메뉴 건너뛰기




Volumn 107, Issue 500, 2012, Pages 1610-1624

Consistent high-dimensional Bayesian variable selection via penalized credible regions

Author keywords

Consistency; Credible region; LASSO; Stochastic search

Indexed keywords


EID: 84871951819     PISSN: 01621459     EISSN: 1537274X     Source Type: Journal    
DOI: 10.1080/01621459.2012.716344     Document Type: Article
Times cited : (77)

References (38)
  • 1
  • 2
    • 39849102639 scopus 로고    scopus 로고
    • Simultaneous regression shrinkage, variable selection and clustering of predictors with OSCAR
    • Bondell, H. D., and Reich, B. J. (2008), "Simultaneous Regression Shrinkage, Variable Selection and Clustering of Predictors With OSCAR," Biometrics, 64, 115-123.
    • (2008) Biometrics , vol.64 , pp. 115-123
    • Bondell, H.D.1    Reich, B.J.2
  • 3
    • 84874257732 scopus 로고
    • Better subset regression using the nonnegative garrote
    • Breiman, L. (1995), "Better Subset Regression Using the Nonnegative Garrote," Technometrics, 37, 373-384.
    • (1995) Technometrics , vol.37 , pp. 373-384
    • Breiman, L.1
  • 5
    • 34548275795 scopus 로고    scopus 로고
    • The dantzig selector: Statistical estimation when p is much larger than n
    • (with discussion)
    • Candes, E., and Tao, T. (2007), "The Dantzig Selector: Statistical Estimation When p is Much Larger Than n" (with discussion), The Annals of Statistics, 35, 2313-2351.
    • (2007) The Annals of Statistics , vol.35 , pp. 2313-2351
    • Candes, E.1    Tao, T.2
  • 10
    • 1542784498 scopus 로고    scopus 로고
    • Variable selection via nonconcave penalized likelihood and its oracle properties
    • Fan, J., and Li, R. (2001), "Variable Selection via Nonconcave Penalized Likelihood and Its Oracle Properties," Journal of the American Statistical Association, 96, 1348-1360.
    • (2001) Journal of the American Statistical Association , vol.96 , pp. 1348-1360
    • Fan, J.1    Li, R.2
  • 11
    • 53849086824 scopus 로고    scopus 로고
    • Sure independence screening for ultra-high dimensional feature space
    • (withdiscussion)
    • Fan, J., and Lv, J. (2008), "Sure Independence Screening for Ultra-High Dimensional Feature Space"(withdiscussion), Journal of the Royal Statistical Society, Series B, 70, 849-911.
    • (2008) Journal of the Royal Statistical Society, Series B , vol.70 , pp. 849-911
    • Fan, J.1    Lv, J.2
  • 12
    • 0001729472 scopus 로고    scopus 로고
    • Calibration and empirical bayes variable selection
    • George, E. I., and Foster, D. P. (2000), "Calibration and Empirical Bayes Variable Selection," Biometrika, 87, 731-747.
    • (2000) Biometrika , vol.87 , pp. 731-747
    • George, E.I.1    Foster, D.P.2
  • 14
    • 0031526204 scopus 로고    scopus 로고
    • Approaches for bayesian variable selection
    • George, E. I., and McCulloch, R. E. (1997), "Approaches for Bayesian Variable Selection," Statistica Sinica, 7, 339-373.
    • (1997) Statistica Sinica , vol.7 , pp. 339-373
    • George, E.I.1    McCulloch, R.E.2
  • 15
    • 49949115667 scopus 로고    scopus 로고
    • Asymptotic properties of bridge estimators in sparse high-dimensional regression models
    • Huang, J., Horowitz, J. L., and Ma, S. G. (2008), "Asymptotic Properties of Bridge Estimators in Sparse High-Dimensional Regression Models," The Annals of Statistics, 36, 587-613.
    • (2008) The Annals of Statistics , vol.36 , pp. 587-613
    • Huang, J.1    Horowitz, J.L.2    Ma, S.G.3
  • 16
    • 51049096710 scopus 로고    scopus 로고
    • Adaptive lasso for sparse high-dimensional regression models
    • Huang, J., Ma, S. G., and Zhang, C. -H. (2008), "Adaptive Lasso for Sparse High-Dimensional Regression Models," Statistica Sinica, 18, 1603-1618.
    • (2008) Statistica Sinica , vol.18 , pp. 1603-1618
    • Huang, J.1    Ma, S.G.2    Zhang C., -H.3
  • 18
    • 70249103304 scopus 로고    scopus 로고
    • PCA consistency in high dimension, low sample size context
    • Jung, S., and Marron, J. S. (2009), "PCA Consistency in High Dimension, Low Sample Size Context," The Annals of Statistics, 37, 4104-4130.
    • (2009) The Annals of Statistics , vol.37 , pp. 4104-4130
    • Jung, S.1    Marron, J.S.2
  • 19
    • 34548381836 scopus 로고    scopus 로고
    • Fixed and random effects selection in linear and logistic models
    • Kinney, S., and Dunson, D. B. (2007), "Fixed and Random Effects Selection in Linear and Logistic Models," Biometrics, 63, 690-698.
    • (2007) Biometrics , vol.63 , pp. 690-698
    • Kinney, S.1    Dunson, D.B.2
  • 22
    • 69949175557 scopus 로고    scopus 로고
    • A unified approach to model selection and sparse recovery using regularized least squares
    • Lv, J., and Fan, Y. (2009), "A Unified Approach to Model Selection and Sparse Recovery Using Regularized Least Squares," The Annals of Statistics, 37, 3498-3528.
    • (2009) The Annals of Statistics , vol.37 , pp. 3498-3528
    • Lv, J.1    Fan, Y.2
  • 23
    • 33747163541 scopus 로고    scopus 로고
    • High dimensional graphs and variable selection with the lasso
    • Meinshausen, N., and Buhlmann, P. (2006), "High Dimensional Graphs and Variable Selection With the Lasso,"The Annals of Statistics, 34, 1436-1462.
    • (2006) The Annals of Statistics , vol.34 , pp. 1436-1462
    • Meinshausen, N.1    Buhlmann, P.2
  • 24
    • 77950939394 scopus 로고    scopus 로고
    • Consistency of objective bayes factors as the model dimension grows
    • Moreno, E., Girón, F. J., and Casella, G. (2010), "Consistency of Objective Bayes Factors as the Model Dimension Grows," The Annals of Statistics, 38, 1937-1952.
    • (2010) The Annals of Statistics , vol.38 , pp. 1937-1952
    • Moreno, E.1    Girón, F.J.2    Casella, G.3
  • 25
    • 69249230467 scopus 로고    scopus 로고
    • A review of bayesian variable selection methods: What, how and which
    • O'Hara, R. B., and Sillanpää, M. J. (2009), "A Review of Bayesian Variable Selection Methods: What, How and Which," Bayesian Analysis, 4, 85-118.
    • (2009) Bayesian Analysis , vol.4 , pp. 85-118
    • O'Hara, R.B.1    Sillanpää, M.J.2
  • 26
    • 77953071298 scopus 로고    scopus 로고
    • Bayes and empirical-bayes multiplicity adjustment in the variable-selection problem
    • Scott, J. G., and Berger, J. O. (2010), "Bayes and Empirical-Bayes Multiplicity Adjustment in the Variable-Selection Problem," The Annals of Statistics, 38, 2587-2619.
    • (2010) The Annals of Statistics , vol.38 , pp. 2587-2619
    • Scott, J.G.1    Berger, J.O.2
  • 30
    • 74049114100 scopus 로고    scopus 로고
    • Forward regression for ultra-high dimensional variable screening
    • Wang, H. (2009), "Forward Regression for Ultra-High Dimensional Variable Screening," Journal of the American Statistical Association, 104, 1512-1524.
    • (2009) Journal of the American Statistical Association , vol.104 , pp. 1512-1524
    • Wang, H.1
  • 31
    • 70249102782 scopus 로고    scopus 로고
    • PCA consistency for non-gaussian data in high dimension, low sample size context
    • Yata, K., and Aoshima, M. (2009), "PCA Consistency for Non-Gaussian Data in High Dimension, Low Sample Size Context," Communications in Statistics-Theory and Methods, 38, 2634-2652.
    • (2009) Communications in Statistics-Theory and Methods , vol.38 , pp. 2634-2652
    • Yata, K.1    Aoshima, M.2
  • 32
    • 33645035051 scopus 로고    scopus 로고
    • Model selection and estimation in regression with grouped variables
    • Yuan, M., and Lin, Y. (2006), "Model Selection and Estimation in Regression With Grouped Variables," Journal of the Royal Statistical Society, Series B, 68, 49-67.
    • (2006) Journal of the Royal Statistical Society, Series B , vol.68 , pp. 49-67
    • Yuan, M.1    Lin, Y.2
  • 33
    • 0002817906 scopus 로고
    • On assessing prior distributions and bayesian regression analysis with g-prior distributions
    • eds. P. K. Goel and A. Zellner, Amsterdam: North-Holland
    • Zellner, A. (1986), "On Assessing Prior Distributions and Bayesian Regression Analysis With g-Prior Distributions," in Bayesian Inference and Decision Techniques: Essays in Honour of Bruno de Finetti, eds. P. K. Goel and A. Zellner, Amsterdam: North-Holland, pp. 233-243.
    • (1986) Bayesian Inference and Decision Techniques: Essays in Honour of Bruno De Finetti , pp. 233-243
    • Zellner, A.1
  • 34
    • 71249139955 scopus 로고    scopus 로고
    • Penalized orthogonal-components regression for large p small n data
    • Zhang, D., Lin, Y., and Zhang, M. (2009), "Penalized Orthogonal-Components Regression for Large p Small n Data," Electronic Journal of Statistics, 3, 781-796.
    • (2009) Electronic Journal of Statistics , vol.3 , pp. 781-796
    • Zhang, D.1    Lin, Y.2    Zhang, M.3
  • 35
    • 33845263263 scopus 로고    scopus 로고
    • On model selection consistency of lasso
    • Zhao, P., and Yu, B. (2006), "On Model Selection Consistency of Lasso," Journal of Machine Learning Research, 7, 2541-2563.
    • (2006) Journal of Machine Learning Research , vol.7 , pp. 2541-2563
    • Zhao, P.1    Yu, B.2
  • 36
  • 38
    • 51049104549 scopus 로고    scopus 로고
    • One-step sparse estimates in nonconcave penalized likelihood models
    • (with discussion)
    • Zou, H., and Li, R. (2008), "One-Step Sparse Estimates in Nonconcave Penalized Likelihood Models" (with discussion), The Annals of Statistics, 36, 1509-1566.
    • (2008) The Annals of Statistics , vol.36 , pp. 1509-1566
    • Zou, H.1    Li, R.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.