메뉴 건너뛰기




Volumn 95, Issue 4, 2008, Pages 961-977

Estimating the false discovery rate using the stochastic approximation algorithm

Author keywords

Ensemble averaging; False discovery rate; Microarray data analysis; Multiple hypothesis testing; Stochastic approximation

Indexed keywords


EID: 57249090966     PISSN: 00063444     EISSN: 14643510     Source Type: Journal    
DOI: 10.1093/biomet/asn036     Document Type: Article
Times cited : (38)

References (33)
  • 2
    • 0001677717 scopus 로고
    • Controlling the false discovery rate: A practical and powerful approach to multiple testing
    • BENJAMINI, Y. & HOCHBERG, Y. (1995). Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. R. Statist. Soc. B 57, 289-300.
    • (1995) J. R. Statist. Soc. B , vol.57 , pp. 289-300
    • BENJAMINI, Y.1    HOCHBERG, Y.2
  • 3
    • 33746197428 scopus 로고    scopus 로고
    • Adaptive linear step-up procedures that control the false discovery rate
    • BENJAMINI, Y., KRIEGER, A. M. & YEKUTIELI, D. (2006). Adaptive linear step-up procedures that control the false discovery rate. Biometrika 93, 491-507.
    • (2006) Biometrika , vol.93 , pp. 491-507
    • BENJAMINI, Y.1    KRIEGER, A.M.2    YEKUTIELI, D.3
  • 4
    • 0033472708 scopus 로고    scopus 로고
    • A step-down multiple hypothesis procedure that controls the false discovery rate under independence
    • BENJAMINI, Y & LIU, W. (1999). A step-down multiple hypothesis procedure that controls the false discovery rate under independence. J. Statist. Plan. Infer. 82, 163-70.
    • (1999) J. Statist. Plan. Infer , vol.82 , pp. 163-170
    • BENJAMINI, Y.1    LIU, W.2
  • 5
    • 0035733108 scopus 로고    scopus 로고
    • On the control of false discovery rate in multiple testing under dependency
    • BENJAMINI, Y & YEKUTIELI, D. (2001). On the control of false discovery rate in multiple testing under dependency. Ann. Statist. 29, 1165-88.
    • (2001) Ann. Statist , vol.29 , pp. 1165-1188
    • BENJAMINI, Y.1    YEKUTIELI, D.2
  • 6
    • 14944365889 scopus 로고    scopus 로고
    • False discovery rate-adjusted multiple confidence intervals for selected parameters (with Discussion)
    • BENJAMINI, Y & YEKUTIELI, D. (2005). False discovery rate-adjusted multiple confidence intervals for selected parameters (with Discussion). J. Am. Statist. Assoc. 100, 71-93.
    • (2005) J. Am. Statist. Assoc , vol.100 , pp. 71-93
    • BENJAMINI, Y.1    YEKUTIELI, D.2
  • 7
    • 33750966725 scopus 로고    scopus 로고
    • Semiparametric estimation of a two-component mixture model where one component is known
    • BORDES, L., DELMAS, C. & VANDEKERKHOVE, P. (2006). Semiparametric estimation of a two-component mixture model where one component is known. Scand. J. Statist. 33, 733-53.
    • (2006) Scand. J. Statist , vol.33 , pp. 733-753
    • BORDES, L.1    DELMAS, C.2    VANDEKERKHOVE, P.3
  • 8
    • 0032371603 scopus 로고    scopus 로고
    • Stochastic approximation with non-additive measurement noise
    • CHEN, H. F. (1998). Stochastic approximation with non-additive measurement noise. J. Appl. Prob. 35, 407-17.
    • (1998) J. Appl. Prob , vol.35 , pp. 407-417
    • CHEN, H.F.1
  • 10
    • 18444401138 scopus 로고    scopus 로고
    • A Bayesian mixture model for differential gene expression
    • DO, K. A., MÜLLER, P. & TANG, F. (2005). A Bayesian mixture model for differential gene expression. Appl. Statist. 54, 627-44.
    • (2005) Appl. Statist , vol.54 , pp. 627-644
    • DO, K.A.1    MÜLLER, P.2    TANG, F.3
  • 11
    • 0043203327 scopus 로고    scopus 로고
    • Multiple hypothesis testing in microarray experiments
    • DUDOIT, S., SHAFFER, J. P. & BOLDRICK, J. C. (2003). Multiple hypothesis testing in microarray experiments. Statist. Sci. 18, 71-103.
    • (2003) Statist. Sci , vol.18 , pp. 71-103
    • DUDOIT, S.1    SHAFFER, J.P.2    BOLDRICK, J.C.3
  • 12
    • 2142732441 scopus 로고    scopus 로고
    • Large-scale simultaneous hypothesis testing: The choice of a null hypothesis
    • EFRON, B. (2004). Large-scale simultaneous hypothesis testing: The choice of a null hypothesis. J. Am. Statist. Assoc. 99, 96-104.
    • (2004) J. Am. Statist. Assoc , vol.99 , pp. 96-104
    • EFRON, B.1
  • 13
    • 33947216221 scopus 로고    scopus 로고
    • Correlation and large-scale simultaneous significance testing
    • EFRON, B. (2007). Correlation and large-scale simultaneous significance testing. J. Am. Statist. Assoc. 102, 93-103.
    • (2007) J. Am. Statist. Assoc , vol.102 , pp. 93-103
    • EFRON, B.1
  • 15
    • 0036565644 scopus 로고    scopus 로고
    • M-estimation for dependent random variables
    • FURRER, R. (2002). M-estimation for dependent random variables. Statist. Prob. Lett. 57, 337-41.
    • (2002) Statist. Prob. Lett , vol.57 , pp. 337-341
    • FURRER, R.1
  • 16
    • 0036020944 scopus 로고    scopus 로고
    • Operating characteristics and extension of the FDR procedure
    • GENOVESE, C. & WASSERMAN, L. (2002). Operating characteristics and extension of the FDR procedure. J. R. Statist. Soc. B 64, 499-517.
    • (2002) J. R. Statist. Soc. B , vol.64 , pp. 499-517
    • GENOVESE, C.1    WASSERMAN, L.2
  • 17
    • 0031171679 scopus 로고    scopus 로고
    • Optimal linear combinations of neural networks
    • HASHEM, S. (1997). Optimal linear combinations of neural networks. Neural Networks 10, 599-614.
    • (1997) Neural Networks , vol.10 , pp. 599-614
    • HASHEM, S.1
  • 18
    • 33750975344 scopus 로고    scopus 로고
    • Identifiability of finite mixtures of elliptical distributions
    • HOLZMANN, H., MUNK, A. & GNEITING, T. (2006). Identifiability of finite mixtures of elliptical distributions. Scand. J. Statist. 33, 753-63.
    • (2006) Scand. J. Statist , vol.33 , pp. 753-763
    • HOLZMANN, H.1    MUNK, A.2    GNEITING, T.3
  • 19
    • 0038122257 scopus 로고
    • A new family of probability distributions with applications to Monte Carlo studies
    • JOHNSON, M. E., TIETJEN, G. L. & BECKMAN, R. J. (1980). A new family of probability distributions with applications to Monte Carlo studies. J. Am. Statist. Assoc. 75, 276-9.
    • (1980) J. Am. Statist. Assoc , vol.75 , pp. 276-279
    • JOHNSON, M.E.1    TIETJEN, G.L.2    BECKMAN, R.J.3
  • 20
    • 0000930441 scopus 로고
    • Logspline density estimation for censored data
    • KOOPERBERG, C. & STONE, C. J. (1992). Logspline density estimation for censored data. J. Comp. Graph. Statist. 1, 301-28.
    • (1992) J. Comp. Graph. Statist , vol.1 , pp. 301-328
    • KOOPERBERG, C.1    STONE, C.J.2
  • 21
    • 49049152397 scopus 로고
    • Stochastic approximation with discontinuous dynamics and state dependent noise: W.p.l and weak convergence
    • KUSHNER, H. J. (1981). Stochastic approximation with discontinuous dynamics and state dependent noise: w.p.l and weak convergence. J. Math. Anal. Appl. 82, 527-42.
    • (1981) J. Math. Anal. Appl , vol.82 , pp. 527-542
    • KUSHNER, H.J.1
  • 22
    • 34547524025 scopus 로고    scopus 로고
    • A robust sequential Bayesian method for identification of differentially expressed genes
    • LIANG, F., LIU, C. & WANG, N. (2007). A robust sequential Bayesian method for identification of differentially expressed genes. Statist. Sinica 17, 571-97.
    • (2007) Statist. Sinica , vol.17 , pp. 571-597
    • LIANG, F.1    LIU, C.2    WANG, N.3
  • 23
    • 2142854576 scopus 로고    scopus 로고
    • A mixture model approach to detecting differentially expressed genes with microarray data
    • PAN, W., LIN, J. & LE, C. (2003). A mixture model approach to detecting differentially expressed genes with microarray data. Funct. Integrat. Genom. 3, 117-24.
    • (2003) Funct. Integrat. Genom , vol.3 , pp. 117-124
    • PAN, W.1    LIN, J.2    LE, C.3
  • 24
    • 33747828250 scopus 로고    scopus 로고
    • Robust estimation of the false discovery rate
    • POUNDS, S. & CHENG, C. (2006). Robust estimation of the false discovery rate. Bioinformatics 22, 1979-87.
    • (2006) Bioinformatics , vol.22 , pp. 1979-1987
    • POUNDS, S.1    CHENG, C.2
  • 25
    • 28244483283 scopus 로고    scopus 로고
    • Correlation between gene expression levels and limitations of the empirical Bayes methodology for finding differentially expressed genes
    • article
    • QIU, X., KLEBANOV, L. & YAKOVLEV, A. (2005). Correlation between gene expression levels and limitations of the empirical Bayes methodology for finding differentially expressed genes. Statist. Applic. Genet. Molec. Biol. 4, article 34.
    • (2005) Statist. Applic. Genet. Molec. Biol , vol.4 , pp. 34
    • QIU, X.1    KLEBANOV, L.2    YAKOVLEV, A.3
  • 26
    • 0000016172 scopus 로고
    • A stochastic approximation method
    • ROBBINS, H. & MONRO, S. (1951). A stochastic approximation method. Ann. Math. Statist. 22, 400-7.
    • (1951) Ann. Math. Statist , vol.22 , pp. 400-407
    • ROBBINS, H.1    MONRO, S.2
  • 27
    • 0031484203 scopus 로고    scopus 로고
    • The use of polynomial splines and their tensor products in extended linear modeling (with discussion)
    • STONE, C. J., HANSEN, M., KOOPERBERG C. & TRUONG, Y. K. (1997). The use of polynomial splines and their tensor products in extended linear modeling (with discussion). Ann. Statist. 25, 1371-470.
    • (1997) Ann. Statist , vol.25 , pp. 1371-1470
    • STONE, C.J.1    HANSEN, M.2    KOOPERBERG, C.3    TRUONG, Y.K.4
  • 28
    • 0036020892 scopus 로고    scopus 로고
    • A direct approach to false discovery rates
    • STOREY, J. D. (2002). A direct approach to false discovery rates. J. R. Statist. Soc. B 64, 479-98.
    • (2002) J. R. Statist. Soc. B , vol.64 , pp. 479-498
    • STOREY, J.D.1
  • 29
    • 1142273091 scopus 로고    scopus 로고
    • Strong control, conservative point estimation, and simultaneous conservative consistency of false discovery rates: A unified approach
    • STOREY, J. D., TAYLOR, J. E. & SIEGMUND, D. (2004). Strong control, conservative point estimation, and simultaneous conservative consistency of false discovery rates: A unified approach. J. R. Statist. Soc. B 66, 187-205.
    • (2004) J. R. Statist. Soc. B , vol.66 , pp. 187-205
    • STOREY, J.D.1    TAYLOR, J.E.2    SIEGMUND, D.3
  • 30
    • 0031384060 scopus 로고    scopus 로고
    • On the convergence of stochastic iterative algorithms and their applications to machine learning
    • San Diego, CA
    • TADIĆ, V. (1997). On the convergence of stochastic iterative algorithms and their applications to machine learning. In Proc. 36th Conf. Decis. Control, pp. 2281-6, San Diego, CA.
    • (1997) Proc. 36th Conf. Decis. Control , pp. 2281-2286
    • TADIĆ, V.1
  • 31
    • 0000243355 scopus 로고
    • Learning in artificial neural networks
    • WHITE, H. (1989). Learning in artificial neural networks. Neural Comp. 1, 425-64.
    • (1989) Neural Comp , vol.1 , pp. 425-464
    • WHITE, H.1
  • 32
    • 0026692226 scopus 로고
    • Stacked generalization
    • WOLPERT, D. H. (1992). Stacked generalization. Neural Networks 5, 241-59.
    • (1992) Neural Networks , vol.5 , pp. 241-259
    • WOLPERT, D.H.1
  • 33
    • 0024649443 scopus 로고
    • Almost sure convergence of stochastic approximation algorithms with nonadditive noise
    • YIN, G. & ZHU, Y. M. (1989). Almost sure convergence of stochastic approximation algorithms with nonadditive noise. Int. J. Contr. 49, 1361-76.
    • (1989) Int. J. Contr , vol.49 , pp. 1361-1376
    • YIN, G.1    ZHU, Y.M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.