메뉴 건너뛰기




Volumn 77, Issue 5, 2015, Pages 947-972

A split-and-merge Bayesian variable selection approach for ultrahigh dimensional regression

Author keywords

Bayesian variable selection; Posterior consistency; Split and merge; Stochastic approximation Monte Carlo sampling

Indexed keywords


EID: 84944152778     PISSN: 13697412     EISSN: 14679868     Source Type: Journal    
DOI: 10.1111/rssb.12095     Document Type: Article
Times cited : (59)

References (53)
  • 1
    • 4043135554 scopus 로고    scopus 로고
    • Optimal predictive model selection
    • Barbieri, M. and Berger, J. (2004) Optimal predictive model selection. Ann. Statist., 32, 870-897.
    • (2004) Ann. Statist. , vol.32 , pp. 870-897
    • Barbieri, M.1    Berger, J.2
  • 2
    • 0002269120 scopus 로고
    • Limiting behaviour of posterior distributions when the model is incorrect
    • Berk, R. H. (1966) Limiting behaviour of posterior distributions when the model is incorrect. Ann. Math. Statist., 37, 51-58.
    • (1966) Ann. Math. Statist. , vol.37 , pp. 51-58
    • Berk, R.H.1
  • 3
    • 33745156863 scopus 로고    scopus 로고
    • Some thoery for Fisher's linear discriminant function, 'naive Bayes', and some alternatives when there are many more variable than observations
    • Bickel, P. and Levina, E. (2004) Some thoery for Fisher's linear discriminant function, 'naive Bayes', and some alternatives when there are many more variable than observations. Bernoulli, 10, 989-1010.
    • (2004) Bernoulli , vol.10 , pp. 989-1010
    • Bickel, P.1    Levina, E.2
  • 4
    • 84871951819 scopus 로고    scopus 로고
    • Consistent high-dimensional Bayesian variable selection via penalized credible regions
    • Bondell, H. D. and Reich, B. J. (2012) Consistent high-dimensional Bayesian variable selection via penalized credible regions. J. Am. Statist. Ass., 107, 1610-1624.
    • (2012) J. Am. Statist. Ass. , vol.107 , pp. 1610-1624
    • Bondell, H.D.1    Reich, B.J.2
  • 6
    • 79951540621 scopus 로고    scopus 로고
    • Evolutionary stochastic search for Bayesian model exploration
    • Bottolo, L. and Richardson, S. (2010) Evolutionary stochastic search for Bayesian model exploration. Baysn Anal., 5, 583-618.
    • (2010) Baysn Anal. , vol.5 , pp. 583-618
    • Bottolo, L.1    Richardson, S.2
  • 7
    • 80051762104 scopus 로고    scopus 로고
    • Distributed optimization and statistical learning via the alternating direction method of multipliers
    • Boyd, S., Parikh, N., Chu, E., Peleato, B. and Eckstein, J. (2010) Distributed optimization and statistical learning via the alternating direction method of multipliers. Found. Trends Mach. Learn., 3, 1-122.
    • (2010) Found. Trends Mach. Learn. , vol.3 , pp. 1-122
    • Boyd, S.1    Parikh, N.2    Chu, E.3    Peleato, B.4    Eckstein, J.5
  • 8
    • 0036433546 scopus 로고    scopus 로고
    • A model selection approach for the identification of quantitative trait loci in experimental crosses
    • Broman, K. W. and Speed, T. P. (2002) A model selection approach for the identification of quantitative trait loci in experimental crosses. J. R. Statist. Soc. B, 64, 641-656.
    • (2002) J. R. Statist. Soc. B , vol.64 , pp. 641-656
    • Broman, K.W.1    Speed, T.P.2
  • 10
    • 77952811536 scopus 로고    scopus 로고
    • The horseshoe estimator for sparse signals
    • Carvalho, C., Polson, N. and Scott, J. (2010) The horseshoe estimator for sparse signals. Biometrika, 97, 465-480.
    • (2010) Biometrika , vol.97 , pp. 465-480
    • Carvalho, C.1    Polson, N.2    Scott, J.3
  • 11
    • 50949108781 scopus 로고    scopus 로고
    • Extended Bayesian information criteria for model selection with large model spaces
    • Chen, J. and Chen, Z. (2008) Extended Bayesian information criteria for model selection with large model spaces. Biometrika, 95, 759-771.
    • (2008) Biometrika , vol.95 , pp. 759-771
    • Chen, J.1    Chen, Z.2
  • 12
    • 84881226124 scopus 로고    scopus 로고
    • Bayesian asymptotics with misspecified models
    • De Blasi, P. and Walker, S. (2013) Bayesian asymptotics with misspecified models. Statist. Sin., 23, 169-187.
    • (2013) Statist. Sin. , vol.23 , pp. 169-187
    • De Blasi, P.1    Walker, S.2
  • 14
    • 1542784498 scopus 로고    scopus 로고
    • Variable selection via nonconcave penalized likelihood and its oracle properties
    • Fan, J. and Li, R. (2001) Variable selection via nonconcave penalized likelihood and its oracle properties. J. Am. Statist. Ass., 96, 1348-1360.
    • (2001) J. Am. Statist. Ass. , vol.96 , pp. 1348-1360
    • Fan, J.1    Li, R.2
  • 15
    • 53849086824 scopus 로고    scopus 로고
    • Sure independence screening for ultrahigh dimensional feature space (with discussion)
    • Fan, J. and Lv, J. (2008) Sure independence screening for ultrahigh dimensional feature space (with discussion). J. R. Statist. Soc. B, 70, 849-911.
    • (2008) J. R. Statist. Soc. B , vol.70 , pp. 849-911
    • Fan, J.1    Lv, J.2
  • 16
    • 78650168263 scopus 로고    scopus 로고
    • Sure independence screening in generalized linear model with NP-dimensionality
    • Fan, J. and Song, R. (2010) Sure independence screening in generalized linear model with NP-dimensionality. Ann. Statist., 38, 3567-3604.
    • (2010) Ann. Statist. , vol.38 , pp. 3567-3604
    • Fan, J.1    Song, R.2
  • 17
    • 77950537175 scopus 로고    scopus 로고
    • Regularization paths for generalized linear models via coordinate descent
    • Friedman, J., Hastie, T. and Tibshirani, R. (2010) Regularization paths for generalized linear models via coordinate descent. J. Statist. Softwr., 33, 1-22.
    • (2010) J. Statist. Softwr. , vol.33 , pp. 1-22
    • Friedman, J.1    Hastie, T.2    Tibshirani, R.3
  • 18
    • 82955223524 scopus 로고    scopus 로고
    • Bayesian variable selection regression for genome-wide association studies and other large-scale problems
    • Guan, Y. and Stephens, M. (2011) Bayesian variable selection regression for genome-wide association studies and other large-scale problems. Ann. Appl. Statist., 5, 1780-1815.
    • (2011) Ann. Appl. Statist. , vol.5 , pp. 1780-1815
    • Guan, Y.1    Stephens, M.2
  • 19
    • 73249114674 scopus 로고    scopus 로고
    • An information matrix prior for Bayesian analysis in generalized linear models with high dimensional data
    • Gupta, M. and Ibrahim, J. (2009) An information matrix prior for Bayesian analysis in generalized linear models with high dimensional data. Statist. Sin., 19, 1641-1663.
    • (2009) Statist. Sin. , vol.19 , pp. 1641-1663
    • Gupta, M.1    Ibrahim, J.2
  • 20
    • 0038563932 scopus 로고    scopus 로고
    • An adaptive Metropolis algorithm
    • Haario, H., Saksman, E. and Tamminen, J. (2001) An adaptive Metropolis algorithm. Bernoulli, 7, 223-242.
    • (2001) Bernoulli , vol.7 , pp. 223-242
    • Haario, H.1    Saksman, E.2    Tamminen, J.3
  • 21
    • 50449093220 scopus 로고    scopus 로고
    • Bayesian variable selection for high dimensional generalized linear models
    • Technical Report 05-02. Department of Statistics, Northwestern University, Evanston.
    • Jiang, W. (2005) Bayesian variable selection for high dimensional generalized linear models. Technical Report 05-02. Department of Statistics, Northwestern University, Evanston.
    • (2005)
    • Jiang, W.1
  • 22
    • 50449090913 scopus 로고    scopus 로고
    • Bayesian variable selection for high dimensional generalized linear models: convergence rate of the fitted densities
    • Jiang, W. (2007) Bayesian variable selection for high dimensional generalized linear models: convergence rate of the fitted densities. Ann. Statist., 35, 1487-1511.
    • (2007) Ann. Statist. , vol.35 , pp. 1487-1511
    • Jiang, W.1
  • 23
    • 84944164827 scopus 로고    scopus 로고
    • On numerical aspects of Bayesian model selection in high and ultrahigh-dimensional settings
    • Johnson, V. (2012) On numerical aspects of Bayesian model selection in high and ultrahigh-dimensional settings. Baysn Anal., 7, no. 4, 1-18.
    • (2012) Baysn Anal. , vol.7 , Issue.4 , pp. 1-18
    • Johnson, V.1
  • 24
    • 84864380552 scopus 로고    scopus 로고
    • Bayesian model selection in high-dimensional settings
    • Johnson, V. and Rossel, D. (2012) Bayesian model selection in high-dimensional settings. J. Am. Statist. Ass., 107, 649-660.
    • (2012) J. Am. Statist. Ass. , vol.107 , pp. 649-660
    • Johnson, V.1    Rossel, D.2
  • 25
    • 44049102035 scopus 로고    scopus 로고
    • Genome-wide pharmacogenetic investigation of a hepatic adverse event without clinical signs of immunopathology suggests an underlying immune pathogenesis
    • Kindmark, A., Jawaid, A., Harbron, C., Barrat, B. and March, R. (2008) Genome-wide pharmacogenetic investigation of a hepatic adverse event without clinical signs of immunopathology suggests an underlying immune pathogenesis. Pharmgenom. J., 8, 186-195.
    • (2008) Pharmgenom. J. , vol.8 , pp. 186-195
    • Kindmark, A.1    Jawaid, A.2    Harbron, C.3    Barrat, B.4    March, R.5
  • 26
    • 33746227433 scopus 로고    scopus 로고
    • Misspecification in infinite-dimensional Bayesian statistics
    • Kleijn, B. and van der Vaart, A. (2006) Misspecification in infinite-dimensional Bayesian statistics. Ann. Statist., 34, 837-877.
    • (2006) Ann. Statist. , vol.34 , pp. 837-877
    • Kleijn, B.1    van der Vaart, A.2
  • 27
    • 84901817347 scopus 로고    scopus 로고
    • Bayes variable selection in semiparametric linear models
    • Kundu, S. and Dunson, D. B. (2014) Bayes variable selection in semiparametric linear models. J. Am. Statist. Ass., 109, 437-447.
    • (2014) J. Am. Statist. Ass. , vol.109 , pp. 437-447
    • Kundu, S.1    Dunson, D.B.2
  • 29
    • 78751703946 scopus 로고    scopus 로고
    • On the utility of graphics cards to perform massively parallel simulation of advanced Monte Carlo methods
    • Lee, A., Yau, C., Giles, M., Doucet, A. and Holmes, C. (2010) On the utility of graphics cards to perform massively parallel simulation of advanced Monte Carlo methods.J. Computnl Graph. Statist., 19, 769-789.
    • (2010) J. Computnl Graph. Statist. , vol.19 , pp. 769-789
    • Lee, A.1    Yau, C.2    Giles, M.3    Doucet, A.4    Holmes, C.5
  • 30
    • 78649419087 scopus 로고    scopus 로고
    • Bayesian variable selection in structured High-Dimensional covariate spaces with application in genomics
    • Li, F. and Zhang, N. (2010) Bayesian variable selection in structured High-Dimensional covariate spaces with application in genomics. J. Am. Statist. Ass., 105, 1202-1214.
    • (2010) J. Am. Statist. Ass. , vol.105 , pp. 1202-1214
    • Li, F.1    Zhang, N.2
  • 31
    • 59349103112 scopus 로고    scopus 로고
    • On the use of SAMC for Monte Carlo intergration
    • Liang, F. (2009) On the use of SAMC for Monte Carlo intergration. Statist. Probab. Lett., 79, 581-587.
    • (2009) Statist. Probab. Lett. , vol.79 , pp. 581-587
    • Liang, F.1
  • 32
    • 33947215681 scopus 로고    scopus 로고
    • Stochastic approximation in Monte Carlo computation
    • Liang, F., Liu, C. and Carroll, R. (2007) Stochastic approximation in Monte Carlo computation. J. Am. Statist. Ass., 102, 305-320.
    • (2007) J. Am. Statist. Ass. , vol.102 , pp. 305-320
    • Liang, F.1    Liu, C.2    Carroll, R.3
  • 34
    • 84880844562 scopus 로고    scopus 로고
    • Bayesian subset modeling for high dimensional generalized linear models
    • Liang, F., Song, Q. and Yu, K. (2013) Bayesian subset modeling for high dimensional generalized linear models. J. Am. Statist. Ass., 108, 589-606.
    • (2013) J. Am. Statist. Ass. , vol.108 , pp. 589-606
    • Liang, F.1    Song, Q.2    Yu, K.3
  • 35
    • 57249090966 scopus 로고    scopus 로고
    • Estimating FDR under general dependence using stochastic approximation
    • Liang, F. and Zhang, J. (2008) Estimating FDR under general dependence using stochastic approximation. Biometrika, 95, 961-977.
    • (2008) Biometrika , vol.95 , pp. 961-977
    • Liang, F.1    Zhang, J.2
  • 36
    • 84864389106 scopus 로고    scopus 로고
    • Aggregated estimation equation estimation
    • Lin, N. and Xi, R. (2011) Aggregated estimation equation estimation. Statist. Interf., 4, 73-83.
    • (2011) Statist. Interf. , vol.4 , pp. 73-83
    • Lin, N.1    Xi, R.2
  • 37
    • 84856484853 scopus 로고    scopus 로고
    • Divide-and-conquer matrix factorization
    • Preprint arXiv:1107.0789.
    • Mackey, L., Talwalkar, A. and Jordan, M. (2012) Divide-and-conquer matrix factorization. Preprint arXiv:1107.0789.
    • (2012)
    • Mackey, L.1    Talwalkar, A.2    Jordan, M.3
  • 38
    • 84950945692 scopus 로고
    • Model selection and accounting for model uncertainty in graphical models using Occam's windows
    • Madigan, D. and Raftery, A. (1994) Model selection and accounting for model uncertainty in graphical models using Occam's windows. J. Am. Statist. Ass., 89, 1535-1546.
    • (1994) J. Am. Statist. Ass. , vol.89 , pp. 1535-1546
    • Madigan, D.1    Raftery, A.2
  • 41
    • 84858279402 scopus 로고    scopus 로고
    • Local shrinkage rules, Lévy processes and regularized regression
    • Polson, N. G. and Scott, J. G. (2012) Local shrinkage rules, Lévy processes and regularized regression. J. R. Statist. Soc. B, 74, 287-311.
    • (2012) J. R. Statist. Soc. B , vol.74 , pp. 287-311
    • Polson, N.G.1    Scott, J.G.2
  • 42
    • 77953071298 scopus 로고    scopus 로고
    • Bayes and empirical-Bayes multiplicity adjustment in the variable-selection problem
    • Scott, J. and Berger, J. (2010) Bayes and empirical-Bayes multiplicity adjustment in the variable-selection problem. Ann. Statist., 38, 2587-2619.
    • (2010) Ann. Statist. , vol.38 , pp. 2587-2619
    • Scott, J.1    Berger, J.2
  • 43
    • 84988300338 scopus 로고    scopus 로고
    • Dynamics of Bayesian updating with dependent data and misspecified models
    • Shalizi, C. (2009) Dynamics of Bayesian updating with dependent data and misspecified models. Electron. J. Statist., 3, 1039-1074.
    • (2009) Electron. J. Statist. , vol.3 , pp. 1039-1074
    • Shalizi, C.1
  • 44
    • 84919348529 scopus 로고    scopus 로고
    • Weak convergence rates of population versus single-chain stochastic approximation MCMC algorithms
    • to be published.
    • Song, Q., Wu, M. and Liang, F. (2014) Weak convergence rates of population versus single-chain stochastic approximation MCMC algorithms. Adv. Appl. Probab., to be published.
    • (2014) Adv. Appl. Probab.
    • Song, Q.1    Wu, M.2    Liang, F.3
  • 45
    • 84875094691 scopus 로고    scopus 로고
    • Finite sample posterior concentration in high-dimensional regression
    • Preprint arXiv:1207.4854.
    • Strawn, N., Armagan, A., Saab, R., Carin, L. and Dunson, D. (2012) Finite sample posterior concentration in high-dimensional regression. Preprint arXiv:1207.4854.
    • (2012)
    • Strawn, N.1    Armagan, A.2    Saab, R.3    Carin, L.4    Dunson, D.5
  • 46
    • 77955516707 scopus 로고    scopus 로고
    • Understanding GPU programming for statistical computation: studies in massively parallel massive mixtures
    • Suchard, M., Wang, Q., Chan, C., Frelinger, J., Cron, A. and West, M. (2010) Understanding GPU programming for statistical computation: studies in massively parallel massive mixtures. J. Computnl Graph. Statist., 19, 419-438.
    • (2010) J. Computnl Graph. Statist. , vol.19 , pp. 419-438
    • Suchard, M.1    Wang, Q.2    Chan, C.3    Frelinger, J.4    Cron, A.5    West, M.6
  • 47
    • 85194972808 scopus 로고    scopus 로고
    • Regression shrinkage and selection via the lasso
    • Tibshirani, R. (1996) Regression shrinkage and selection via the lasso. J. R. Statist. Soc. B, 58, 267-288.
    • (1996) J. R. Statist. Soc. B , vol.58 , pp. 267-288
    • Tibshirani, R.1
  • 48
    • 84944148500 scopus 로고    scopus 로고
    • Bayesian model uncertainty and prior choice with applications to genetic association studies
    • PhD Thesis. Duke University, Durham.
    • Wilson, M. A. (2010) Bayesian model uncertainty and prior choice with applications to genetic association studies. PhD Thesis. Duke University, Durham.
    • (2010)
    • Wilson, M.A.1
  • 49
    • 61449125063 scopus 로고    scopus 로고
    • Compression and aggregation for logistic regression analysis in data cubes
    • Xi, R., Lin, N. and Chen, Y. (2009) Compression and aggregation for logistic regression analysis in data cubes. IEEE Trans. Knowl. Data Engng, 21, 479-492.
    • (2009) IEEE Trans. Knowl. Data Engng , vol.21 , pp. 479-492
    • Xi, R.1    Lin, N.2    Chen, Y.3
  • 50
    • 0002817906 scopus 로고
    • On assessing prior distributions and Bayesian regression analysis with g-prior distribution
    • (eds P. Goel and A. Zellner). Amsterdam: North-Holland.
    • Zellner, A. (1986), On assessing prior distributions and Bayesian regression analysis with g-prior distribution. In Bayesian Inference and Decision Techniques: Essays in Honor of Bruno de Finetti (eds P. Goel and A. Zellner), pp. 233-243. Amsterdam: North-Holland.
    • (1986) Bayesian Inference and Decision Techniques: Essays in Honor of Bruno de Finetti , pp. 233-243
    • Zellner, A.1
  • 51
    • 77649284492 scopus 로고    scopus 로고
    • Nearly unbiased variable selection under minimax concave penalty
    • Zhang, C.-H. (2010) Nearly unbiased variable selection under minimax concave penalty. Ann. Statist., 38, 894-942.
    • (2010) Ann. Statist. , vol.38 , pp. 894-942
    • Zhang, C.-H.1
  • 52
    • 33846114377 scopus 로고    scopus 로고
    • The adaptive lasso and its oracle properties
    • Zou, H. (2006) The adaptive lasso and its oracle properties. J. Am. Statist. Ass., 101, 1418-1429.
    • (2006) J. Am. Statist. Ass. , vol.101 , pp. 1418-1429
    • Zou, H.1
  • 53
    • 16244401458 scopus 로고    scopus 로고
    • Regularization and variable selection via the elastic net
    • Zou, H. and Hastie, T. (2005) Regularization and variable selection via the elastic net. J. R. Statist. Soc. B, 67, 301-320.
    • (2005) J. R. Statist. Soc. B , vol.67 , pp. 301-320
    • Zou, H.1    Hastie, T.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.