-
1
-
-
77951797935
-
Why future supercomputing requires optics
-
Caulfield, H. J., Dolev, S. Why future supercomputing requires optics. Nature Photon. 4, 261-263 (2010).
-
(2010)
Nature Photon
, vol.4
, pp. 261-263
-
-
Caulfield, H.J.1
Dolev, S.2
-
3
-
-
84901689094
-
Large-scale integration of wavelength-addressable all-optical memories on a photonic crystal chip
-
Kuramochi, E. et al. Large-scale integration of wavelength-addressable all-optical memories on a photonic crystal chip. Nature Photon. 8, 474-481 (2014).
-
(2014)
Nature Photon
, vol.8
, pp. 474-481
-
-
Kuramochi, E.1
-
4
-
-
84907322506
-
An upconverted photonic nonvolatile memory
-
Zhou, Y. et al. An upconverted photonic nonvolatile memory. Nature Commun. 5, 4720 (2014).
-
(2014)
Nature Commun
, vol.5
, pp. 4720
-
-
Zhou, Y.1
-
6
-
-
84859373318
-
Optical computing: Photonic neural networks
-
Woods, D., Naughton, T. J. Optical computing: photonic neural networks. Nature Phys. 8, 257-259 (2012).
-
(2012)
Nature Phys
, vol.8
, pp. 257-259
-
-
Woods, D.1
Naughton, T.J.2
-
7
-
-
9144228270
-
A fast low-power optical memory based on coupled micro-ring lasers
-
Hill, M. T. et al. A fast low-power optical memory based on coupled micro-ring lasers. Nature 432, 11-14 (2004).
-
(2004)
Nature
, vol.432
, pp. 11-14
-
-
Hill, M.T.1
-
8
-
-
0033605265
-
A semiconductor-based photonic memory cell
-
Zimmermann, S. A semiconductor-based photonic memory cell. Science 283, 1292-1295 (1999).
-
(1999)
Science
, vol.283
, pp. 1292-1295
-
-
Zimmermann, S.1
-
9
-
-
34247531405
-
Trapping and delaying photons for one nanosecond in an ultrasmall high-Q photoniccrystal nanocavity
-
Tanabe, T., Notomi, M., Kuramochi, E., Shinya, A., Taniyama, H. Trapping and delaying photons for one nanosecond in an ultrasmall high-Q photoniccrystal nanocavity. Nature Photon. 1, 49-52 (2007).
-
(2007)
Nature Photon
, vol.1
, pp. 49-52
-
-
Tanabe, T.1
Notomi, M.2
Kuramochi, E.3
Shinya, A.4
Taniyama, H.5
-
10
-
-
77950520948
-
An ultra-small, low-power, all-optical flipflop memory on a silicon chip
-
Liu, L., Kumar, R., Huybrechts, K. An ultra-small, low-power, all-optical flipflop memory on a silicon chip. Nature Photon. 4, 182-187 (2010).
-
(2010)
Nature Photon
, vol.4
, pp. 182-187
-
-
Liu, L.1
Kumar, R.2
Huybrechts, K.3
-
12
-
-
16244410161
-
Low-cost and nanoscale non-volatile memory concept for future silicon chips
-
Lankhorst, M. H. R., Ketelaars, B.W. S. M. M.,Wolters, R. A. M. Low-cost and nanoscale non-volatile memory concept for future silicon chips. Nature Mater. 4, 347-352 (2005).
-
(2005)
Nature Mater
, vol.4
, pp. 347-352
-
-
Lankhorst, M.H.R.1
Ketelaars, B.W.S.M.M.2
Wolters, R.A.M.3
-
13
-
-
84877289051
-
Beyond von-Neumann computing with nanoscale phase-change memory devices
-
Wright, C. D., Hosseini, P., Diosdado, J. A. V. Beyond von-Neumann computing with nanoscale phase-change memory devices. Adv. Funct. Mater. 23, 2248-2254 (2013).
-
(2013)
Adv. Funct. Mater
, vol.23
, pp. 2248-2254
-
-
Wright, C.D.1
Hosseini, P.2
Diosdado, J.A.V.3
-
14
-
-
84915785122
-
Phase change materials and phase change memory
-
Raoux, S., Xiong, F., Wuttig, M., Pop, E. Phase change materials and phase change memory. MRS Bull. 39, 703-710 (2014).
-
(2014)
MRS Bull
, vol.39
, pp. 703-710
-
-
Raoux, S.1
Xiong, F.2
Wuttig, M.3
Pop, E.4
-
15
-
-
35748985544
-
Phase-change materials for rewriteable data storage
-
Wuttig, M., Yamada, N. Phase-change materials for rewriteable data storage. Nature Mater. 6, 824-832 (2007).
-
(2007)
Nature Mater
, vol.6
, pp. 824-832
-
-
Wuttig, M.1
Yamada, N.2
-
16
-
-
77950580500
-
Phase change memory technology
-
Burr, G. W. et al. Phase change memory technology. J. Vac. Sci. Technol. B 28, 223-262 (2010).
-
(2010)
J. Vac. Sci. Technol B
, vol.28
, pp. 223-262
-
-
Burr, G.W.1
-
17
-
-
36049053305
-
Reversible electrical switching phenomena in disordered structures
-
Ovshinsky, S. R. Reversible electrical switching phenomena in disordered structures. Phys. Rev. Lett. 21, 1450-1453 (1968).
-
(1968)
Phys. Rev. Lett
, vol.21
, pp. 1450-1453
-
-
Ovshinsky, S.R.1
-
18
-
-
84902248155
-
Ultrafast characterization of phase-change material crystallization properties in the melt-quenched amorphous phase
-
Jeyasingh, R. et al. Ultrafast characterization of phase-change material crystallization properties in the melt-quenched amorphous phase. Nano Lett. 14, 3419-3426 (2014).
-
(2014)
Nano Lett
, vol.14
, pp. 3419-3426
-
-
Jeyasingh, R.1
-
19
-
-
79961206937
-
Interfacial phase-change memory
-
Simpson, R. E. et al. Interfacial phase-change memory. Nature Nanotech. 6, 501-505 (2011).
-
(2011)
Nature Nanotech
, vol.6
, pp. 501-505
-
-
Simpson, R.E.1
-
20
-
-
34948907947
-
Highly scalable non-volatile and ultra-lowpower phase-change nanowire memory
-
Lee, S.-H., Jung, Y., Agarwal, R. Highly scalable non-volatile and ultra-lowpower phase-change nanowire memory. Nature Nanotech. 2, 626-630 (2007).
-
(2007)
Nature Nanotech
, vol.2
, pp. 626-630
-
-
Lee, S.-H.1
Jung, Y.2
Agarwal, R.3
-
21
-
-
0000984849
-
Structure of laser-crystallized Ge2Sb2+xTe5 sputtered thin films for use in optical memory
-
Yamada, N., Matsunaga, T. Structure of laser-crystallized Ge2Sb2+xTe5 sputtered thin films for use in optical memory. J. Appl. Phy. 88, 7020-7028 (2000).
-
(2000)
J. Appl. Phy
, vol.88
, pp. 7020-7028
-
-
Yamada, N.1
Matsunaga, T.2
-
22
-
-
84904207745
-
An optoelectronic framework enabled by low-dimensional phase-change films
-
Hosseini, P., Wright, C. D., Bhaskaran, H. An optoelectronic framework enabled by low-dimensional phase-change films. Nature 511, 206-211 (2014).
-
(2014)
Nature
, vol.511
, pp. 206-211
-
-
Hosseini, P.1
Wright, C.D.2
Bhaskaran, H.3
-
23
-
-
84897645088
-
On-chip photonic memory elements employing phase-change materials
-
Rios, C., Hosseini, P., Wright, C. D., Bhaskaran, H., Pernice, W. H. P. On-chip photonic memory elements employing phase-change materials. Adv. Mater. 26, 1372-1377 (2013).
-
(2013)
Adv. Mater
, vol.26
, pp. 1372-1377
-
-
Rios, C.1
Hosseini, P.2
Wright, C.D.3
Bhaskaran, H.4
Pernice, W.H.P.5
-
24
-
-
84885608931
-
Optical switching at 1.55 ?m in silicon racetrack resonators using phase change materials
-
Rudé, M. et al. Optical switching at 1.55 ?m in silicon racetrack resonators using phase change materials. Appl. Phys. Lett. 103, 141119 (2013).
-
(2013)
Appl. Phys. Lett
, vol.103
, pp. 141119
-
-
Rudé, M.1
-
25
-
-
77949390577
-
Small-sized optical gate switch using Ge2Sb2Te5 phase-change material integrated with silicon waveguide
-
Ikuma, Y. et al. Small-sized optical gate switch using Ge2Sb2Te5 phase-change material integrated with silicon waveguide. Electron. Lett. 46, 368 (2010).
-
(2010)
Electron. Lett
, vol.46
, pp. 368
-
-
Ikuma, Y.1
-
26
-
-
84868031070
-
Photonic non-volatile memories using phase change materials
-
Pernice, W. H. P., Bhaskaran, H. Photonic non-volatile memories using phase change materials. Appl. Phys. Lett. 101, 171101 (2012).
-
(2012)
Appl. Phys. Lett
, vol.101
, pp. 171101
-
-
Pernice, W.H.P.1
Bhaskaran, H.2
-
27
-
-
84862594877
-
Breaking the speed limits of phase-change memory
-
Loke, D. et al. Breaking the speed limits of phase-change memory. Science 336, 1566-1569 (2012).
-
(2012)
Science
, vol.336
, pp. 1566-1569
-
-
Loke, D.1
-
28
-
-
2142758729
-
Rewritable phasechange optical recording in Ge2Sb2Te5 films induced by picosecond laser pulses
-
Siegel, J., Schropp, A., Solis, J., Afonso, C. N., Wuttig, M. Rewritable phasechange optical recording in Ge2Sb2Te5 films induced by picosecond laser pulses. Appl. Phys. Lett. 84, 2250 (2004).
-
(2004)
Appl. Phys. Lett
, vol.84
, pp. 2250
-
-
Siegel, J.1
Schropp, A.2
Solis, J.3
Afonso, C.N.4
Wuttig, M.5
-
29
-
-
78650005927
-
Phase change memory
-
Wong, H. P. et al. Phase change memory. Proc. IEEE 98, 2201-2227 (2010).
-
(2010)
Proc IEEE
, vol.98
, pp. 2201-2227
-
-
Wong, H.P.1
-
30
-
-
79960855650
-
Programming algorithms for multilevel phase-change memory
-
Papandreou, N. et al. Programming algorithms for multilevel phase-change memory. Proc. IEEE Int. Symp. Circuits Syst. 329-332 (2011).
-
(2011)
Proc IEEE Int. Symp. Circuits Syst
, vol.329-332
-
-
Papandreou, N.1
-
31
-
-
84919621361
-
Silicon-based on-chip multiplexing technologies and devices for peta-bit optical interconnects
-
Dai, D., Bowers, J. E. Silicon-based on-chip multiplexing technologies and devices for peta-bit optical interconnects. Nanophotonics 3, 1-30 (2013).
-
(2013)
Nanophotonics
, vol.3
, pp. 1-30
-
-
Dai, D.1
Bowers, J.E.2
-
32
-
-
39749125556
-
Ultra-compact wavelength division multiplexing devices using silicon photonic wires for on-chip interconnects
-
Xia, F. X. F., O'Boyle, M., Sekaric, L., Vlasov, Y. A. Ultra-compact wavelength division multiplexing devices using silicon photonic wires for on-chip interconnects. Proc. OFC/NFOEC 2007-2007 Conf. Opt. Fiber Commun. Natl. Fiber Opt. Eng. Conf. OWG2 (2007); http://doi.org/c23c6r
-
(2007)
Proc. OFC/NFOEC 2007-2007 Conf. Opt. Fiber Commun. Natl. Fiber Opt. Eng. Conf. OWG2
-
-
Xia, F.X.F.1
O'Boyle, M.2
Sekaric, L.3
Vlasov, Y.A.4
-
33
-
-
84936970052
-
A million spiking-neuron integrated circuit with a scalable communication network and interface
-
Merolla, P. A. et al. A million spiking-neuron integrated circuit with a scalable communication network and interface. Science 345, 614-616 (2014).
-
(2014)
Science
, vol.345
, pp. 614-616
-
-
Merolla, P.A.1
-
34
-
-
80051694093
-
Arithmetic and biologically-inspired computing using phase-change materials
-
Wright, C. D., Liu, Y., Kohary, K. I., Aziz, M. M., Hicken, R. J. Arithmetic and biologically-inspired computing using phase-change materials. Adv. Mater. 23, 3408-3413 (2011).
-
(2011)
Adv. Mater
, vol.23
, pp. 3408-3413
-
-
Wright, C.D.1
Liu, Y.2
Kohary, K.I.3
Aziz, M.M.4
Hicken, R.J.5
|