메뉴 건너뛰기




Volumn 5, Issue , 2009, Pages 73-80

Handling sparsity via the horseshoe

Author keywords

[No Author keywords available]

Indexed keywords

BAYESIAN FRAMEWORKS; EMPIRICAL EXPERIMENTS; LAPLACIANS; RELEVANCE VECTOR MACHINE; REPRESENTATION THEOREM; SCALE MIXTURES; SPARSE BAYESIAN LEARNING;

EID: 79958714651     PISSN: 15324435     EISSN: 15337928     Source Type: Journal    
DOI: None     Document Type: Conference Paper
Times cited : (498)

References (19)
  • 1
    • 0011564321 scopus 로고
    • A robust generalized bayes estimator and confidence region for a multivariate normal mean
    • J. Berger (1980). A Robust Generalized Bayes Estimator and Confidence Region for a Multivariate Normal Mean. The Annals of Statistics, 8 716-761.
    • (1980) The Annals of Statistics , vol.8 , pp. 716-761
    • Berger, J.1
  • 4
    • 69249182056 scopus 로고    scopus 로고
    • Objective bayesian model selection in gaussian graphical models
    • to appear
    • C. Carvalho and J. G. Scott (2009). Objective Bayesian Model Selection in Gaussian Graphical Models. Biometrika (to appear).
    • (2009) Biometrika
    • Carvalho, C.1    Scott, J.G.2
  • 5
    • 84867086419 scopus 로고    scopus 로고
    • Prior distributions for variance parameters in hierarchical models
    • A. Gelman (2006). Prior Distributions for Variance Parameters in Hierarchical Models. Bayesian Analysis, 1. 515-533.
    • (2006) Bayesian Analysis , vol.1 , pp. 515-533
    • Gelman, A.1
  • 8
    • 3543030265 scopus 로고    scopus 로고
    • Needles and straw in haystacks: Empirical-bayes estimates of possibly sparse sequences
    • I. Johnstone and B. Silverman (2004). Needles and Straw in Haystacks: Empirical-Bayes Estimates of Possibly Sparse Sequences. The Annals of Statistics, 32, 1594-1649.
    • (2004) The Annals of Statistics , vol.32 , pp. 1594-1649
    • Johnstone, I.1    Silverman, B.2
  • 9
    • 20144364427 scopus 로고    scopus 로고
    • Experiments in stochastic computation for high-dimensional graphical models
    • B. Jones, C. Carvalho, A. Dobra, C. Hans, C. Carter and M. West (2005). Experiments in Stochastic Computation for High-dimensional Graphical Models. Statistical Science, 20, 388-400.
    • (2005) Statistical Science , vol.20 , pp. 388-400
    • Jones, B.1    Carvalho, C.2    Dobra, A.3    Hans, C.4    Carter, C.5    West, M.6
  • 10
    • 33747163541 scopus 로고    scopus 로고
    • High dimensional graphs and variable selection with the Lasso
    • Meinshausen, N. and Buhlmann, P. (2006). High dimensional graphs and variable selection with the Lasso. Annals of Statistics 34, 1436-1462.
    • (2006) Annals of Statistics , vol.34 , pp. 1436-1462
    • Meinshausen, N.1    Buhlmann, P.2
  • 12
    • 0000219347 scopus 로고
    • Exact and appropriate posterior moments for a normal location parameter
    • L. Pericchi and A. Smith (1992). Exact and Appropriate Posterior Moments for a Normal Location Parameter. Journal of the Royal Statistical Society B 54, 793-804.
    • (1992) Journal of the Royal Statistical Society B , vol.54 , pp. 793-804
    • Pericchi, L.1    Smith, A.2
  • 13
    • 0041969623 scopus 로고
    • A representation of the posterior mean for a location model
    • N. Polson (1991). A Representation of the Posterior Mean for a Location Model. Biometrika, 78, 426-430.
    • (1991) Biometrika , vol.78 , pp. 426-430
    • Polson, N.1
  • 17
    • 0000300851 scopus 로고
    • Proper bayes minimax estimators of the multivariate normal mean
    • W. Strawderman (1971). Proper Bayes Minimax Estimators of the Multivariate Normal Mean. The Annals of Statistics, 42, 385-388.
    • (1971) The Annals of Statistics , vol.42 , pp. 385-388
    • Strawderman, W.1
  • 19
    • 0001224048 scopus 로고    scopus 로고
    • Sparse bayesian learning and the relevance vector machine
    • M. Tipping (2001). Sparse Bayesian Learning and the Relevance Vector Machine. Journal of Machine Learning Research, 1, 211-244.
    • (2001) Journal of Machine Learning Research , vol.1 , pp. 211-244
    • Tipping, M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.