메뉴 건너뛰기




Volumn 19, Issue 4, 2009, Pages 1641-1663

An information matrix prior for bayesian analysis in generalized linear models with high dimensional data

Author keywords

Fisher information; G prior; Importance sampling; Model identifiability; Prior elicitation

Indexed keywords


EID: 73249114674     PISSN: 10170405     EISSN: None     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (29)

References (30)
  • 1
    • 0030327054 scopus 로고    scopus 로고
    • A new perspective on priors for generalized linear models
    • Bedrick, E. J., Christensen, R. and Johnson, W. (1996). A new perspective on priors for generalized linear models. J. Amer. Statist. Assoc. 91, 1450-1460.
    • (1996) J. Amer. Statist. Assoc. , vol.91 , pp. 1450-1460
    • Bedrick, E.J.1    Christensen, R.2    Johnson, W.3
  • 2
    • 0000298252 scopus 로고    scopus 로고
    • The intrinsic Bayes factor for model selection and prediction
    • Berger, J. and Pericchi, L. (1996). The intrinsic Bayes factor for model selection and prediction. J. Amer. Statist. Assoc. 91, 109-122.
    • (1996) J. Amer. Statist. Assoc. , vol.91 , pp. 109-122
    • Berger, J.1    Pericchi, L.2
  • 4
    • 0033474268 scopus 로고    scopus 로고
    • Prior elicitation, variable selection and Bayesian computation for logistic regression models
    • Chen, M. H., Ibrahim, J. G. and Yiannoutsos, C. (1999). Prior elicitation, variable selection and Bayesian computation for logistic regression models. J. Roy. Statist. Soc. Ser. B 61, 223-242.
    • (1999) J. Roy. Statist. Soc. Ser. B , vol.61 , pp. 223-242
    • Chen, M.H.1    Ibrahim, J.G.2    Yiannoutsos, C.3
  • 5
    • 0001178202 scopus 로고
    • A language and program for complex Bayesian modelling
    • Gilks, W. R., Thomas, A. and Spiegelhalter, D. J. (1994). A language and program for complex Bayesian modelling. The Statistician 43, 169-178.
    • (1994) The Statistician , vol.43 , pp. 169-178
    • Gilks, W.R.1    Thomas, A.2    Spiegelhalter, D.J.3
  • 6
    • 0038312668 scopus 로고
    • Adaptive rejection Metropolis sampling
    • Gilks, W. R., Best, N. G. and Tan, K. K. C. (1995). Adaptive rejection Metropolis sampling. Appl. Statist. 44, 455-472.
    • (1995) Appl. Statist. , vol.44 , pp. 455-472
    • Gilks, W.R.1    Best, N.G.2    Tan, K.K.C.3
  • 8
    • 34250747348 scopus 로고    scopus 로고
    • Shotgun stochastic search for "large p" regression
    • Hans, C, Dobra, A. and West, M. (2007). Shotgun stochastic search for "large p" regression. J. Amer. Statist. Assoc. 102, 507-516.
    • (2007) J. Amer. Statist. Assoc. , vol.102 , pp. 507-516
    • Hans, C.1    Dobra, A.2    West, M.3
  • 9
    • 84942484786 scopus 로고
    • Ridge regression: Biased estimation for nonorthogonal problems
    • Hoerl, A. E. and Kennard, R. W. (1970). Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 12, 55-67.
    • (1970) Technometrics , vol.12 , pp. 55-67
    • Hoerl, A.E.1    Kennard, R.W.2
  • 11
    • 33749406106 scopus 로고    scopus 로고
    • Cell cycle-specified fluctuation of nucleosome occupancy at gene promoters
    • Hogan, G. J., Lee, C.-K. and Lieb, J. D. (2006). Cell cycle-specified fluctuation of nucleosome occupancy at gene promoters. PLoS Genet 2, el58.
    • (2006) PLoS Genet , vol.2
    • Hogan, G.J.1    Lee, C.-K.2    Lieb, J.D.3
  • 12
    • 0037706311 scopus 로고    scopus 로고
    • Ibrahim J
    • Ibrahim, J. and Chen, M.-H. (2003). Conjugate priors for generalized linear models. Statist. Sinica 13, 461-476.
    • (2003) Statist. Sinica , vol.13 , pp. 461-476
    • Chen, M.-H.1
  • 13
    • 79960450252 scopus 로고
    • On Bayesian analysis of generalized linear models using Jeffreys' prior
    • Ibrahim, J. G. and Laud, P. W. (1991). On Bayesian analysis of generalized linear models using Jeffreys' prior. J. Amer. Statist. Assoc. 86, 981-986.
    • (1991) J. Amer. Statist. Assoc. , vol.86 , pp. 981-986
    • Ibrahim, J.G.1    Laud, P.W.2
  • 14
    • 0034531934 scopus 로고    scopus 로고
    • Chromatin modification and disease
    • Johnson, C. A. (2000). Chromatin modification and disease. J Med Genet 37, 905-915.
    • (2000) J Med Genet , vol.37 , pp. 905-915
    • Johnson, C.A.1
  • 15
    • 0026206264 scopus 로고
    • Hidden Markov models for speech recognition
    • Juang, B.-H. and Rabiner, L. R. (1991). Hidden Markov models for speech recognition. Technometrics 33, 251-272.
    • (1991) Technometrics , vol.33 , pp. 251-272
    • Juang, B.-H.1    Rabiner, L.R.2
  • 16
    • 84972503977 scopus 로고
    • The geometry of asymptotic inference
    • Kass, R. E. (1989). The geometry of asymptotic inference. Statist. Sinica 4, 188-234.
    • (1989) Statist. Sinica , vol.4 , pp. 188-234
    • Kass, R.E.1
  • 17
    • 78751706426 scopus 로고
    • Data-translated likelihood and Jeffreys' rules
    • Kass, R. E. (1990). Data-translated likelihood and Jeffreys' rules. Biometrika 77, 107-114.
    • (1990) Biometrika , vol.77 , pp. 107-114
    • Kass, R.E.1
  • 18
    • 0033529565 scopus 로고    scopus 로고
    • Twenty-five years of the nucleosome, fundamental particle of the eukaryote chromosome
    • Romberg, R. D. and Lorch, Y. (1999). Twenty-five years of the nucleosome, fundamental particle of the eukaryote chromosome. Cell 98, 285-294.
    • (1999) Cell , vol.98 , pp. 285-294
    • Romberg, R.D.1    Lorch, Y.2
  • 19
    • 0034403006 scopus 로고    scopus 로고
    • Evolutionary Monte Carlo: Applications to Cp model sampling and change point problem
    • Liang, F. and Wong, W. H. (2000). Evolutionary Monte Carlo: applications to Cp model sampling and change point problem. Statist. Sinica 10, 317-342.
    • (2000) Statist. Sinica , vol.10 , pp. 317-342
    • Liang, F.1    Wong, W.H.2
  • 21
    • 0000130839 scopus 로고
    • Bayesian variable selection in linear regression
    • Mitchell, T. J. and Beauchamp, J. J. (1988). Bayesian variable selection in linear regression. J. Amer. Statist. Assoc. 83, 1023-1032.
    • (1988) J. Amer. Statist. Assoc. , vol.83 , pp. 1023-1032
    • Mitchell, T.J.1    Beauchamp, J.J.2
  • 22
    • 84863304598 scopus 로고    scopus 로고
    • R: A Language and Environment for Statistical Computing
    • R Development Core Team Vienna, Austria. ISBN 3-900051-07-0
    • R Development Core Team (2004). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0.
    • (2004) R Foundation for Statistical Computing
  • 24
    • 0000458172 scopus 로고
    • Bayes factors for linear and log-linear models with vague prior information
    • Spiegelhalter, D. J. and Smith, A. F. M. (1982). Bayes factors for linear and log-linear models with vague prior information. J. Roy. Statist. Soc. Ser. B 44, 377-387.
    • (1982) J. Roy. Statist. Soc. Ser. B , vol.44 , pp. 377-387
    • Spiegelhalter, D.J.1    Smith, A.F.M.2
  • 25
    • 1942489758 scopus 로고    scopus 로고
    • Nucleosomal locations of dominant DNA sequence motifs for histone-DNA interactions and nucleosome positioning
    • Thastrom, A., Bingham, L. M. and Widom, J. (2004). Nucleosomal locations of dominant DNA sequence motifs for histone-DNA interactions and nucleosome positioning. J Mol Biol 338, 695-709.
    • (2004) J Mol Biol , vol.338 , pp. 695-709
    • Thastrom, A.1    Bingham, L.M.2    Widom, J.3
  • 27
    • 34547509358 scopus 로고    scopus 로고
    • Adaptive Bayesian criteria in variable selection for generalized linear models
    • Wang, X. and George, E. I. (2007). Adaptive Bayesian criteria in variable selection for generalized linear models. Statist. Sinica 17, 667-690.
    • (2007) Statist. Sinica , vol.17 , pp. 667-690
    • Wang, X.1    George, E.I.2
  • 28
    • 0242295767 scopus 로고    scopus 로고
    • Bayesian factor regression models in the "large p, small n" paradigm
    • West, M. (2003). Bayesian factor regression models in the "large p, small n" paradigm. Bayesian Statistics 7, 723-732.
    • (2003) Bayesian Statistics , vol.7 , pp. 723-732
    • West, M.1
  • 29
    • 19544362938 scopus 로고    scopus 로고
    • Bayesian model averaging: Development of an improved multi-class, gene selection and classification tool for microarray data
    • Yeung, K., Bumgarner, R. and Raftery, A. (2005). Bayesian model averaging: Development of an improved multi-class, gene selection and classification tool for microarray data. Bioin- formatics 21, 2394-2402.
    • (2005) Bioin- Formatics , vol.21 , pp. 2394-2402
    • Yeung, K.1    Bumgarner, R.2    Raftery, A.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.