메뉴 건너뛰기




Volumn 138, Issue 4, 2016, Pages

Fabrication of microfluidic manifold by precision extrusion deposition and replica molding for cell-laden device

Author keywords

cell laden microfluidic device; multinozzle cell printing; PED; replica molding

Indexed keywords

CELLS; CYTOLOGY; DEPOSITION; EXTRUSION; EXTRUSION MOLDING; FLUIDIC DEVICES; MICROCHANNELS; MICROFLUIDICS; MOLDING; PRECISION ENGINEERING; PRINTING; SILICONES; TISSUE ENGINEERING;

EID: 84946094629     PISSN: 10871357     EISSN: 15288935     Source Type: Journal    
DOI: 10.1115/1.4031551     Document Type: Article
Times cited : (18)

References (57)
  • 1
    • 1142305959 scopus 로고    scopus 로고
    • Development of a microscale cell culture analog to probe naphthalene toxicity
    • Shuler, M. L., Viravaidya, K., and Sin, A. (2004). Development of a Microscale Cell Culture Analog to Probe Naphthalene Toxicity. Biotechnol. Prog., 20(1), pp. 316-323
    • (2004) Biotechnol. Prog , vol.20 , Issue.1 , pp. 316-323
    • Shuler, M.L.1    Viravaidya, K.2    Sin, A.3
  • 3
    • 2442482962 scopus 로고    scopus 로고
    • Key factors in the rising cost of new drug discovery, and development
    • Dickson, M., and Gagnon, J. P. (2004). Key Factors in the Rising Cost of New Drug Discovery, and Development. Nat. Rev. Drug Discovery, 3(5), pp. 417-429
    • (2004) Nat. Rev. Drug Discovery , vol.3 , Issue.5 , pp. 417-429
    • Dickson, M.1    Gagnon, J.P.2
  • 4
    • 79959549073 scopus 로고    scopus 로고
    • Microfluidic devices for in vitro studies on liver drug metabolism, and toxicity
    • van Midwoud, P. M., Verpoorte, E., and Groothuis, G. M. M. (2011). Microfluidic Devices for In Vitro Studies on Liver Drug Metabolism, and Toxicity. Integr. Biol., 3(5), pp. 509-521
    • (2011) Integr. Biol , vol.3 , Issue.5 , pp. 509-521
    • Van Midwoud, P.M.1    Verpoorte, E.2    Groothuis, G.M.M.3
  • 6
    • 0038278508 scopus 로고    scopus 로고
    • An update on in vitro test methods in human hepatic drug biotransformation research: Pros, and cons
    • Brandon, E. F. A., Raap, C. D., Meijerman, I., Beijnen, J. H., and Schellens, J. H. M. (2003). An Update on In Vitro Test Methods in Human Hepatic Drug Biotransformation Research: Pros, and Cons. Toxicol. Appl. Pharmacol., 189(3), pp. 233-246
    • (2003) Toxicol. Appl. Pharmacol , vol.189 , Issue.3 , pp. 233-246
    • Brandon, E.F.A.1    Raap, C.D.2    Meijerman, I.3    Beijnen, J.H.4    Schellens, J.H.M.5
  • 7
    • 77649131395 scopus 로고    scopus 로고
    • Design, and application of microfluidic systems for in vitro pharmacokinetic evaluation of drug candidates
    • Cheng, K. C., Maguire, T. J., Novik, E., Chao, P., Barminko, J., Nahmias, Y., and Yarmush, M. L. (2009). Design, and Application of Microfluidic Systems for In Vitro Pharmacokinetic Evaluation of Drug Candidates. Curr. Drug Metab., 10(10), pp. 1192-1199
    • (2009) Curr. Drug Metab , vol.10 , Issue.10 , pp. 1192-1199
    • Cheng, K.C.1    Maguire, T.J.2    Novik, E.3    Chao, P.4    Barminko, J.5    Nahmias, Y.6    Yarmush, M.L.7
  • 8
    • 77950438544 scopus 로고    scopus 로고
    • Microfluidic cell culture systems for drug research
    • Wu, M. H., Huang, S. B., and Lee, G. B. (2010). Microfluidic Cell Culture Systems for Drug Research. Lab Chip, 10(8), pp. 939-956
    • (2010) Lab Chip , vol.10 , Issue.8 , pp. 939-956
    • Wu, M.H.1    Huang, S.B.2    Lee, G.B.3
  • 9
    • 79955475917 scopus 로고    scopus 로고
    • Microfluidic cell coculture methods for understanding cell biology analyzing bio/pharmaceuticals, and developing tissue constructs
    • Kim, S., and Marimuthu, M. (2011). Microfluidic Cell Coculture Methods for Understanding Cell Biology, Analyzing Bio/Pharmaceuticals, and Developing Tissue Constructs. Anal. Biochem., 413(2), pp. 81-89
    • (2011) Anal. Biochem , vol.413 , Issue.2 , pp. 81-89
    • Kim, S.1    Marimuthu, M.2
  • 10
    • 78650779972 scopus 로고    scopus 로고
    • Microfluidic devices for bioapplications
    • Yeo, L. Y., Chang, H. C., Chan, P. P., and Friend, J. R. (2011). Microfluidic Devices for Bioapplications. Small, 7(1), pp. 12-48
    • (2011) Small , vol.7 , Issue.1 , pp. 12-48
    • Yeo, L.Y.1    Chang, H.C.2    Chan, P.P.3    Friend, J.R.4
  • 12
    • 77954960401 scopus 로고    scopus 로고
    • Bioprinted nanoparticles for tissue engineering applications
    • Buyukhatipoglu, K., Chang, R., Sun, W., and Clyne, A. M. (2010). Bioprinted Nanoparticles for Tissue Engineering Applications. Tissue Eng., Part C, 16(4), pp. 631-642
    • (2010) Tissue Eng. Part C , vol.16 , Issue.4 , pp. 631-642
    • Buyukhatipoglu, K.1    Chang, R.2    Sun, W.3    Clyne, A.M.4
  • 13
    • 1942437993 scopus 로고    scopus 로고
    • Microenvironment design considerations for cellular scale studies
    • Walker, G. M., Zeringue, H. C., and Beebe, D. J. (2004). Microenvironment Design Considerations for Cellular Scale Studies. Lab Chip, 4(2), pp. 91-97
    • (2004) Lab Chip , vol.4 , Issue.2 , pp. 91-97
    • Walker, G.M.1    Zeringue, H.C.2    Beebe, D.J.3
  • 15
    • 66849138510 scopus 로고    scopus 로고
    • Microfluidic endothelium for studying the intravascular adhesion of metastatic breast cancer cells
    • Song, J. W., Cavnar, S. P., Walker, A. C., Luker, K. E., Gupta, M., Tung, Y. C., Luker, G. D., and Takayama, S. (2009). Microfluidic Endothelium for Studying the Intravascular Adhesion of Metastatic Breast Cancer Cells. PLoS ONE, 4(6), p. e5756
    • (2009) PLoS ONE , vol.4 , Issue.6 , pp. e5756
    • Song, J.W.1    Cavnar, S.P.2    Walker, A.C.3    Luker, K.E.4    Gupta, M.5    Tung, Y.C.6    Luker, G.D.7    Takayama, S.8
  • 16
  • 17
    • 49749095092 scopus 로고    scopus 로고
    • A new tool for probing of cell-cell communication: Human embryonic germ cells inducing apoptosis of skov3 ovarian cancer cells on a microfluidic chip
    • Kong, B. H., Song, X. Y., and Li, D. (2008) A New Tool for Probing of Cell-Cell Communication: Human Embryonic Germ Cells Inducing Apoptosis of SKOV3 Ovarian Cancer Cells on a Microfluidic Chip. Biotechnol. Lett., 30(9), pp. 1537-1543
    • (2008) Biotechnol. Lett , vol.30 , Issue.9 , pp. 1537-1543
    • Kong, B.H.1    Song, X.Y.2    Li, D.3
  • 18
    • 77449119885 scopus 로고    scopus 로고
    • A microfluidic hepatic coculture platform for cell-based drug metabolism studies
    • Cheng, K. C., Novik, E., Maguire, T. J., Chao, P. Y., and Yarmush, M. L. (2010) A Microfluidic Hepatic Coculture Platform for Cell-Based Drug Metabolism Studies. Biochem. Pharmacol., 79(7), pp. 1036-1044
    • (2010) Biochem. Pharmacol , vol.79 , Issue.7 , pp. 1036-1044
    • Cheng, K.C.1    Novik, E.2    Maguire, T.J.3    Chao, P.Y.4    Yarmush, M.L.5
  • 20
    • 27144473914 scopus 로고    scopus 로고
    • The extracellular matrix guides the orientation of the cell division axis
    • Bornens, M., Thery, M., Racine, V., Pepin, A., Piel, M., Chen, Y., and Sibarita, J. B. (2005). The Extracellular Matrix Guides the Orientation of the Cell Division Axis. Nat. Cell Biol., 7(10), pp. 947-953
    • (2005) Nat. Cell Biol , vol.7 , Issue.10 , pp. 947-953
    • Bornens, M.1    Thery, M.2    Racine, V.3    Pepin, A.4    Piel, M.5    Chen, Y.6    Sibarita, J.B.7
  • 21
    • 84924411549 scopus 로고    scopus 로고
    • Bioprinting technology: A current state-of-The-Art review
    • Dababneh, A. B., and Ozbolat, I. T. (2014). Bioprinting Technology: A Current State-of-The-Art Review. ASME J. Manuf. Sci. Eng., 136(6), p. 061016
    • (2014) ASME J. Manuf. Sci. Eng , vol.136 , Issue.6 , pp. 061016
    • Dababneh, A.B.1    Ozbolat, I.T.2
  • 22
    • 84924351834 scopus 로고    scopus 로고
    • A hybrid bioprinting approach for scale-up tissue fabrication
    • Yu, Y., Zhang, Y. H., and Ozbolat, I. T. (2014) A Hybrid Bioprinting Approach for Scale-Up Tissue Fabrication. ASME J. Manuf. Sci. Eng., 136(6), p. 061013
    • (2014) ASME J. Manuf. Sci. Eng , vol.136 , Issue.6 , pp. 061013
    • Yu, Y.1    Zhang, Y.H.2    Ozbolat, I.T.3
  • 23
    • 84994005716 scopus 로고    scopus 로고
    • Additive manufacturing: Current state, future potential, gaps, and needs, and recommendations
    • Huang, Y., Leu, M. C., Mazumder, J., and Donmez, A. (2015). Additive Manufacturing: Current State, Future Potential, Gaps, and Needs, and Recommendations. ASME J. Manuf. Sci. Eng., 137(1), p. 014001
    • (2015) ASME J. Manuf. Sci. Eng , vol.137 , Issue.1 , pp. 014001
    • Huang, Y.1    Leu, M.C.2    Mazumder, J.3    Donmez, A.4
  • 24
    • 1042265021 scopus 로고    scopus 로고
    • Computer-Aided tissue engineering: Application to biomimetic modelling, and design of tissue scaffolds
    • Sun, W., Starly, B., Darling, A., and Gomez, C. (2004). Computer-Aided Tissue Engineering: Application to Biomimetic Modelling, and Design of Tissue Scaffolds. Biotechnol. Appl. Biochem., 39(Pt 1), pp. 49-58
    • (2004) Biotechnol. Appl. Biochem , vol.39 , Issue.PART1 , pp. 49-58
    • Sun, W.1    Starly, B.2    Darling, A.3    Gomez, C.4
  • 25
    • 84899531548 scopus 로고    scopus 로고
    • A three-dimensional cell-laden microfluidic chip for in vitro drug metabolism detection
    • Hamid, Q., Wang, C., Zhao, Y., Snyder, J., and Sun, W. (2014) A Three-Dimensional Cell-Laden Microfluidic Chip for In Vitro Drug Metabolism Detection. Biofabrication, 6(2), p. 025008
    • (2014) Biofabrication , vol.6 , Issue.2 , pp. 025008
    • Hamid, Q.1    Wang, C.2    Zhao, Y.3    Snyder, J.4    Sun, W.5
  • 27
    • 3242700527 scopus 로고    scopus 로고
    • Making tissue engineering scaffolds work review: The application of solid freeform fabrication technology to the production of tissue engineering scaffolds
    • discussion 39-40
    • Sachlos, E., and Czernuszka, J. T. (2003). Making Tissue Engineering Scaffolds Work. Review: the Application of Solid Freeform Fabrication Technology to the Production of Tissue Engineering Scaffolds. Eur. Cells Mater., 5, pp. 29-39; discussion 39-40
    • (2003) Eur. Cells Mater , vol.5 , pp. 29-39
    • Sachlos, E.1    Czernuszka, J.T.2
  • 28
    • 77956481502 scopus 로고    scopus 로고
    • Design of three-dimensional biomimetic scaffolds
    • Owen, S. C., and Shoichet, M. S. (2010). Design of Three-Dimensional Biomimetic Scaffolds. J. Biomed. Mater. Res., Part A, 94A(4), pp. 1321-1331
    • (2010) J. Biomed. Mater. Res. Part A , vol.94 A , Issue.4 , pp. 1321-1331
    • Owen, S.C.1    Shoichet, M.S.2
  • 29
    • 79251617418 scopus 로고    scopus 로고
    • Three-dimensional plotted scaffolds with controlled pore size gradients: Effect of scaffold geometry on mechanical performance, and cell seeding efficiency
    • Sobral, J. M., Caridade, S. G., Sousa, R. A., Mano, J. F., and Reis, R. L. (2011). Three-Dimensional Plotted Scaffolds With Controlled Pore Size Gradients: Effect of Scaffold Geometry on Mechanical Performance, and Cell Seeding Efficiency. Acta Biomater., 7(3), pp. 1009-1018
    • (2011) Acta Biomater , vol.7 , Issue.3 , pp. 1009-1018
    • Sobral, J.M.1    Caridade, S.G.2    Sousa, R.A.3    Mano, J.F.4    Reis, R.L.5
  • 30
    • 33846188184 scopus 로고    scopus 로고
    • In vitro, and in vivo characteristics of pcl scaffolds with pore size gradient fabricated by a centrifugation method
    • Oh, S. H., Park, I. K., Kim, J. M., and Lee, J. H. (2007). In Vitro, and In Vivo Characteristics of PCL Scaffolds With Pore Size Gradient Fabricated by a Centrifugation Method. Biomaterials, 28(9), pp. 1664-1671
    • (2007) Biomaterials , vol.28 , Issue.9 , pp. 1664-1671
    • Oh, S.H.1    Park, I.K.2    Kim, J.M.3    Lee, J.H.4
  • 31
    • 77954382856 scopus 로고    scopus 로고
    • Mathematically defined tissue engineering scaffold architectures prepared by stereolithography
    • Melchels, F. P. W., Bertoldi, K., Gabbrielli, R., Velders, A. H., Feijen, J., and Grijpma, D. W. (2010). Mathematically Defined Tissue Engineering Scaffold Architectures Prepared by Stereolithography. Biomaterials, 31(27), pp. 6909-6916
    • (2010) Biomaterials , vol.31 , Issue.27 , pp. 6909-6916
    • Melchels, F.P.W.1    Bertoldi, K.2    Gabbrielli, R.3    Velders, A.H.4    Feijen, J.5    Grijpma, D.W.6
  • 32
    • 84860481842 scopus 로고    scopus 로고
    • Organs-on-chips: Breaking the in vitro impasse
    • van der Meer, A. D., and van den Berg, A. (2012). Organs-on-Chips: Breaking the In Vitro Impasse. Integr. Biol., 4(5), pp. 461-470
    • (2012) Integr. Biol , vol.4 , Issue.5 , pp. 461-470
    • Van Der Meer, A.D.1    Van Den Berg, A.2
  • 33
    • 84924310041 scopus 로고    scopus 로고
    • Maskless fabrication of cell-laden microfluidic chips with localized surface functionalization for the co-culture of cancer cells
    • Hamid, Q., Wang, C., Snyder, J., Williams, S., Liu, Y., and Sun, W. (2015). Maskless Fabrication of Cell-Laden Microfluidic Chips With Localized Surface Functionalization for the Co-Culture of Cancer Cells. Biofabrication, 7(1), p. 015012
    • (2015) Biofabrication , vol.7 , Issue.1 , pp. 015012
    • Hamid, Q.1    Wang, C.2    Snyder, J.3    Williams, S.4    Liu, Y.5    Sun, W.6
  • 34
    • 84920841048 scopus 로고    scopus 로고
    • Surface modification of su-8 for enhanced cell attachment, and proliferation within microfluidic chips
    • Hamid, Q., Wang, C., Snyder, J., and Sun, W. (2015). Surface Modification of SU-8 for Enhanced Cell Attachment, and Proliferation Within Microfluidic Chips. ASME J. Biomed. Mater. Res., Part B, 103(2), pp. 473-484
    • (2015) ASME J. Biomed. Mater. Res. Part B , vol.103 , Issue.2 , pp. 473-484
    • Hamid, Q.1    Wang, C.2    Snyder, J.3    Sun, W.4
  • 35
    • 84896787116 scopus 로고    scopus 로고
    • Combined multi-nozzle deposition, and freeze casting process to superimpose two porous networks for hierarchical three-dimensional microenvironment
    • Snyder, J. E., Hunger, P. M., Wang, C., Hamid, Q., Wegst, U. G., and Sun, W. (2014). Combined Multi-Nozzle Deposition, and Freeze Casting Process to Superimpose Two Porous Networks for Hierarchical Three-Dimensional Microenvironment. Biofabrication, 6(1), p. 015007
    • (2014) Biofabrication , vol.6 , Issue.1 , pp. 015007
    • Snyder, J.E.1    Hunger, P.M.2    Wang, C.3    Hamid, Q.4    Wegst, U.G.5    Sun, W.6
  • 36
    • 82055196892 scopus 로고    scopus 로고
    • Bioprinting cell-laden matrigel for radioprotection study of liver by pro-drug conversion in a dual-Tissue microfluidic chip
    • Snyder, J. E., Hamid, Q., Wang, C., Chang, R., Emami, K., Wu, H., and Sun, W. (2011). Bioprinting Cell-Laden Matrigel for Radioprotection Study of Liver by Pro-Drug Conversion in a Dual-Tissue Microfluidic Chip. Biofabrication, 3(3), p. 034112
    • (2011) Biofabrication , vol.3 , Issue.3 , pp. 034112
    • Snyder, J.E.1    Hamid, Q.2    Wang, C.3    Chang, R.4    Emami, K.5    Wu, H.6    Sun, W.7
  • 37
    • 79251632163 scopus 로고    scopus 로고
    • Structural, and material approaches to bone tissue engineering in powder-based three-dimensional printing
    • Butscher, A., Bohner, M., Hofmann, S., Gauckler, L., and Muller, R. (2011). Structural, and Material Approaches to Bone Tissue Engineering in Powder-Based Three-Dimensional Printing. Acta Biomater., 7(3), pp. 907-920
    • (2011) Acta Biomater , vol.7 , Issue.3 , pp. 907-920
    • Butscher, A.1    Bohner, M.2    Hofmann, S.3    Gauckler, L.4    Muller, R.5
  • 38
    • 84869876690 scopus 로고    scopus 로고
    • Additive manufacturing techniques for the production of tissue engineering constructs
    • Mota, C., Puppi, D., Chiellini, F., and Chiellini, E. (2015). Additive Manufacturing Techniques for the Production of Tissue Engineering Constructs. J. Tissue Eng. Regener. Med., 9(3), pp. 174-190
    • (2015) J. Tissue Eng. Regener. Med , vol.9 , Issue.3 , pp. 174-190
    • Mota, C.1    Puppi, D.2    Chiellini, F.3    Chiellini, E.4
  • 40
    • 84896548221 scopus 로고    scopus 로고
    • Current trends in the design of scaffolds for computer-Aided tissue engineering
    • Giannitelli, S. M., Accoto, D., Trombetta, M., and Rainer, A. (2014). Current Trends in the Design of Scaffolds for Computer-Aided Tissue Engineering. Acta Biomater., 10(2), pp. 580-594
    • (2014) Acta Biomater , vol.10 , Issue.2 , pp. 580-594
    • Giannitelli, S.M.1    Accoto, D.2    Trombetta, M.3    Rainer, A.4
  • 42
    • 84926622049 scopus 로고    scopus 로고
    • Recent advances in 3d printing of biomaterials
    • Chia, H. N., and Wu, B. M. (2015). Recent Advances in 3D Printing of Biomaterials. J. Biol. Eng., 9(1), p. 4
    • (2015) J. Biol. Eng , vol.9 , Issue.1 , pp. 4
    • Chia, H.N.1    Wu, B.M.2
  • 43
    • 82055184089 scopus 로고    scopus 로고
    • Fabrication of three-dimensional scaffolds using precision extrusion deposition with an assisted cooling device
    • Hamid, Q., Snyder, J., Wang, C., Timmer, M., Hammer, J., Guceri, S., and Sun, W. (2011). Fabrication of Three-Dimensional Scaffolds Using Precision Extrusion Deposition With an Assisted Cooling Device. Biofabrication, 3(3), p. 034109
    • (2011) Biofabrication , vol.3 , Issue.3 , pp. 034109
    • Hamid, Q.1    Snyder, J.2    Wang, C.3    Timmer, M.4    Hammer, J.5    Guceri, S.6    Sun, W.7
  • 45
    • 77953700164 scopus 로고    scopus 로고
    • Opportunities, and limits of cell-based assay miniaturization in drug discovery
    • Becker, H., Carstens, C., Elbracht, R., and Gartner, C. (2010). Opportunities, and Limits of Cell-Based Assay Miniaturization in Drug Discovery. Expert Opin. Drug Discovery, 5(7), pp. 673-679
    • (2010) Expert Opin. Drug Discovery , vol.5 , Issue.7 , pp. 673-679
    • Becker, H.1    Carstens, C.2    Elbracht, R.3    Gartner, C.4
  • 46
    • 84885655994 scopus 로고    scopus 로고
    • Selective laser sintering in biomedical engineering
    • Mazzoli, A. (2013). Selective Laser Sintering in Biomedical Engineering. Med. Biol. Eng. Comput., 51(3), pp. 245-256
    • (2013) Med. Biol. Eng. Comput , vol.51 , Issue.3 , pp. 245-256
    • Mazzoli, A.1
  • 47
    • 84940510868 scopus 로고    scopus 로고
    • Development of freeze-form extrusion fabrication with use of sacrificial material
    • Leu, M. C., and Garcia, D. A. (2014). Development of Freeze-Form Extrusion Fabrication With Use of Sacrificial Material. ASME J. Manuf. Sci. Eng., 136(6), p. 061014
    • (2014) ASME J. Manuf. Sci. Eng , vol.136 , Issue.6 , pp. 061014
    • Leu, M.C.1    Garcia, D.A.2
  • 48
    • 84937514059 scopus 로고    scopus 로고
    • Multiple-material topology optimization of compliant mechanisms created via polyjet three-dimensional printing
    • Gaynor, A. T., Meisel, N. A., Williams, C. B., and Guest, J. K. (2014). Multiple-Material Topology Optimization of Compliant Mechanisms Created Via PolyJet Three-Dimensional Printing. ASME J. Manuf. Sci. Eng., 136(6), p. 061015
    • (2014) ASME J. Manuf. Sci. Eng , vol.136 , Issue.6 , pp. 061015
    • Gaynor, A.T.1    Meisel, N.A.2    Williams, C.B.3    Guest, J.K.4
  • 49
    • 77954494231 scopus 로고    scopus 로고
    • Bioprinting endothelial cells with alginate for 3d tissue constructs
    • Khalil, S., and Sun, W. (2009). Bioprinting Endothelial Cells With Alginate for 3D Tissue Constructs. ASME J. Biomech. Eng., 131(11), p. 111002
    • (2009) ASME J. Biomech. Eng , vol.131 , Issue.11 , pp. 111002
    • Khalil, S.1    Sun, W.2
  • 50
    • 84924404565 scopus 로고    scopus 로고
    • Alternating force based drop-on-demand microdroplet formation, and three-dimensional deposition
    • Zhao, L., Yan, K. R. C., Yao, R., Lin, F., and Sun, W. (2015). Alternating Force Based Drop-on-Demand Microdroplet Formation, and Three-Dimensional Deposition. ASME J. Manuf. Sci. Eng., 137(3), p. 031009
    • (2015) ASME J. Manuf. Sci. Eng , vol.137 , Issue.3 , pp. 031009
    • Zhao, L.1    Yan, K.R.C.2    Yao, R.3    Lin, F.4    Sun, W.5
  • 51
    • 29844456396 scopus 로고    scopus 로고
    • Internal architecture design, and freeform fabrication of tissue replacement structures
    • Starly, B., Lau, W., Bradbury, T., and Sun, W. (2006). Internal Architecture Design, and Freeform Fabrication of Tissue Replacement Structures. Comput. Aided Des., 38(2), pp. 115-124
    • (2006) Comput. Aided des , vol.38 , Issue.2 , pp. 115-124
    • Starly, B.1    Lau, W.2    Bradbury, T.3    Sun, W.4
  • 52
    • 77956761652 scopus 로고    scopus 로고
    • Precision extruding deposition (ped) fabrication of polycaprolactone (pcl) scaffolds for bone tissue engineering
    • Shor, L., Guceri, S., Chang, R., Gordon, J., Kang, Q., Hartsock, L., An, Y. H., and Sun, W. (2009). Precision Extruding Deposition (PED) Fabrication of Polycaprolactone (PCL) Scaffolds for Bone Tissue Engineering. Biofabrication, 1(1), p. 015003
    • (2009) Biofabrication , vol.1 , Issue.1 , pp. 015003
    • Shor, L.1    Guceri, S.2    Chang, R.3    Gordon, J.4    Kang, Q.5    Hartsock, L.6    An, Y.H.7    Sun, W.8
  • 53
    • 33645238778 scopus 로고    scopus 로고
    • Characterization of polydimethylsiloxane (pdms) properties for biomedical micro/nanosystems
    • Mata, A., Fleischman, A. J., and Roy, S. (2005). Characterization of Polydimethylsiloxane (PDMS) Properties for Biomedical Micro/Nanosystems. Biomed. Microdevices, 7(4), pp. 281-293
    • (2005) Biomed. Microdevices , vol.7 , Issue.4 , pp. 281-293
    • Mata, A.1    Fleischman, A.J.2    Roy, S.3
  • 55
    • 0036811407 scopus 로고    scopus 로고
    • Components for integrated poly(dimethylsiloxane) microfluidic systems
    • Whitesides, G. M., Ng, J. M. K., Gitlin, I., and Stroock, A. D. (2002). Components for Integrated Poly(Dimethylsiloxane) Microfluidic Systems. Electrophoresis, 23(20), pp. 3461-3473
    • (2002) Electrophoresis , vol.23 , Issue.20 , pp. 3461-3473
    • Whitesides, G.M.1    Ng, J.M.K.2    Gitlin, I.3    Stroock, A.D.4
  • 56
    • 45249122800 scopus 로고    scopus 로고
    • Direct cell writing of 3d microorgan for in vitro pharmacokinetic model
    • Sun, W., Chang, R., and Nam, Y. (2008). Direct Cell Writing of 3D Microorgan for in vitro Pharmacokinetic Model. Tissue Eng., Part C, 14(2), pp. 157-166
    • (2008) Tissue Eng., Part C , vol.14 , Issue.2 , pp. 157-166
    • Sun, W.1    Chang, R.2    Nam, Y.3
  • 57
    • 79953002875 scopus 로고    scopus 로고
    • Biofabrication of a three-dimensional liver micro-organ as an in vitro drug metabolism model
    • Sun, W., Chang, R., Emami, K., and Wu, H. L. (2010). Biofabrication of a Three-Dimensional Liver Micro-Organ as an In Vitro Drug Metabolism Model. Biofabrication, 2(4), pp. 1-11
    • (2010) Biofabrication , vol.2 , Issue.4 , pp. 1-11
    • Sun, W.1    Chang, R.2    Emami, K.3    Wu, H.L.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.