-
1
-
-
54949084607
-
2S as a physiologic vasorelaxant: hypertension in mice with deletion of cystathionine gamma-lyase
-
2S as a physiologic vasorelaxant: hypertension in mice with deletion of cystathionine gamma-lyase. Science 2008, 322:587-590.
-
(2008)
Science
, vol.322
, pp. 587-590
-
-
Yang, G.1
-
2
-
-
84864285556
-
2S signalling through protein sulfhydration and beyond
-
2S signalling through protein sulfhydration and beyond. Nat. Rev. Mol. Cell Biol. 2012, 13:499-507.
-
(2012)
Nat. Rev. Mol. Cell Biol.
, vol.13
, pp. 499-507
-
-
Paul, B.D.1
Snyder, S.H.2
-
3
-
-
84873470505
-
A novel pathway for the production of hydrogen sulfide from D-cysteine in mammalian cells
-
Shibuya N., et al. A novel pathway for the production of hydrogen sulfide from D-cysteine in mammalian cells. Nat. Commun. 2013, 4:1366.
-
(2013)
Nat. Commun.
, vol.4
, pp. 1366
-
-
Shibuya, N.1
-
4
-
-
84860117196
-
Physiological implications of hydrogen sulfide: a whiff exploration that blossomed
-
Wang R. Physiological implications of hydrogen sulfide: a whiff exploration that blossomed. Physiol. Rev. 2012, 92:791-896.
-
(2012)
Physiol. Rev.
, vol.92
, pp. 791-896
-
-
Wang, R.1
-
5
-
-
84921917526
-
2S signaling in the brain and peripheral tissues
-
2S signaling in the brain and peripheral tissues. Antiox. Redox Signal. 2015, 22:411-423.
-
(2015)
Antiox. Redox Signal.
, vol.22
, pp. 411-423
-
-
Paul, B.D.1
Snyder, S.H.2
-
6
-
-
84862909327
-
Hydrogen sulfide-linked sulfhydration of NF-kappaB mediates its antiapoptotic actions
-
Sen N., et al. Hydrogen sulfide-linked sulfhydration of NF-kappaB mediates its antiapoptotic actions. Mol. Cell 2012, 45:13-24.
-
(2012)
Mol. Cell
, vol.45
, pp. 13-24
-
-
Sen, N.1
-
7
-
-
77950605510
-
2S production in lipopolysaccharide-treated macrophages
-
2S production in lipopolysaccharide-treated macrophages. Cell. Mol. Life Sci. 2010, 67:1119-1132.
-
(2010)
Cell. Mol. Life Sci.
, vol.67
, pp. 1119-1132
-
-
Zhu, X.Y.1
-
8
-
-
58149494119
-
Glucose-induced production of hydrogen sulfide may protect the pancreatic beta-cells from apoptotic cell death by high glucose
-
Kaneko Y., et al. Glucose-induced production of hydrogen sulfide may protect the pancreatic beta-cells from apoptotic cell death by high glucose. FEBS Lett. 2009, 583:377-382.
-
(2009)
FEBS Lett.
, vol.583
, pp. 377-382
-
-
Kaneko, Y.1
-
9
-
-
84920995923
-
Endogenous hydrogen sulfide production is essential for dietary restriction benefits
-
Hine C., et al. Endogenous hydrogen sulfide production is essential for dietary restriction benefits. Cell 2015, 160:132-144.
-
(2015)
Cell
, vol.160
, pp. 132-144
-
-
Hine, C.1
-
10
-
-
83655165310
-
2S-Induced sulfhydration of the phosphatase PTP1B and its role in the endoplasmic reticulum stress response
-
2S-Induced sulfhydration of the phosphatase PTP1B and its role in the endoplasmic reticulum stress response. Sci. Signal. 2011, 4:ra86.
-
(2011)
Sci. Signal.
, vol.4
, pp. ra86
-
-
Krishnan, N.1
-
11
-
-
0016837233
-
Activation of cystathionine synthase by adenosylmethionine and adenosylethionine
-
Finkelstein J.D., et al. Activation of cystathionine synthase by adenosylmethionine and adenosylethionine. Biochem. Biophys. Res. Commun. 1975, 66:81-87.
-
(1975)
Biochem. Biophys. Res. Commun.
, vol.66
, pp. 81-87
-
-
Finkelstein, J.D.1
-
12
-
-
84907289609
-
Structural insight into the molecular mechanism of allosteric activation of human cystathionine beta-synthase by S-adenosylmethionine
-
Ereno-Orbea J., et al. Structural insight into the molecular mechanism of allosteric activation of human cystathionine beta-synthase by S-adenosylmethionine. Proc. Natl. Acad. Sci. U.S.A. 2014, 111:E3845-E3852.
-
(2014)
Proc. Natl. Acad. Sci. U.S.A.
, vol.111
, pp. E3845-E3852
-
-
Ereno-Orbea, J.1
-
13
-
-
84863012580
-
Hypoxic regulation of the cerebral microcirculation is mediated by a carbon monoxide-sensitive hydrogen sulfide pathway
-
Morikawa T., et al. Hypoxic regulation of the cerebral microcirculation is mediated by a carbon monoxide-sensitive hydrogen sulfide pathway. Proc. Natl. Acad. Sci. U.S.A. 2012, 109:1293-1298.
-
(2012)
Proc. Natl. Acad. Sci. U.S.A.
, vol.109
, pp. 1293-1298
-
-
Morikawa, T.1
-
14
-
-
84862776888
-
Carbon monoxide: impact on remethylation/transsulfuration metabolism and its pathophysiologic implications
-
Hishiki T., et al. Carbon monoxide: impact on remethylation/transsulfuration metabolism and its pathophysiologic implications. J. Mol. Med. 2012, 90:245-254.
-
(2012)
J. Mol. Med.
, vol.90
, pp. 245-254
-
-
Hishiki, T.1
-
15
-
-
84897016248
-
NO* binds human cystathionine beta-synthase quickly and tightly
-
Vicente J.B., et al. NO* binds human cystathionine beta-synthase quickly and tightly. J. Biol. Chem. 2014, 289:8579-8587.
-
(2014)
J. Biol. Chem.
, vol.289
, pp. 8579-8587
-
-
Vicente, J.B.1
-
16
-
-
80053389804
-
Reversible heme-dependent regulation of human cystathionine beta-synthase by a flavoprotein oxidoreductase
-
Kabil O., et al. Reversible heme-dependent regulation of human cystathionine beta-synthase by a flavoprotein oxidoreductase. Biochemistry 2011, 50:8261-8263.
-
(2011)
Biochemistry
, vol.50
, pp. 8261-8263
-
-
Kabil, O.1
-
17
-
-
27744461725
-
Cystathionine beta-synthase, a key enzyme for homocysteine metabolism, is preferentially expressed in the radial glia/astrocyte lineage of developing mouse CNS
-
Enokido Y., et al. Cystathionine beta-synthase, a key enzyme for homocysteine metabolism, is preferentially expressed in the radial glia/astrocyte lineage of developing mouse CNS. FASEB J. 2005, 19:1854-1856.
-
(2005)
FASEB J.
, vol.19
, pp. 1854-1856
-
-
Enokido, Y.1
-
18
-
-
60749088329
-
3-Mercaptopyruvate sulfurtransferase produces hydrogen sulfide and bound sulfane sulfur in the brain
-
Shibuya N., et al. 3-Mercaptopyruvate sulfurtransferase produces hydrogen sulfide and bound sulfane sulfur in the brain. Antioxid. Redox Signal. 2009, 11:703-714.
-
(2009)
Antioxid. Redox Signal.
, vol.11
, pp. 703-714
-
-
Shibuya, N.1
-
19
-
-
78651457395
-
Hydrogen sulfide: its production, release and functions
-
Kimura H. Hydrogen sulfide: its production, release and functions. Amino Acids 2011, 41:113-121.
-
(2011)
Amino Acids
, vol.41
, pp. 113-121
-
-
Kimura, H.1
-
20
-
-
58149090827
-
A source of hydrogen sulfide and a mechanism of its release in the brain
-
Ishigami M., et al. A source of hydrogen sulfide and a mechanism of its release in the brain. Antioxid. Redox Signal. 2009, 11:205-214.
-
(2009)
Antioxid. Redox Signal.
, vol.11
, pp. 205-214
-
-
Ishigami, M.1
-
21
-
-
80054015725
-
Thioredoxin and dihydrolipoic acid are required for 3-mercaptopyruvate sulfurtransferase to produce hydrogen sulfide
-
Mikami Y., et al. Thioredoxin and dihydrolipoic acid are required for 3-mercaptopyruvate sulfurtransferase to produce hydrogen sulfide. Biochem. J. 2011, 439:479-485.
-
(2011)
Biochem. J.
, vol.439
, pp. 479-485
-
-
Mikami, Y.1
-
22
-
-
84870916445
-
Microbial pathways in colonic sulfur metabolism and links with health and disease
-
Carbonero F., et al. Microbial pathways in colonic sulfur metabolism and links with health and disease. Front. Physiol. 2012, 3:448.
-
(2012)
Front. Physiol.
, vol.3
, pp. 448
-
-
Carbonero, F.1
-
24
-
-
84885466734
-
Hydrogen sulfide signaling in the gastrointestinal tract
-
Linden D.R. Hydrogen sulfide signaling in the gastrointestinal tract. Antioxid. Redox Signal. 2014, 20:818-830.
-
(2014)
Antioxid. Redox Signal.
, vol.20
, pp. 818-830
-
-
Linden, D.R.1
-
25
-
-
74949103637
-
2S signals through protein S-sulfhydration
-
2S signals through protein S-sulfhydration. Sci. Signal. 2009, 2:ra72.
-
(2009)
Sci. Signal.
, vol.2
, pp. ra72
-
-
Mustafa, A.K.1
-
26
-
-
0026586147
-
S-Nitrosylation of proteins with nitric oxide: synthesis and characterization of biologically active compounds
-
Stamler J.S., et al. S-Nitrosylation of proteins with nitric oxide: synthesis and characterization of biologically active compounds. Proc. Natl. Acad. Sci. U.S.A. 1992, 89:444-448.
-
(1992)
Proc. Natl. Acad. Sci. U.S.A.
, vol.89
, pp. 444-448
-
-
Stamler, J.S.1
-
27
-
-
79958233011
-
Redox biology: computational approaches to the investigation of functional cysteine residues
-
Marino S.M., Gladyshev V.N. Redox biology: computational approaches to the investigation of functional cysteine residues. Antioxid. Redox Signal. 2011, 15:135-146.
-
(2011)
Antioxid. Redox Signal.
, vol.15
, pp. 135-146
-
-
Marino, S.M.1
Gladyshev, V.N.2
-
28
-
-
84886255283
-
2S to protein thiol oxidation
-
2S to protein thiol oxidation. Antioxid. Redox Signal. 2013, 19:1749-1765.
-
(2013)
Antioxid. Redox Signal.
, vol.19
, pp. 1749-1765
-
-
Greiner, R.1
-
29
-
-
40849097418
-
Discovering mechanisms of signaling-mediated cysteine oxidation
-
Poole L.B., Nelson K.J. Discovering mechanisms of signaling-mediated cysteine oxidation. Curr. Opin. Chem. Biol. 2008, 12:18-24.
-
(2008)
Curr. Opin. Chem. Biol.
, vol.12
, pp. 18-24
-
-
Poole, L.B.1
Nelson, K.J.2
-
30
-
-
79951876764
-
Cysteine-based redox switches in enzymes
-
Klomsiri C., et al. Cysteine-based redox switches in enzymes. Antioxid. Redox Signal. 2011, 14:1065-1077.
-
(2011)
Antioxid. Redox Signal.
, vol.14
, pp. 1065-1077
-
-
Klomsiri, C.1
-
31
-
-
84858204853
-
From sulfenylation to sulfhydration: what a thiolate needs to tolerate
-
Finkel T. From sulfenylation to sulfhydration: what a thiolate needs to tolerate. Sci. Signal. 2012, 5:pe10.
-
(2012)
Sci. Signal.
, vol.5
, pp. pe10
-
-
Finkel, T.1
-
32
-
-
84919624950
-
Endogenous S-sulfhydration of PTEN helps protect against modification by nitric oxide
-
Ohno K., et al. Endogenous S-sulfhydration of PTEN helps protect against modification by nitric oxide. Biochem. Biophys. Res. Commun. 2015, 456:245-249.
-
(2015)
Biochem. Biophys. Res. Commun.
, vol.456
, pp. 245-249
-
-
Ohno, K.1
-
34
-
-
84891792187
-
Detection of protein S-sulfhydration by a tag-switch technique
-
Zhang D., et al. Detection of protein S-sulfhydration by a tag-switch technique. Angew. Chem. 2014, 53:575-581.
-
(2014)
Angew. Chem.
, vol.53
, pp. 575-581
-
-
Zhang, D.1
-
35
-
-
77958095282
-
Rapid reaction of hydrogen sulfide with the neutrophil oxidant hypochlorous acid to generate polysulfides
-
Nagy P., Winterbourn C.C. Rapid reaction of hydrogen sulfide with the neutrophil oxidant hypochlorous acid to generate polysulfides. Chem. Res. Toxicol. 2010, 23:1541-1543.
-
(2010)
Chem. Res. Toxicol.
, vol.23
, pp. 1541-1543
-
-
Nagy, P.1
Winterbourn, C.C.2
-
36
-
-
84878764595
-
2S-derived signaling molecules in rat brain
-
2S-derived signaling molecules in rat brain. FASEB J. 2013, 27:2451-2457.
-
(2013)
FASEB J.
, vol.27
, pp. 2451-2457
-
-
Kimura, Y.1
-
37
-
-
0035849715
-
The biotin switch method for the detection of S-nitrosylated proteins
-
Jaffrey S.R., Snyder S.H. The biotin switch method for the detection of S-nitrosylated proteins. Sci. STKE 2001, 2001:pl1.
-
(2001)
Sci. STKE
, vol.2001
, pp. pl1
-
-
Jaffrey, S.R.1
Snyder, S.H.2
-
38
-
-
0035147435
-
Protein S-nitrosylation: a physiological signal for neuronal nitric oxide
-
Jaffrey S.R., et al. Protein S-nitrosylation: a physiological signal for neuronal nitric oxide. Nat. Cell Biol. 2001, 3:193-197.
-
(2001)
Nat. Cell Biol.
, vol.3
, pp. 193-197
-
-
Jaffrey, S.R.1
-
40
-
-
84879776406
-
Persulfide reactivity in the detection of protein S-sulfhydration
-
Pan J., Carroll K.S. Persulfide reactivity in the detection of protein S-sulfhydration. ACS Chem. Biol. 2013, 8:1110-1116.
-
(2013)
ACS Chem. Biol.
, vol.8
, pp. 1110-1116
-
-
Pan, J.1
Carroll, K.S.2
-
41
-
-
84888301385
-
Thiol-blocking electrophiles interfere with labeling and detection of protein sulfenic acids
-
Reisz J.A., et al. Thiol-blocking electrophiles interfere with labeling and detection of protein sulfenic acids. FEBS J. 2013, 280:6150-6161.
-
(2013)
FEBS J.
, vol.280
, pp. 6150-6161
-
-
Reisz, J.A.1
-
42
-
-
84924065039
-
Use of the 'tag-switch' method for the detection of protein S-sulfhydration
-
Park C.M., et al. Use of the 'tag-switch' method for the detection of protein S-sulfhydration. Meth. Enzymol. 2015, 555:39-56.
-
(2015)
Meth. Enzymol.
, vol.555
, pp. 39-56
-
-
Park, C.M.1
-
43
-
-
79959504812
-
Hydrogen sulfide and hemeproteins: knowledge and mysteries
-
Pietri R., et al. Hydrogen sulfide and hemeproteins: knowledge and mysteries. Antioxid. Redox Signal. 2011, 15:393-404.
-
(2011)
Antioxid. Redox Signal.
, vol.15
, pp. 393-404
-
-
Pietri, R.1
-
44
-
-
77956194462
-
Cystathionine gamma-lyase-deficient mice require dietary cysteine to protect against acute lethal myopathy and oxidative injury
-
Ishii I., et al. Cystathionine gamma-lyase-deficient mice require dietary cysteine to protect against acute lethal myopathy and oxidative injury. J. Biol. Chem. 2010, 285:26358-26368.
-
(2010)
J. Biol. Chem.
, vol.285
, pp. 26358-26368
-
-
Ishii, I.1
-
45
-
-
81355127489
-
Hydrogen sulfide as endothelium-derived hyperpolarizing factor sulfhydrates potassium channels
-
Mustafa A.K., et al. Hydrogen sulfide as endothelium-derived hyperpolarizing factor sulfhydrates potassium channels. Circ. Res. 2011, 109:1259-1268.
-
(2011)
Circ. Res.
, vol.109
, pp. 1259-1268
-
-
Mustafa, A.K.1
-
46
-
-
70350018323
-
Making and working with hydrogen sulfide: the chemistry and generation of hydrogen sulfide in vitro and its measurement in vivo: a review
-
Hughes M.N., et al. Making and working with hydrogen sulfide: the chemistry and generation of hydrogen sulfide in vitro and its measurement in vivo: a review. Free Radic. Biol. Med. 2009, 47:1346-1353.
-
(2009)
Free Radic. Biol. Med.
, vol.47
, pp. 1346-1353
-
-
Hughes, M.N.1
-
47
-
-
84864284437
-
Hydrogen sulfide anion regulates redox signaling via electrophile sulfhydration
-
Nishida M., et al. Hydrogen sulfide anion regulates redox signaling via electrophile sulfhydration. Nat. Chem. Biol. 2012, 8:714-724.
-
(2012)
Nat. Chem. Biol.
, vol.8
, pp. 714-724
-
-
Nishida, M.1
-
48
-
-
84901659489
-
Reactive cysteine persulfides and S-polythiolation regulate oxidative stress and redox signaling
-
Ida T., et al. Reactive cysteine persulfides and S-polythiolation regulate oxidative stress and redox signaling. Proc. Natl. Acad. Sci. U.S.A. 2014, 111:7606-7611.
-
(2014)
Proc. Natl. Acad. Sci. U.S.A.
, vol.111
, pp. 7606-7611
-
-
Ida, T.1
-
49
-
-
20244390001
-
2S induces a suspended animation-like state in mice
-
2S induces a suspended animation-like state in mice. Science 2005, 308:518.
-
(2005)
Science
, vol.308
, pp. 518
-
-
Blackstone, E.1
-
50
-
-
84873467050
-
Intramitochondrial hydrogen sulfide production by 3-mercaptopyruvate sulfurtransferase maintains mitochondrial electron flow and supports cellular bioenergetics
-
Modis K., et al. Intramitochondrial hydrogen sulfide production by 3-mercaptopyruvate sulfurtransferase maintains mitochondrial electron flow and supports cellular bioenergetics. FASEB J. 2013, 27:601-611.
-
(2013)
FASEB J.
, vol.27
, pp. 601-611
-
-
Modis, K.1
-
51
-
-
84880690612
-
Tumor-derived hydrogen sulfide, produced by cystathionine-beta-synthase, stimulates bioenergetics, cell proliferation, and angiogenesis in colon cancer
-
Szabo C., et al. Tumor-derived hydrogen sulfide, produced by cystathionine-beta-synthase, stimulates bioenergetics, cell proliferation, and angiogenesis in colon cancer. Proc. Natl. Acad. Sci. U.S.A. 2013, 110:12474-12479.
-
(2013)
Proc. Natl. Acad. Sci. U.S.A.
, vol.110
, pp. 12474-12479
-
-
Szabo, C.1
-
52
-
-
84886728728
-
Hydrogen sulfide-mediated stimulation of mitochondrial electron transport involves inhibition of the mitochondrial phosphodiesterase 2A, elevation of cAMP and activation of protein kinase A
-
Modis K., et al. Hydrogen sulfide-mediated stimulation of mitochondrial electron transport involves inhibition of the mitochondrial phosphodiesterase 2A, elevation of cAMP and activation of protein kinase A. Biochem. Pharmacol. 2013, 86:1311-1319.
-
(2013)
Biochem. Pharmacol.
, vol.86
, pp. 1311-1319
-
-
Modis, K.1
-
53
-
-
84857409875
-
2S) metabolism in mitochondria and its regulatory role in energy production
-
2S) metabolism in mitochondria and its regulatory role in energy production. Proc. Natl. Acad. Sci. U.S.A. 2012, 109:2943-2948.
-
(2012)
Proc. Natl. Acad. Sci. U.S.A.
, vol.109
, pp. 2943-2948
-
-
Fu, M.1
-
54
-
-
84881101982
-
Oxygen-sensitive mitochondrial accumulation of cystathionine beta-synthase mediated by Lon protease
-
Teng H., et al. Oxygen-sensitive mitochondrial accumulation of cystathionine beta-synthase mediated by Lon protease. Proc. Natl. Acad. Sci. U.S.A. 2013, 110:12679-12684.
-
(2013)
Proc. Natl. Acad. Sci. U.S.A.
, vol.110
, pp. 12679-12684
-
-
Teng, H.1
-
55
-
-
84940385309
-
Hydrogen sulfide maintains mitochondrial DNA replication via demethylation of TFAM
-
Li S., Yang G. Hydrogen sulfide maintains mitochondrial DNA replication via demethylation of TFAM. Antioxid. Redox Signal. 2015, 23:630-642.
-
(2015)
Antioxid. Redox Signal.
, vol.23
, pp. 630-642
-
-
Li, S.1
Yang, G.2
-
56
-
-
44949214775
-
Three enzymatic activities catalyze the oxidation of sulfide to thiosulfate in mammalian and invertebrate mitochondria
-
Hildebrandt T.M., Grieshaber M.K. Three enzymatic activities catalyze the oxidation of sulfide to thiosulfate in mammalian and invertebrate mitochondria. FEBS J. 2008, 275:3352-3361.
-
(2008)
FEBS J.
, vol.275
, pp. 3352-3361
-
-
Hildebrandt, T.M.1
Grieshaber, M.K.2
-
57
-
-
0018891764
-
Oxidation of sodium sulphide by rat liver, lungs and kidney
-
Bartholomew T.C., et al. Oxidation of sodium sulphide by rat liver, lungs and kidney. Biochem. Pharmacol. 1980, 29:2431-2437.
-
(1980)
Biochem. Pharmacol.
, vol.29
, pp. 2431-2437
-
-
Bartholomew, T.C.1
-
58
-
-
0035879968
-
Oxidation of hydrogen sulfide and methanethiol to thiosulfate by rat tissues: a specialized function of the colonic mucosa
-
Furne J., et al. Oxidation of hydrogen sulfide and methanethiol to thiosulfate by rat tissues: a specialized function of the colonic mucosa. Biochem. Pharmacol. 2001, 62:255-259.
-
(2001)
Biochem. Pharmacol.
, vol.62
, pp. 255-259
-
-
Furne, J.1
-
59
-
-
0015392569
-
Detoxication of sodium 35 S-sulphide in the rat
-
Curtis C.G., et al. Detoxication of sodium 35 S-sulphide in the rat. Biochem. Pharmacol. 1972, 21:2313-2321.
-
(1972)
Biochem. Pharmacol.
, vol.21
, pp. 2313-2321
-
-
Curtis, C.G.1
-
60
-
-
84908391944
-
Organization of the human mitochondrial hydrogen sulfide oxidation pathway
-
Libiad M., et al. Organization of the human mitochondrial hydrogen sulfide oxidation pathway. J. Biol. Chem. 2014, 289:30901-30910.
-
(2014)
J. Biol. Chem.
, vol.289
, pp. 30901-30910
-
-
Libiad, M.1
-
61
-
-
84863293129
-
Integrated stress response modulates cellular redox state via induction of cystathionine gamma-lyase: cross-talk between integrated stress response and thiol metabolism
-
Dickhout J.G., et al. Integrated stress response modulates cellular redox state via induction of cystathionine gamma-lyase: cross-talk between integrated stress response and thiol metabolism. J. Biol. Chem. 2012, 287:7603-7614.
-
(2012)
J. Biol. Chem.
, vol.287
, pp. 7603-7614
-
-
Dickhout, J.G.1
-
62
-
-
70349233030
-
Hydrogen sulfide mediates cardioprotection through Nrf2 signaling
-
Calvert J.W., et al. Hydrogen sulfide mediates cardioprotection through Nrf2 signaling. Circ. Res. 2009, 105:365-374.
-
(2009)
Circ. Res.
, vol.105
, pp. 365-374
-
-
Calvert, J.W.1
-
63
-
-
84897421970
-
The Nrf2 regulatory network provides an interface between redox and intermediary metabolism
-
Hayes J.D., Dinkova-Kostova A.T. The Nrf2 regulatory network provides an interface between redox and intermediary metabolism. Trends Biochem. Sci. 2014, 39:199-218.
-
(2014)
Trends Biochem. Sci.
, vol.39
, pp. 199-218
-
-
Hayes, J.D.1
Dinkova-Kostova, A.T.2
-
64
-
-
84876135908
-
Hydrogen sulfide protects against cellular senescence via S-sulfhydration of Keap1 and activation of Nrf2
-
Yang G., et al. Hydrogen sulfide protects against cellular senescence via S-sulfhydration of Keap1 and activation of Nrf2. Antioxid. Redox Signal. 2013, 18:1906-1919.
-
(2013)
Antioxid. Redox Signal.
, vol.18
, pp. 1906-1919
-
-
Yang, G.1
-
65
-
-
80053641483
-
Increased transsulfuration mediates longevity and dietary restriction in Drosophila
-
Kabil H., et al. Increased transsulfuration mediates longevity and dietary restriction in Drosophila. Proc. Natl. Acad. Sci. U.S.A. 2011, 108:16831-16836.
-
(2011)
Proc. Natl. Acad. Sci. U.S.A.
, vol.108
, pp. 16831-16836
-
-
Kabil, H.1
-
66
-
-
0029876402
-
The possible role of hydrogen sulfide as an endogenous neuromodulator
-
Abe K., Kimura H. The possible role of hydrogen sulfide as an endogenous neuromodulator. J. Neurosci. 1996, 16:1066-1071.
-
(1996)
J. Neurosci.
, vol.16
, pp. 1066-1071
-
-
Abe, K.1
Kimura, H.2
-
67
-
-
84865055175
-
Hydrogen sulfide attenuates spatial memory impairment and hippocampal neuroinflammation in beta-amyloid rat model of Alzheimer's disease
-
Xuan A., et al. Hydrogen sulfide attenuates spatial memory impairment and hippocampal neuroinflammation in beta-amyloid rat model of Alzheimer's disease. J. Neuroinflamm. 2012, 9:202.
-
(2012)
J. Neuroinflamm.
, vol.9
, pp. 202
-
-
Xuan, A.1
-
68
-
-
9444263079
-
Hydrogen sulfide protects neurons from oxidative stress
-
Kimura Y., Kimura H. Hydrogen sulfide protects neurons from oxidative stress. FASEB J. 2004, 18:1165-1167.
-
(2004)
FASEB J.
, vol.18
, pp. 1165-1167
-
-
Kimura, Y.1
Kimura, H.2
-
69
-
-
84875910694
-
Sulfhydration mediates neuroprotective actions of parkin
-
Vandiver M.S., et al. Sulfhydration mediates neuroprotective actions of parkin. Nat. Commun. 2013, 4:1626.
-
(2013)
Nat. Commun.
, vol.4
, pp. 1626
-
-
Vandiver, M.S.1
-
70
-
-
84899745176
-
Cystathionine gamma-lyase deficiency mediates neurodegeneration in Huntington's disease
-
Paul B.D., et al. Cystathionine gamma-lyase deficiency mediates neurodegeneration in Huntington's disease. Nature 2014, 509:96-100.
-
(2014)
Nature
, vol.509
, pp. 96-100
-
-
Paul, B.D.1
-
71
-
-
84907555788
-
Neurodegeneration in Huntington's disease involves loss of cystathionine gamma-lyase
-
Paul B.D., Snyder S.H. Neurodegeneration in Huntington's disease involves loss of cystathionine gamma-lyase. Cell Cycle 2014, 13:2491-2493.
-
(2014)
Cell Cycle
, vol.13
, pp. 2491-2493
-
-
Paul, B.D.1
Snyder, S.H.2
-
72
-
-
3142758491
-
Murine cystathionine gamma-lyase: complete cDNA and genomic sequences, promoter activity, tissue distribution and developmental expression
-
Ishii I., et al. Murine cystathionine gamma-lyase: complete cDNA and genomic sequences, promoter activity, tissue distribution and developmental expression. Biochem. J. 2004, 381:113-123.
-
(2004)
Biochem. J.
, vol.381
, pp. 113-123
-
-
Ishii, I.1
-
73
-
-
84918823512
-
Cytokine-induced GAPDH sulfhydration affects PSD95 degradation and memory
-
Mir S., et al. Cytokine-induced GAPDH sulfhydration affects PSD95 degradation and memory. Mol. Cell 2014, 56:786-795.
-
(2014)
Mol. Cell
, vol.56
, pp. 786-795
-
-
Mir, S.1
-
74
-
-
0037217349
-
Endogenous hydrogen sulfide overproduction in Down syndrome
-
Kamoun P., et al. Endogenous hydrogen sulfide overproduction in Down syndrome. Am. J. Med. Genet. A 2003, 116A:310-311.
-
(2003)
Am. J. Med. Genet. A
, vol.116A
, pp. 310-311
-
-
Kamoun, P.1
-
75
-
-
27744472972
-
Cystathionine beta-synthase is enriched in the brains of Down's patients
-
Ichinohe A., et al. Cystathionine beta-synthase is enriched in the brains of Down's patients. Biochem. Biophys. Res. Commun. 2005, 338:1547-1550.
-
(2005)
Biochem. Biophys. Res. Commun.
, vol.338
, pp. 1547-1550
-
-
Ichinohe, A.1
-
76
-
-
84930615792
-
S-Sulfhydration: a new post-translational modification in plant systems
-
Aroca A., et al. S-Sulfhydration: a new post-translational modification in plant systems. Plant Physiol. 2015, 168:334-342.
-
(2015)
Plant Physiol.
, vol.168
, pp. 334-342
-
-
Aroca, A.1
-
77
-
-
75949120234
-
An O-acetylserine(thiol)lyase homolog with L-cysteine desulfhydrase activity regulates cysteine homeostasis in Arabidopsis
-
Alvarez C., et al. An O-acetylserine(thiol)lyase homolog with L-cysteine desulfhydrase activity regulates cysteine homeostasis in Arabidopsis. Plant Physiol. 2010, 152:656-669.
-
(2010)
Plant Physiol.
, vol.152
, pp. 656-669
-
-
Alvarez, C.1
-
78
-
-
84907598746
-
Hydrogen sulfide in plants: from dissipation of excess sulfur to signaling molecule
-
Calderwood A., Kopriva S. Hydrogen sulfide in plants: from dissipation of excess sulfur to signaling molecule. Nitric Oxide 2014, 41:72-78.
-
(2014)
Nitric Oxide
, vol.41
, pp. 72-78
-
-
Calderwood, A.1
Kopriva, S.2
-
79
-
-
84895736809
-
Hydrogen sulfide and cell signaling: team player or referee?
-
Hancock J.T., Whiteman M. Hydrogen sulfide and cell signaling: team player or referee?. Plant Physiol. 2014, 78:37-42.
-
(2014)
Plant Physiol.
, vol.78
, pp. 37-42
-
-
Hancock, J.T.1
Whiteman, M.2
-
80
-
-
22144477159
-
S-Nitrosylated GAPDH initiates apoptotic cell death by nuclear translocation following Siah1 binding
-
Hara M.R., et al. S-Nitrosylated GAPDH initiates apoptotic cell death by nuclear translocation following Siah1 binding. Nat. Cell Biol. 2005, 7:665-674.
-
(2005)
Nat. Cell Biol.
, vol.7
, pp. 665-674
-
-
Hara, M.R.1
-
81
-
-
2542534741
-
S-Nitrosylation of parkin regulates ubiquitination and compromises parkin's protective function
-
Chung K.K., et al. S-Nitrosylation of parkin regulates ubiquitination and compromises parkin's protective function. Science 2004, 304:1328-1331.
-
(2004)
Science
, vol.304
, pp. 1328-1331
-
-
Chung, K.K.1
-
82
-
-
84903707870
-
S-Sulfhydration of MEK1 leads to PARP-1 activation and DNA damage repair
-
Zhao K., et al. S-Sulfhydration of MEK1 leads to PARP-1 activation and DNA damage repair. EMBO Rep. 2014, 15:792-800.
-
(2014)
EMBO Rep.
, vol.15
, pp. 792-800
-
-
Zhao, K.1
-
83
-
-
1942441011
-
Modification of cysteine 111 in Cu/Zn superoxide dismutase results in altered spectroscopic and biophysical properties
-
de Beus M.D., et al. Modification of cysteine 111 in Cu/Zn superoxide dismutase results in altered spectroscopic and biophysical properties. Protein Sci. 2004, 13:1347-1355.
-
(2004)
Protein Sci.
, vol.13
, pp. 1347-1355
-
-
de Beus, M.D.1
-
84
-
-
84908045420
-
Sulfhydration of p66Shc at cysteine59 mediates the antioxidant effect of hydrogen sulfide
-
Xie Z.Z., et al. Sulfhydration of p66Shc at cysteine59 mediates the antioxidant effect of hydrogen sulfide. Antioxid. Redox Signal. 2014, 21:2531-2542.
-
(2014)
Antioxid. Redox Signal.
, vol.21
, pp. 2531-2542
-
-
Xie, Z.Z.1
-
85
-
-
84905377300
-
Hydrogen sulfide represses androgen receptor transactivation by targeting at the second zinc finger module
-
Zhao K., et al. Hydrogen sulfide represses androgen receptor transactivation by targeting at the second zinc finger module. J. Biol. Chem. 2014, 289:20824-20835.
-
(2014)
J. Biol. Chem.
, vol.289
, pp. 20824-20835
-
-
Zhao, K.1
-
86
-
-
84904042269
-
2+ channel sulfhydration
-
2+ channel sulfhydration. Cell Stem Cell 2014, 15:66-78.
-
(2014)
Cell Stem Cell
, vol.15
, pp. 66-78
-
-
Liu, Y.1
|