메뉴 건너뛰기




Volumn 120, Issue 19, 2015, Pages 10116-10129

A multivariate conditional model for streamflow prediction and spatial precipitation refinement

Author keywords

[No Author keywords available]

Indexed keywords

FUZZY MATHEMATICS; GRAPHICAL METHOD; HYDROMETEOROLOGY; MODEL TEST; MULTIVARIATE ANALYSIS; PERFORMANCE ASSESSMENT; PRECIPITATION ASSESSMENT; PREDICTION; REGRESSION ANALYSIS; REMOTE SENSING; SOIL MOISTURE; SPATIAL ANALYSIS; SPATIAL DISTRIBUTION; STREAMFLOW; TRMM; UNCERTAINTY ANALYSIS;

EID: 84945450072     PISSN: 01480227     EISSN: 21562202     Source Type: Journal    
DOI: 10.1002/2015JD023787     Document Type: Article
Times cited : (86)

References (61)
  • 1
    • 63649120808 scopus 로고    scopus 로고
    • Pair-copula construction of multiple dependence
    • Aas, K., C. Czado, A. Feigessi, and H. Bakken (2009), Pair-copula construction of multiple dependence, Insur. Math. Econ., 44(2), 182–198, doi:10.1016/j.insmatheco.2007.02.001.
    • (2009) Insur. Math. Econ , vol.44 , Issue.2 , pp. 182-198
    • Aas, K.1    Czado, C.2    Feigessi, A.3    Bakken, H.4
  • 2
    • 84856246099 scopus 로고    scopus 로고
    • Comparison of multiple linear and nonlinear regression, autoregressive integrated moving average, artificial neural network, and wavelet artificial neural network methods for urban water demand forecasting in Montreal, Canada, Water Resour
    • Adamowski, J., H. Fung Chan, S. O. Prasher, B. Ozga-Zielinski, and A. Sliusarieva (2012), Comparison of multiple linear and nonlinear regression, autoregressive integrated moving average, artificial neural network, and wavelet artificial neural network methods for urban water demand forecasting in Montreal, Canada, Water Resour. Res., 48, W01528, doi:10.1029/2010WR009945.
    • (2012) Res , vol.48
    • Adamowski, J.1    Fung Chan, H.2    Prasher, S.O.3    Ozga-Zielinski, B.4    Sliusarieva, A.5
  • 3
    • 53649106056 scopus 로고    scopus 로고
    • Geostatistical interpolation using copulas, Water Resour
    • Bárdossy, A., and J. Li (2008), Geostatistical interpolation using copulas, Water Resour. Res., 44 W07412, doi:10.1029/2007WR006115.
    • (2008) Res , vol.44
    • Bárdossy, A.1    Li, J.2
  • 4
    • 0036392207 scopus 로고    scopus 로고
    • Vines–a new graphical model for dependent random variables
    • Bedford, T., and R. M. Cooke (2002), Vines–a new graphical model for dependent random variables, Ann. Stat., 30(4), 1031–1068, doi:10.1214/aos/1031689016.
    • (2002) Ann. Stat , vol.30 , Issue.4 , pp. 1031-1068
    • Bedford, T.1    Cooke, R.M.2
  • 6
    • 84886082819 scopus 로고    scopus 로고
    • Conditional copula simulation for systemic risk stress testing
    • Brechmann, E. C., K. Hendrich, and C. Czado (2013), Conditional copula simulation for systemic risk stress testing, Insur. Math. Econ., 53(3), 722–732, doi:10.1016/j.insmatheco.2013.09.009.
    • (2013) Insur. Math. Econ , vol.53 , Issue.3 , pp. 722-732
    • Brechmann, E.C.1    Hendrich, K.2    Czado, C.3
  • 7
    • 65349098924 scopus 로고    scopus 로고
    • Probabilistic multisite precipitation downscaling by an expanded Bernouilli-Gamma density network
    • Cannon, A. J. (2008), Probabilistic multisite precipitation downscaling by an expanded Bernouilli-Gamma density network, J. Hydrometeorol., 9, 1284–1300, doi:10.1175/2008JHM960.1.
    • (2008) J. Hydrometeorol , vol.9 , pp. 1284-1300
    • Cannon, A.J.1
  • 8
    • 67650677063 scopus 로고    scopus 로고
    • Copula-based nonlinear quantile autoregression
    • Chen, X., R. Koenker, and Z. Xiao (2009), Copula-based nonlinear quantile autoregression, Econ. J., 12, 50–67, doi:10.1111/j.1368-423X.2008.00274.x.
    • (2009) Econ. J , vol.12 , pp. 50-67
    • Chen, X.1    Koenker, R.2    Xiao, Z.3
  • 9
    • 33846798345 scopus 로고    scopus 로고
    • HydroTest: A web-based toolbox of evaluation metrics for the standardised assessment of hydrological forecasts
    • Dawson, C. W., R. Abrahart, and L. See (2007), HydroTest: A web-based toolbox of evaluation metrics for the standardised assessment of hydrological forecasts, Environ. Modell. Software, 22, 1034–1052, doi:10.1016/j.envsoft.2006.06.008.
    • (2007) Environ. Modell. Software , vol.22 , pp. 1034-1052
    • Dawson, C.W.1    Abrahart, R.2    See, L.3
  • 11
    • 84867464144 scopus 로고    scopus 로고
    • Real-time operation of reservoir system by genetic programming
    • Fallah-Mehdipour, E., O. Bozorg Haddad, and M. A. Mariño (2012), Real-time operation of reservoir system by genetic programming, Water Resour. Manage., 26(14), 4091–4103, doi:10.1007/s11269-012-0132-z.
    • (2012) Water Resour. Manage , vol.26 , Issue.14 , pp. 4091-4103
    • Fallah-Mehdipour, E.1    Bozorg Haddad, O.2    Mariño, M.A.3
  • 12
    • 4143071715 scopus 로고    scopus 로고
    • Climate Prediction Center global monthly soil moisture data set at 0.5 resolution for 1948 to present
    • Fan, Y., and H. van den Dool (2004), Climate Prediction Center global monthly soil moisture data set at 0.5 resolution for 1948 to present, J. Geophys. Res., 109, D10102, doi:10.1029/2003JD004345.
    • (2004) J. Geophys. Res , vol.109
    • Fan, Y.1    Van Den Dool, H.2
  • 13
    • 2542594763 scopus 로고    scopus 로고
    • Multivariate hydrological frequency analysis using copulas, Water Resour
    • Favre, A. C., S. El Adlouni, L. Perreault, N. Thiémonge, and B. Bobée (2004), Multivariate hydrological frequency analysis using copulas, Water Resour. Res., 40, W01101, doi:10.1029/2003WR002456.
    • (2004) Res , vol.40
    • Favre, A.C.1    El Adlouni, S.2    Perreault, L.3    Thiémonge, N.4    Bobée, B.5
  • 14
    • 34347377353 scopus 로고    scopus 로고
    • Everything you always wanted to know about copula modeling but were afraid to ask
    • Genest, C., and A. Favre (2007), Everything you always wanted to know about copula modeling but were afraid to ask, J. Hydrol. Eng., 12(4), 347–368, doi:10.1061/(ASCE)1084-0699(2007)12:4(347).
    • (2007) J. Hydrol. Eng , vol.12 , Issue.4 , pp. 347-368
    • Genest, C.1    Favre, A.2
  • 15
    • 78649379370 scopus 로고    scopus 로고
    • SVM-PGSL coupled approach for statistical downscaling to predict rainfall from GCM output
    • Ghosh, S. (2010), SVM-PGSL coupled approach for statistical downscaling to predict rainfall from GCM output, J. Geophys. Res., 115, D22102, doi:10.1029/2009JD013548.
    • (2010) J. Geophys. Res , vol.115
    • Ghosh, S.1
  • 16
    • 84928593162 scopus 로고    scopus 로고
    • How well do regional climate models simulate the spatial dependence of precipitation? An application of pair-copula constructions
    • Hobæk Haff, I., A. Frigessi, and D. Maraun (2015), How well do regional climate models simulate the spatial dependence of precipitation? An application of pair-copula constructions, J. Geophys. Res. Atmos., 120, 2624–2646, doi:10.1002/2014JD022748.
    • (2015) J. Geophys. Res. Atmos , vol.120 , pp. 2624-2646
    • Hobæk Haff, I.1    Frigessi, A.2    Maraun, D.3
  • 18
    • 0030434716 scopus 로고    scopus 로고
    • Analysis of model-calculated soil moisture over the United States (1931–93) and application to long-range temperature forecasts
    • Huang, J., H. van den Dool, and K. P. Georgakakos (1996), Analysis of model-calculated soil moisture over the United States (1931–93) and application to long-range temperature forecasts, J. Clim., 9(6), 1350–1362.
    • (1996) J. Clim , vol.9 , Issue.6 , pp. 1350-1362
    • Huang, J.1    Van Den Dool, H.2    Georgakakos, K.P.3
  • 19
    • 0027601884 scopus 로고
    • ANFIS: Adaptive-network-based fuzzy inference system
    • Jang, J. S. R. (1993), ANFIS: Adaptive-network-based fuzzy inference system, IEEE Trans. Syst. Manage. Cybernetics, 23(3), 665–685, doi:10.1109/21.256541.
    • (1993) IEEE Trans. Syst. Manage. Cybernetics , vol.23 , Issue.3 , pp. 665-685
    • Jang, J.S.R.1
  • 20
    • 0041611622 scopus 로고    scopus 로고
    • Families of m-variate distributions with given margins and m(M 1)/2 dependence parameters
    • edited by L. Rüschendorf, B. Schweizer, and M. D. Taylor, Inst. Math. Stat., Hayward, Calif
    • Joe, H. (1996), Families of m-variate distributions with given margins and m(m 1)/2 dependence parameters, in Distributions With Fixed Marginals and Related Topics, edited by L. Rüschendorf, B. Schweizer, and M. D. Taylor, pp. 120–141, Inst. Math. Stat., Hayward, Calif.
    • (1996) Distributions with Fixed Marginals and Related Topics , pp. 120-141
    • Joe, H.1
  • 21
    • 84871673033 scopus 로고    scopus 로고
    • Increasing streamflow forecast lead time for snowmelt driven catchment based on large scale climate patterns
    • Kalra, A., S. Ahmad, and A. Nayak (2013), Increasing streamflow forecast lead time for snowmelt driven catchment based on large scale climate patterns, Adv. Water Res., 53, 150–162, doi:10.1016/j.advwatres.2012.11.003.
    • (2013) Adv. Water Res , vol.53 , pp. 150-162
    • Kalra, A.1    Ahmad, S.2    Nayak, A.3
  • 22
    • 34548645057 scopus 로고    scopus 로고
    • A bivariate frequency analysis of extreme rainfall with implications for design
    • Kao, S.-C., and R. S. Govindaraju (2007), A bivariate frequency analysis of extreme rainfall with implications for design, J. Geophys. Res., 112, D13119, doi:10.1029/2007JD008522.
    • (2007) J. Geophys. Res , vol.112
    • Kao, S.-C.1    Govindaraju, R.S.2
  • 23
    • 84896853510 scopus 로고    scopus 로고
    • A copula-based precipitation forecasting model: Investigating the inter-decadal modulation of ENSO’s impacts on monthly precipitation
    • Khedun, C. P., A. K. Mishra, V. P. Singh, and J. R. Giardino (2014), A copula-based precipitation forecasting model: Investigating the inter-decadal modulation of ENSO’s impacts on monthly precipitation, Water Resour. Res., 50, 580–600, doi:10.1002/2013WR013763.
    • (2014) Water Resour. Res , vol.50 , pp. 580-600
    • Khedun, C.P.1    Mishra, A.K.2    Singh, V.P.3    Giardino, J.R.4
  • 24
    • 0035370678 scopus 로고    scopus 로고
    • Quantitative flood forecasting using multisensor data and neural networks
    • Kim, G., and A. P. Barros (2001), Quantitative flood forecasting using multisensor data and neural networks, J. Hydrol., 246, 45–62, doi:10.1016/S0022-1694(01)00353-5.
    • (2001) J. Hydrol , vol.246 , pp. 45-62
    • Kim, G.1    Barros, A.P.2
  • 25
    • 79951579061 scopus 로고    scopus 로고
    • A wavelet-support vector machine conjunction model for monthly streamflow forecasting
    • Kisi, O., and M. Cimen (2011), A wavelet-support vector machine conjunction model for monthly streamflow forecasting, J. Hydrol., 399, 132–140, doi:10.1016/j.jhydrol.2010.12.041.
    • (2011) J. Hydrol , vol.399 , pp. 132-140
    • Kisi, O.1    Cimen, M.2
  • 26
    • 84986550860 scopus 로고    scopus 로고
    • Introduction: Dependence modeling
    • World Scientific, Singapore
    • Kurowicka, D. (2011), Introduction: dependence modeling, in Dependence Modeling, Vine Copula Handbook, pp. 1–17, World Scientific, Singapore.
    • (2011) Dependence Modeling, Vine Copula Handbook , pp. 1-17
    • Kurowicka, D.1
  • 28
    • 79961057444 scopus 로고    scopus 로고
    • Copula-based statistical refinement of precipitation in RCM simulations over complex terrain
    • Laux, P., S. Vogl, W. Qiu, H. R. Knoche, and H. Kunstmann (2011), Copula-based statistical refinement of precipitation in RCM simulations over complex terrain, Hydrol. Earth Syst. Sci., 15, 2401–2419, doi:10.5194/hess-15-2401-2011.
    • (2011) Hydrol. Earth Syst. Sci , vol.15 , pp. 2401-2419
    • Laux, P.1    Vogl, S.2    Qiu, W.3    Knoche, H.R.4    Kunstmann, H.5
  • 29
    • 84876526060 scopus 로고    scopus 로고
    • A bivariate mixed distribution with a heavy-tailed component and its application to single-site daily rainfall simulation
    • Li, C., V. P. Singh, and A. K. Mishra (2013a), A bivariate mixed distribution with a heavy-tailed component and its application to single-site daily rainfall simulation, Water Resour. Res., 49, 767–789, doi:10.1002/wrcr.20063.
    • (2013) Water Resour. Res , vol.49 , pp. 767-789
    • Li, C.1    Singh, V.P.2    Mishra, A.K.3
  • 30
    • 84878512498 scopus 로고    scopus 로고
    • Monthly river flow simulation with a joint conditional density estimation network
    • Li, C., V. P. Singh, and A. K. Mishra (2013b), Monthly river flow simulation with a joint conditional density estimation network, Water Resour. Res., 49, 3229–3242, doi:10.1002/wrcr.20146.
    • (2013) Water Resour. Res , vol.49 , pp. 3229-3242
    • Li, C.1    Singh, V.P.2    Mishra, A.K.3
  • 31
    • 84919952787 scopus 로고    scopus 로고
    • Joint bias correction of temperature and precipitation in climate model simulations
    • Li, C., E. Sinha, D. E. Horton, N. S. Diffenbaugh, and A. M. Michalak (2014), Joint bias correction of temperature and precipitation in climate model simulations, J. Geophys. Res. Atmos., 119, 13,153–13,162, doi:10.1002/2014JD022514.
    • (2014) J. Geophys. Res. Atmos , vol.119 , pp. 153-213
    • Li, C.1    Sinha, E.2    Horton, D.E.3    Diffenbaugh, N.S.4    Michalak, A.M.5
  • 32
    • 0036202123 scopus 로고    scopus 로고
    • Flood stage forecasting with support vector machines
    • Liong, S., and C. Sivapragasam (2002), Flood stage forecasting with support vector machines, J. Am. Water Resour. Assoc., 38(1), 173–186, doi:10.1111/j.1752-1688.2002.tb01544.x.
    • (2002) J. Am. Water Resour. Assoc , vol.38 , Issue.1 , pp. 173-186
    • Liong, S.1    Sivapragasam, C.2
  • 33
    • 84918773671 scopus 로고    scopus 로고
    • Evaluating a coupled discrete wavelet transform and support vector regression for daily and monthly streamflow forecasting
    • Liu, Z., P. Zhou, G. Chen, and L. Guo (2014), Evaluating a coupled discrete wavelet transform and support vector regression for daily and monthly streamflow forecasting, J. Hydrol., 519, 2822–2831, doi:10.1016/j.jhydrol.2014.06.050.
    • (2014) J. Hydrol , vol.519 , pp. 2822-2831
    • Liu, Z.1    Zhou, P.2    Chen, G.3    Guo, L.4
  • 34
    • 84945467223 scopus 로고    scopus 로고
    • A probabilistic wavelet-support vector regression model for streamflow forecasting with rainfall and climate information input
    • Liu, Z., P. Zhou, and Y. Zhang (2015), A probabilistic wavelet-support vector regression model for streamflow forecasting with rainfall and climate information input, J. Hydrometeorol., doi:10.1175/JHM-D-14-0210.1.
    • (2015) J. Hydrometeorol
    • Liu, Z.1    Zhou, P.2    Zhang, Y.3
  • 36
    • 84888878263 scopus 로고    scopus 로고
    • A Bayesian framework for probabilistic seasonal drought forecasting
    • Madadgar, S., and H. Moradkhani (2013), A Bayesian framework for probabilistic seasonal drought forecasting, J. Hydrometeorol., 14, 1685–1705, doi:10.1175/JHM-D-13-010.1.
    • (2013) J. Hydrometeorol , vol.14 , pp. 1685-1705
    • Madadgar, S.1    Moradkhani, H.2
  • 37
    • 84880870950 scopus 로고    scopus 로고
    • Identification of hydrologic drought triggers from hydroclimatic predictor variables
    • Maity, R., M. Ramadas, and R. S. Govindaraju (2013), Identification of hydrologic drought triggers from hydroclimatic predictor variables, Water Resour. Res., 49, 4476–4492, doi:10.1002/wrcr.20346.
    • (2013) Water Resour. Res , vol.49 , pp. 4476-4492
    • Maity, R.1    Ramadas, M.2    Govindaraju, R.S.3
  • 38
    • 1642322261 scopus 로고    scopus 로고
    • Measuring financial risks with copulas
    • Mendes, B. V. M., and R. M. Souza (2004), Measuring financial risks with copulas, Int. Rev. Financ. Anal., 13(1), 27–45.
    • (2004) Int. Rev. Financ. Anal , vol.13 , Issue.1 , pp. 27-45
    • Mendes, B.V.M.1    Souza, R.M.2
  • 39
    • 0016047730 scopus 로고
    • Application of seasonal parametric linear stochastic models to monthly flow data
    • McKerchar, A. I., and J. W. Delleur (1974), Application of seasonal parametric linear stochastic models to monthly flow data, Water Resour. Res., 10, 246–255, doi:10.1029/2004WR003562.
    • (1974) Water Resour. Res , vol.10 , pp. 246-255
    • McKerchar, A.I.1    Delleur, J.W.2
  • 40
    • 3142538909 scopus 로고    scopus 로고
    • Improved streamflow forecasting using self-organizing radial basis function artificial neural networks
    • Moradkhani, H., K. Hsu, H. V. Gupta, and S. Sorooshian (2004), Improved streamflow forecasting using self-organizing radial basis function artificial neural networks, J. Hydrol., 295, 246–262, doi:10.1016/j.jhydrol.2004.03.027.
    • (2004) J. Hydrol , vol.295 , pp. 246-262
    • Moradkhani, H.1    Hsu, K.2    Gupta, H.V.3    Sorooshian, S.4
  • 41
    • 0014776873 scopus 로고
    • River flow forcasting through conceptual models
    • Nash, J. E., and J. V. Shutcliff (1970), River flow forcasting through conceptual models, J. Hydrol., 10, 282–290, doi:10.1016/0022-1694(70) 90255-6.
    • (1970) J. Hydrol , vol.10 , pp. 282-290
    • Nash, J.E.1    Shutcliff, J.V.2
  • 42
    • 19044383810 scopus 로고    scopus 로고
    • Short-term flood forecasting with a neurofuzzy model, Water Resour
    • Nayak, P. C., K. P. Sudheer, D. M. Rangan, and K. S. Ramasastni (2005), Short-term flood forecasting with a neurofuzzy model, Water Resour. Res., 41, W04004, doi:10.1029/2004WR003562.
    • (2005) Res , vol.41
    • Nayak, P.C.1    Sudheer, K.P.2    Rangan, D.M.3    Ramasastni, K.S.4
  • 45
    • 79955025170 scopus 로고    scopus 로고
    • Two hybrid artificial intelligence approaches for modeling rainfall–runoff process
    • Nourani, V., O. Kisi, and M. Komasi (2011), Two hybrid artificial intelligence approaches for modeling rainfall–runoff process, J. Hydrol., 402(1–2), 41–59, doi:10.1016/j.jhydrol.2011.03.002.
    • (2011) J. Hydrol , vol.402 , Issue.12 , pp. 41-59
    • Nourani, V.1    Kisi, O.2    Komasi, M.3
  • 46
    • 84900481738 scopus 로고    scopus 로고
    • Applications of hybrid Wavelet-Artificial Intelligence models in hydrology: A review
    • Nourani, V., A. Hosseini Baghanam, J. Adamowski, and O. Kisi (2014), Applications of hybrid Wavelet-Artificial Intelligence models in hydrology: A review, J. Hydrol., 514, 358–377, doi:10.1016/j.jhydrol.2014.03.057.
    • (2014) J. Hydrol , vol.514 , pp. 358-377
    • Nourani, V.1    Hosseini Baghanam, A.2    Adamowski, J.3    Kisi, O.4
  • 47
    • 84885521312 scopus 로고    scopus 로고
    • The value of model averaging and dynamical climate model predictions for improving statistical seasonal streamflow forecasts over Australia
    • Pokhrel, P., Q. J. Wang, and D. E. Robertson (2013), The value of model averaging and dynamical climate model predictions for improving statistical seasonal streamflow forecasts over Australia, Water Resour. Res., 49, 6671–6687, doi:10.1002/wrcr.20449.
    • (2013) Water Resour. Res , vol.49 , pp. 6671-6687
    • Pokhrel, P.1    Wang, Q.J.2    Robertson, D.E.3
  • 48
    • 33750321692 scopus 로고    scopus 로고
    • A multimodel ensemble forecast framework: Application to spring seasonal flows in the Gunnison River Basin, Water Resour
    • Regonda, S. K., B. Rajagopalan, M. Clark, and E. Zagona (2006), A multimodel ensemble forecast framework: Application to spring seasonal flows in the Gunnison River Basin, Water Resour. Res., 42, W09404, doi:10.1029/2005WR004653.
    • (2006) Res , vol.42
    • Regonda, S.K.1    Rajagopalan, B.2    Clark, M.3    Zagona, E.4
  • 49
    • 84924021306 scopus 로고    scopus 로고
    • Sequential dependence modeling using Bayesian theory and D-vine copula and its application on chemical process risk prediction
    • Ren, X., S. J. Li, C. Lv, and Z. Y. Zhang (2014), Sequential dependence modeling using Bayesian theory and D-vine copula and its application on chemical process risk prediction, Ind. Eng. Chem. Res., 53(38), 14,788–14,801, doi:10.1021/ie501863u.
    • (2014) Ind. Eng. Chem. Res , vol.53 , Issue.38 , pp. 788-814
    • Ren, X.1    Li, S.J.2    Lv, C.3    Zhang, Z.Y.4
  • 50
    • 12544258027 scopus 로고    scopus 로고
    • Frequency analysis via copulas: Theoretical aspects and applications to hydrological events, Water Resour
    • Salvadori, G., and C. De Michele (2004), Frequency analysis via copulas: Theoretical aspects and applications to hydrological events, Water Resour. Res., 40, W12511, doi:10.1029/2004WR003133.
    • (2004) Res , vol.40
    • Salvadori, G.1    De Michele, C.2
  • 51
    • 31744438288 scopus 로고    scopus 로고
    • Performance evaluation of ANN and geomorphology-based models for runoff and sediment yield prediction for a Canadian watershed
    • Sarangi, A., C. A. Madramootoo, P. Enright, S. O. Prahser, and R. M. Patel (2005), Performance evaluation of ANN and geomorphology-based models for runoff and sediment yield prediction for a Canadian watershed, Curr. Sci., 89(12), 2022–2033.
    • (2005) Curr. Sci , vol.89 , Issue.12 , pp. 2022-2033
    • Sarangi, A.1    Madramootoo, C.A.2    Enright, P.3    Prahser, S.O.4    Patel, R.M.5
  • 53
    • 67650422532 scopus 로고    scopus 로고
    • A multisite daily rainfall generator driven by bivariate copula-based mixed distributions
    • Serinaldi, F. (2009), A multisite daily rainfall generator driven by bivariate copula-based mixed distributions, J. Geophys. Res., 114 D10103, doi:10.1029/2008JD011258.
    • (2009) J. Geophys. Res , vol.114
    • Serinaldi, F.1
  • 54
    • 0000795592 scopus 로고
    • Fonctions de Répartition à n Dimensions et Leurs Marges
    • Sklar, A. (1959), Fonctions de Répartition à n Dimensions et Leurs Marges, Publ. Inst. Stat. Univ. Paris, 8, 229–231.
    • (1959) Publ. Inst. Stat. Univ. Paris , vol.8 , pp. 229-231
    • Sklar, A.1
  • 56
    • 78149408167 scopus 로고    scopus 로고
    • Development of an accurate and reliable hourly flood forecasting model using wavelet–bootstrap– ANN (WBANN) hybrid approach
    • Tiwari, M. K., and C. Chatterjee (2010), Development of an accurate and reliable hourly flood forecasting model using wavelet–bootstrap– ANN (WBANN) hybrid approach, J. Hydrol., 1(394), 458–470, doi:10.1016/j.jhydrol.2010.10.001.
    • (2010) J. Hydrol , vol.1 , Issue.394 , pp. 458-470
    • Tiwari, M.K.1    Chatterjee, C.2
  • 58
    • 84869486522 scopus 로고    scopus 로고
    • Retrievals for the rainfall rate over land using special sensor microwave imager data during tropical cyclones: Comparisons of scattering index, regression, and support vector regression
    • Wei, C., and J. Roan (2012), Retrievals for the rainfall rate over land using special sensor microwave imager data during tropical cyclones: Comparisons of scattering index, regression, and support vector regression, J. Hydrometeorol., 13, 1567–1578, doi:10.1175/JHM-D-11-0118.1.
    • (2012) J. Hydrometeorol , vol.13 , pp. 1567-1578
    • Wei, C.1    Roan, J.2
  • 59
    • 84866464896 scopus 로고    scopus 로고
    • Evaluating forecast performances of the quantile autoregression models in the present global crisis in international equity markets
    • Xu, Q., and T. Childs (2013), Evaluating forecast performances of the quantile autoregression models in the present global crisis in international equity markets, Appl. Financ. Econ., 23(2), 105–117, doi:10.1080/09603107.2012.709601.
    • (2013) Appl. Financ. Econ , vol.23 , Issue.2 , pp. 105-117
    • Xu, Q.1    Childs, T.2
  • 60
    • 33746916489 scopus 로고    scopus 로고
    • Support vector regression for real-time flood stage forecasting
    • Yu, P. S., S. T. Chen, and I. F. Chang (2006), Support vector regression for real-time flood stage forecasting, J. Hydrol., 328(3–4), 704–716, doi:10.1016/j.jhydrol.2006.01.021.
    • (2006) J. Hydrol , vol.328 , Issue.34 , pp. 704-716
    • Yu, P.S.1    Chen, S.T.2    Chang, I.F.3
  • 61
    • 33144488602 scopus 로고    scopus 로고
    • Bivariate flood frequency analysis using the copula method
    • Zhang, L., and V. Singh (2006), Bivariate flood frequency analysis using the copula method, J. Hydrol. Eng., 11(2), 150–164, doi:10.1061/(ASCE) 1084-0699(2006)11:2(150).
    • (2006) J. Hydrol. Eng , vol.11 , Issue.2 , pp. 150-164
    • Zhang, L.1    Singh, V.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.