메뉴 건너뛰기




Volumn 95, Issue 3, 2008, Pages 759-771

Extended Bayesian information criteria for model selection with large model spaces

Author keywords

Bayesian paradigm; Consistency; Genome wide association study; Tournament approach; Variable selection

Indexed keywords


EID: 50949108781     PISSN: 00063444     EISSN: 14643510     Source Type: Journal    
DOI: 10.1093/biomet/asn034     Document Type: Article
Times cited : (1405)

References (22)
  • 1
    • 0000501656 scopus 로고
    • Information theory and an extension of the maximum likelihood principle
    • Ed. B. N. Petrox and F. Caski, pp, Budapest: Akademiai Kiado
    • AKAIKE, H. (1973). Information theory and an extension of the maximum likelihood principle. In 2nd International Symposium on Information Theory, Ed. B. N. Petrox and F. Caski, pp. 267-81. Budapest: Akademiai Kiado.
    • (1973) 2nd International Symposium on Information Theory , pp. 267-281
    • AKAIKE, H.1
  • 2
    • 0001677717 scopus 로고
    • Controlling the false discovery rate - A practical and powerful approach to multiple testing
    • BENJAMINI, Y. & HOCHBERG, Y. (1995). Controlling the false discovery rate - A practical and powerful approach to multiple testing. J. R. Statist. Soc. B 57, 289-300.
    • (1995) J. R. Statist. Soc. B , vol.57 , pp. 289-300
    • BENJAMINI, Y.1    HOCHBERG, Y.2
  • 3
    • 0042107603 scopus 로고    scopus 로고
    • Objective Bayesian methods for model selection: Introduction and comparison
    • Model Selection, Ed. P. Lahiri, pp, Hayward, CA: Inst. Math. Statist
    • BERGER, J. O. & PERICCHI, L. R. (2001). Objective Bayesian methods for model selection: Introduction and comparison. In Model Selection, Lecture Notes Monograph Series Volume 38, Ed. P. Lahiri, pp. 135-207. Hayward, CA: Inst. Math. Statist.
    • (2001) Lecture Notes Monograph Series , vol.38 , pp. 135-207
    • BERGER, J.O.1    PERICCHI, L.R.2
  • 4
    • 3142698408 scopus 로고    scopus 로고
    • Modifying the Schwarz Bayesian information criterion to locate multiple interacting quantitative trait loci
    • BOGDAN, M., DOERGE, R. & GHOSH, J. K. (2004). Modifying the Schwarz Bayesian information criterion to locate multiple interacting quantitative trait loci. Genetics 167, 989-99.
    • (2004) Genetics , vol.167 , pp. 989-999
    • BOGDAN, M.1    DOERGE, R.2    GHOSH, J.K.3
  • 5
    • 0036433546 scopus 로고    scopus 로고
    • A model selection approach for the identification of quantitative trait loci in experimental crosses
    • BROMAN, K. W. & SPEED, T. P. (2002). A model selection approach for the identification of quantitative trait loci in experimental crosses. J. R. Statist. Soc. B 64, 641-56.
    • (2002) J. R. Statist. Soc. B , vol.64 , pp. 641-656
    • BROMAN, K.W.1    SPEED, T.P.2
  • 7
    • 34250263445 scopus 로고
    • Smoothing noisy data with spline functions: Estimating the correct degree of smoothing by the method of generalized cross-validation
    • CRAVEN, P. & WAHBA, G. (1979). Smoothing noisy data with spline functions: Estimating the correct degree of smoothing by the method of generalized cross-validation. Numer. Math. 31, 377-403.
    • (1979) Numer. Math , vol.31 , pp. 377-403
    • CRAVEN, P.1    WAHBA, G.2
  • 9
    • 1542784498 scopus 로고    scopus 로고
    • Variable selection via non-concave penalized likelihood and its oracle properties
    • FAN, J. & LI, R. (2001). Variable selection via non-concave penalized likelihood and its oracle properties. J. Am. Statist. Assoc. 96, 1348-60.
    • (2001) J. Am. Statist. Assoc , vol.96 , pp. 1348-1360
    • FAN, J.1    LI, R.2
  • 10
    • 0001462696 scopus 로고
    • L, cross-validation and generalized cross-validation: Discrete index set
    • L, cross-validation and generalized cross-validation: Discrete index set. Ann. Statist. 15, 958-75.
    • (1987) Ann. Statist , vol.15 , pp. 958-975
    • LI, K.-C.1
  • 11
    • 16844366786 scopus 로고    scopus 로고
    • Genome-wide strategies for detecting multiple loci that influence complex diseases
    • MARCHINI, J., DONNELLY, P. & CARDON, L. R. (2005). Genome-wide strategies for detecting multiple loci that influence complex diseases. Nature Genet. 37, 413-7.
    • (2005) Nature Genet , vol.37 , pp. 413-417
    • MARCHINI, J.1    DONNELLY, P.2    CARDON, L.R.3
  • 12
    • 33747163541 scopus 로고    scopus 로고
    • High-dimensional graphs and variable selection with the Lasso
    • MEINSHAUSEN, N. & BÜHLMANN, P. (2006). High-dimensional graphs and variable selection with the Lasso. Ann. Statist. 34, 1436-62.
    • (2006) Ann. Statist , vol.34 , pp. 1436-1462
    • MEINSHAUSEN, N.1    BÜHLMANN, P.2
  • 13
    • 0000070978 scopus 로고
    • A strongly consistent procedure for model selection in a regression problem
    • RAO, C. R. & WU, Y. H. (1989). A strongly consistent procedure for model selection in a regression problem. Biometrika 76, 369-74.
    • (1989) Biometrika , vol.76 , pp. 369-374
    • RAO, C.R.1    WU, Y.H.2
  • 14
    • 0000120766 scopus 로고
    • Estimating the dimension of a model
    • SCHWARZ, G. (1978). Estimating the dimension of a model. Ann. Statist. 6, 461-4.
    • (1978) Ann. Statist , vol.6 , pp. 461-464
    • SCHWARZ, G.1
  • 15
    • 0642336882 scopus 로고    scopus 로고
    • An asymptotic theory for linear model selection
    • SHAO, J. (1997). An asymptotic theory for linear model selection. Statist. Sinica 7, 221-64.
    • (1997) Statist. Sinica , vol.7 , pp. 221-264
    • SHAO, J.1
  • 16
    • 23344452415 scopus 로고    scopus 로고
    • Model selection in irregular problems: Application to mapping quantitative trait loci
    • SIEGMUND, D. (2004). Model selection in irregular problems: Application to mapping quantitative trait loci. Biometrika 91, 785-800.
    • (2004) Biometrika , vol.91 , pp. 785-800
    • SIEGMUND, D.1
  • 17
    • 0000629975 scopus 로고
    • Cross-validatory choice and assessment of statistical predictions (with Discussion)
    • STONE, M. (1974). Cross-validatory choice and assessment of statistical predictions (with Discussion). J. R. Statist. Soc. B 39, 111-47.
    • (1974) J. R. Statist. Soc. B , vol.39 , pp. 111-147
    • STONE, M.1
  • 18
    • 0001287271 scopus 로고    scopus 로고
    • Regression shrinkage and selection via the Lasso
    • TIBSHIRANI, R. (1996). Regression shrinkage and selection via the Lasso. J. R. Statist. Soc. B 58, 267-88.
    • (1996) J. R. Statist. Soc. B , vol.58 , pp. 267-288
    • TIBSHIRANI, R.1
  • 19
    • 0001972601 scopus 로고
    • The large sample distribution of the likelihood ratio for testing composite hypotheses
    • WILKS, S. S. (1938). The large sample distribution of the likelihood ratio for testing composite hypotheses. Ann. Statist. 9, 60-2.
    • (1938) Ann. Statist , vol.9 , pp. 60-62
    • WILKS, S.S.1
  • 20
    • 33847378251 scopus 로고
    • Estimating the number of change-points via Schwartz criterion
    • YAO, Y. C. (1988). Estimating the number of change-points via Schwartz criterion. Statist. Prob. Lett. 6, 181-9.
    • (1988) Statist. Prob. Lett , vol.6 , pp. 181-189
    • YAO, Y.C.1
  • 21
    • 50949096321 scopus 로고    scopus 로고
    • The sparsity and bias of the LASSO selection in high-dimensional linear regression
    • ZHANG, C. H. & HUANG, J. (2008). The sparsity and bias of the LASSO selection in high-dimensional linear regression. Ann. Statist. 36, 1567-94.
    • (2008) Ann. Statist , vol.36 , pp. 1567-1594
    • ZHANG, C.H.1    HUANG, J.2
  • 22
    • 33845263263 scopus 로고    scopus 로고
    • On model selection consistency of Lasso
    • ZHAO, P. & YU, B. (2006). On model selection consistency of Lasso. J. Mach. Learn. Res. 7, 2541-67.
    • (2006) J. Mach. Learn. Res , vol.7 , pp. 2541-2567
    • ZHAO, P.1    YU, B.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.