-
-
84899755031
-
12 receptor in complex with an antithrombotic drug
-
12 receptor in complex with an antithrombotic drug Nature 509 2014 115 118
-
(2014)
Nature
, vol.509
, pp. 115-118
-
-
Zhang, K.1
-
25
-
-
78649846386
-
Over one hundred peptide-activated G protein-coupled receptors recognize ligands with turn structure
-
G. Ruiz-Gómez, and et al. Over one hundred peptide-activated G protein-coupled receptors recognize ligands with turn structure Chem. Rev. 110 2010 PR1 PR41
-
(2010)
Chem. Rev.
, vol.110
, pp. PR1-PR41
-
-
Ruiz-Gómez, G.1
-
26
-
-
84937731056
-
What can we learn from molecular dynamics simulations for GPCR drug design?
-
C.S. Tautermann, and et al. What can we learn from molecular dynamics simulations for GPCR drug design? Comp Struct. Biotech. J. 13 2015 111 121
-
(2015)
Comp Struct. Biotech. J.
, vol.13
, pp. 111-121
-
-
Tautermann, C.S.1
-
27
-
-
80052001378
-
Pathway and mechanism of drug binding to G-protein-coupled receptors
-
R.O. Dror, and et al. Pathway and mechanism of drug binding to G-protein-coupled receptors Proc. Natl. Acad. Sci. U. S. A. 108 2011 13118 13123
-
(2011)
Proc. Natl. Acad. Sci. U. S. A.
, vol.108
, pp. 13118-13123
-
-
Dror, R.O.1
-
28
-
-
84889564886
-
Activation and allosteric modulation of a muscarinic acetylcholine receptor
-
A.C. Kruse, and et al. Activation and allosteric modulation of a muscarinic acetylcholine receptor Nature 504 2013 101 106
-
(2013)
Nature
, vol.504
, pp. 101-106
-
-
Kruse, A.C.1
-
29
-
-
84857254248
-
Crystal structure of a lipid G protein-coupled receptor
-
M.A. Hanson, and et al. Crystal structure of a lipid G protein-coupled receptor Science 335 2012 851 855
-
(2012)
Science
, vol.335
, pp. 851-855
-
-
Hanson, M.A.1
-
30
-
-
0028300203
-
Why are long-acting beta-adrenoceptor agonists long-acting?
-
G.P. Anderson, and et al. Why are long-acting beta-adrenoceptor agonists long-acting? Eur. Resp. J. 7 1994 569 578
-
(1994)
Eur. Resp. J.
, vol.7
, pp. 569-578
-
-
Anderson, G.P.1
-
31
-
-
84928469118
-
1 receptor
-
1 receptor Nature 520 2015 317 321
-
(2015)
Nature
, vol.520
, pp. 317-321
-
-
Zhang, D.1
-
32
-
-
80052569232
-
1 receptors in vitro and in vivo
-
1 receptors in vitro and in vivo Brit. J. Pharm. 164 2011 992 1007
-
(2011)
Brit. J. Pharm.
, vol.164
, pp. 992-1007
-
-
Ramsey, S.1
-
33
-
-
84908159410
-
Structures of mGluRs shed light on the challenges of drug development of allosteric modulators
-
K. Bennett, and et al. Structures of mGluRs shed light on the challenges of drug development of allosteric modulators Curr. Opin. Pharmacol. 20 2015 1 7
-
(2015)
Curr. Opin. Pharmacol.
, vol.20
, pp. 1-7
-
-
Bennett, K.1
-
34
-
-
84905732337
-
Advances in GPCR modeling evaluated by the GPCR Dock 2013 assessment: Meeting new challenges
-
I. Kufareva, and et al. Advances in GPCR modeling evaluated by the GPCR Dock 2013 assessment: meeting new challenges Structure 22 2014 1120 1139
-
(2014)
Structure
, vol.22
, pp. 1120-1139
-
-
Kufareva, I.1
-
35
-
-
84906539125
-
Molecular mechanisms of bitopic ligand engagement with the M1 muscarinic acetylcholine receptor
-
P. Keov, and et al. Molecular mechanisms of bitopic ligand engagement with the M1 muscarinic acetylcholine receptor J. Biol. Chem. 289 2014 23817 23837
-
(2014)
J. Biol. Chem.
, vol.289
, pp. 23817-23837
-
-
Keov, P.1
-
36
-
-
84904667847
-
A potentiator of orthosteric ligand activity at GLP-1R acts via covalent modification
-
W.M. Nolte, and et al. A potentiator of orthosteric ligand activity at GLP-1R acts via covalent modification Nat. Chem. Biol. 10 2014 629 631
-
(2014)
Nat. Chem. Biol.
, vol.10
, pp. 629-631
-
-
Nolte, W.M.1
-
37
-
-
40849124250
-
An intracellular allosteric site for a specific class of antagonists of the CC chemokine G protein-coupled receptors CCR4 and CCR5
-
G. Andrews, and et al. An intracellular allosteric site for a specific class of antagonists of the CC chemokine G protein-coupled receptors CCR4 and CCR5 Mol. Pharmacol. 73 2008 855 867
-
(2008)
Mol. Pharmacol.
, vol.73
, pp. 855-867
-
-
Andrews, G.1
-
38
-
-
84877607189
-
Structural basis for molecular recognition at serotonin receptors
-
C. Wang, and et al. Structural basis for molecular recognition at serotonin receptors Science 340 2013 610 614
-
(2013)
Science
, vol.340
, pp. 610-614
-
-
Wang, C.1
-
39
-
-
84892401045
-
Structure-based drug design for G protein-coupled receptors
-
M. Congreve, and et al. Structure-based drug design for G protein-coupled receptors Prog. Med. Chem. 53 2014 1 63
-
(2014)
Prog. Med. Chem.
, vol.53
, pp. 1-63
-
-
Congreve, M.1
-
40
-
-
79960176452
-
Progress in structure based drug design for G protein-coupled receptors
-
M. Congreve, and et al. Progress in structure based drug design for G protein-coupled receptors J. Med. Chem. 54 2011 4283 4311
-
(2011)
J. Med. Chem.
, vol.54
, pp. 4283-4311
-
-
Congreve, M.1
-
41
-
-
84860505658
-
New insights from structural biology into the druggability of G protein-coupled receptors
-
J.S. Mason, and et al. New insights from structural biology into the druggability of G protein-coupled receptors Trends Pharmacol. Sci. 33 2012 249 260
-
(2012)
Trends Pharmacol. Sci.
, vol.33
, pp. 249-260
-
-
Mason, J.S.1
-
42
-
-
84902164279
-
High end GPCR design: Crafted ligand design and druggability analysis using protein structure, lipophilic hotspots and explicit water networks
-
J.S. Mason, and et al. High end GPCR design: crafted ligand design and druggability analysis using protein structure, lipophilic hotspots and explicit water networks In Silico Pharmacol. 1 2013 23
-
(2013)
Silico Pharmacol.
, vol.1
, pp. 23
-
-
Mason, J.S.1
-
43
-
-
0021871375
-
A computational procedure for determining energetically favorable binding sites on biologically important macromolecules
-
P.J. Goodford A computational procedure for determining energetically favorable binding sites on biologically important macromolecules J. Med. Chem. 28 1985 849 857
-
(1985)
J. Med. Chem.
, vol.28
, pp. 849-857
-
-
Goodford, P.J.1
-
46
-
-
84858049591
-
Identification of novel adenosine A2A receptor antagonists by virtual screening
-
C.J. Langmead, and et al. Identification of novel adenosine A2A receptor antagonists by virtual screening J. Med. Chem. 55 2012 1904 1909
-
(2012)
J. Med. Chem.
, vol.55
, pp. 1904-1909
-
-
Langmead, C.J.1
-
47
-
-
84896710683
-
Shaping suvorexant: Application of experimental and theoretical methods for driving synthetic designs
-
G. McGaughey, and et al. Shaping suvorexant: application of experimental and theoretical methods for driving synthetic designs J. Comput. Aided Mol. Des. 28 2014 5 12
-
(2014)
J. Comput. Aided Mol. Des.
, vol.28
, pp. 5-12
-
-
McGaughey, G.1
-
48
-
-
84861961427
-
Structural basis for allosteric regulation of GPCRs by sodium ions
-
W. Liu, and et al. Structural basis for allosteric regulation of GPCRs by sodium ions Science 337 2012 232 236
-
(2012)
Science
, vol.337
, pp. 232-236
-
-
Liu, W.1
-
49
-
-
84899432247
-
Structure-based drug design of chromone antagonists of the adenosine A2A receptor
-
S.P. Andrews, and et al. Structure-based drug design of chromone antagonists of the adenosine A2A receptor Med. Chem. Comm. 5 2014 571 575
-
(2014)
Med. Chem. Comm.
, vol.5
, pp. 571-575
-
-
Andrews, S.P.1
-
50
-
-
84880564425
-
Water network perturbation in ligand binding: Adenosine A2A antagonists as a case study
-
A. Bortolato, and et al. Water network perturbation in ligand binding: adenosine A2A antagonists as a case study J. Chem. Inf. Model. 53 2013 1700 1713
-
(2013)
J. Chem. Inf. Model.
, vol.53
, pp. 1700-1713
-
-
Bortolato, A.1
-
51
-
-
84894680958
-
Supervised molecular dynamics (SuMD) as a helpful tool to depict GPCR-ligand recognition pathway in a nanosecond timescale
-
D. Sabbadin, and et al. Supervised molecular dynamics (SuMD) as a helpful tool to depict GPCR-ligand recognition pathway in a nanosecond timescale J. Chem. Inf. Model. 54 2014 372 376
-
(2014)
J. Chem. Inf. Model.
, vol.54
, pp. 372-376
-
-
Sabbadin, D.1
-
52
-
-
79960181417
-
Structure of the adenosine A2A receptor in complex with ZM241385 and the xanthines XAC and caffeine
-
A.S. Doré, and et al. Structure of the adenosine A2A receptor in complex with ZM241385 and the xanthines XAC and caffeine Structure 19 2011 1283 1293
-
(2011)
Structure
, vol.19
, pp. 1283-1293
-
-
Doré, A.S.1
-
53
-
-
84858034356
-
2A antagonists using structure based drug design
-
2A antagonists using structure based drug design J. Med. Chem. 55 2012 1898 1903
-
(2012)
J. Med. Chem.
, vol.55
, pp. 1898-1903
-
-
Congreve, M.1
-
54
-
-
84899751079
-
Agonist-bound structure of the human P2Y12 receptor
-
J. Zhang, and et al. Agonist-bound structure of the human P2Y12 receptor Nature 509 2014 119 122
-
(2014)
Nature
, vol.509
, pp. 119-122
-
-
Zhang, J.1
-
55
-
-
79955613841
-
Molecular obesity, potency and other addictions in drug discovery
-
M.M. Hann Molecular obesity, potency and other addictions in drug discovery Med. Chem. Commun. 2 2011 349 355
-
(2011)
Med. Chem. Commun.
, vol.2
, pp. 349-355
-
-
Hann, M.M.1
-
56
-
-
84947025823
-
Contribution of structure-based drug design to the discovery of marketed drugs
-
D.J. Livingstone, A.M. Davis, Springer
-
A.A. Alex, and D.S. Millan Contribution of structure-based drug design to the discovery of marketed drugs D.J. Livingstone, A.M. Davis, Drug Design Strategies 2012 Springer 108 163
-
(2012)
Drug Design Strategies
, pp. 108-163
-
-
Alex, A.A.1
Millan, D.S.2
-
57
-
-
84920736359
-
GPR40 (FFAR1) - Combined Gs and Gq signaling in vitro is associated with robust incretin secretagogue action ex vivo and in vivo
-
M. Hauge, and et al. GPR40 (FFAR1) - combined Gs and Gq signaling in vitro is associated with robust incretin secretagogue action ex vivo and in vivo Mol. Metab. 4 2014 3 14
-
(2014)
Mol. Metab.
, vol.4
, pp. 3-14
-
-
Hauge, M.1
|