메뉴 건너뛰기




Volumn 79, Issue 5, 2009, Pages 581-587

On the use of stochastic approximation Monte Carlo for Monte Carlo integration

Author keywords

[No Author keywords available]

Indexed keywords


EID: 59349103112     PISSN: 01677152     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.spl.2008.10.007     Document Type: Article
Times cited : (35)

References (24)
  • 1
    • 33244461073 scopus 로고    scopus 로고
    • Stability of stochastic approximation under verifiable conditions
    • Andrieu C., Moulines E., and Priouret P. Stability of stochastic approximation under verifiable conditions. SIAM J. Control Optim. 44 (2005) 283-312
    • (2005) SIAM J. Control Optim. , vol.44 , pp. 283-312
    • Andrieu, C.1    Moulines, E.2    Priouret, P.3
  • 2
    • 59349118809 scopus 로고    scopus 로고
    • Atchadé, Y.F., Liu, J.S., 2007. The Wang-Landau algorithm in general state spaces: applications and convergence analysis. Technical Report, Department of Statistics, University of Michigan
    • Atchadé, Y.F., Liu, J.S., 2007. The Wang-Landau algorithm in general state spaces: applications and convergence analysis. Technical Report, Department of Statistics, University of Michigan
  • 3
    • 0000106469 scopus 로고
    • Multicanonical algorithms for 1st order phase-transitions
    • Berg B.A., and Neuhaus T. Multicanonical algorithms for 1st order phase-transitions. Phys. Lett. B 267 (1991) 249-253
    • (1991) Phys. Lett. B , vol.267 , pp. 249-253
    • Berg, B.A.1    Neuhaus, T.2
  • 5
    • 37349095257 scopus 로고    scopus 로고
    • Phylogenetic tree reconstruction using stochastic approximation Monte Carlo
    • Cheon S., and Liang F. Phylogenetic tree reconstruction using stochastic approximation Monte Carlo. BioSystems 91 (2008) 94-107
    • (2008) BioSystems , vol.91 , pp. 94-107
    • Cheon, S.1    Liang, F.2
  • 6
    • 0021518209 scopus 로고
    • Stochastic relaxation, Gibbs distributions and the Bayesian restoration of images
    • Geman S., and Geman D. Stochastic relaxation, Gibbs distributions and the Bayesian restoration of images. IEEE Trans. Pattern Anal. Mach. Intell. 6 (1984) 721-741
    • (1984) IEEE Trans. Pattern Anal. Mach. Intell. , vol.6 , pp. 721-741
    • Geman, S.1    Geman, D.2
  • 7
    • 0001667705 scopus 로고
    • Bayesian inference in econometric models using Monte Carlo integration
    • Geweke J. Bayesian inference in econometric models using Monte Carlo integration. Econometrica 57 (1989) 1317-1339
    • (1989) Econometrica , vol.57 , pp. 1317-1339
    • Geweke, J.1
  • 9
    • 0038563932 scopus 로고    scopus 로고
    • An adaptive Metropolis algorithm
    • Harrio H., Saksman E., and Tamminen J. An adaptive Metropolis algorithm. Bernoulli 7 (2001) 223-242
    • (2001) Bernoulli , vol.7 , pp. 223-242
    • Harrio, H.1    Saksman, E.2    Tamminen, J.3
  • 10
    • 77956890234 scopus 로고
    • Monte Carlo sampling methods using Markov chains and their applications
    • Hastings W.K. Monte Carlo sampling methods using Markov chains and their applications. Biometrika 57 (1970) 97-109
    • (1970) Biometrika , vol.57 , pp. 97-109
    • Hastings, W.K.1
  • 11
    • 33748779178 scopus 로고    scopus 로고
    • Equi-energy sampler with applications to statistical inference and statistical mechanics (with discussion)
    • Kou S.C., Zhou Q., and Wong W.H. Equi-energy sampler with applications to statistical inference and statistical mechanics (with discussion). Ann. Statist. 34 (2006) 1581-1619
    • (2006) Ann. Statist. , vol.34 , pp. 1581-1619
    • Kou, S.C.1    Zhou, Q.2    Wong, W.H.3
  • 12
    • 34548179892 scopus 로고    scopus 로고
    • Annealing stochastic approximation Monte Carlo for neural network training
    • Liang F. Annealing stochastic approximation Monte Carlo for neural network training. Mach. Learning 68 (2007) 201-233
    • (2007) Mach. Learning , vol.68 , pp. 201-233
    • Liang, F.1
  • 13
    • 33947215681 scopus 로고    scopus 로고
    • Stochastic approximation in Monte Carlo computation
    • Liang F., Liu C., and Carroll R.J. Stochastic approximation in Monte Carlo computation. J. Amer. Statist. Assoc. 102 (2007) 305-320
    • (2007) J. Amer. Statist. Assoc. , vol.102 , pp. 305-320
    • Liang, F.1    Liu, C.2    Carroll, R.J.3
  • 14
    • 1542573405 scopus 로고    scopus 로고
    • Real parameter evolutionary Monte Carlo with applications in Bayesian mixture models
    • Liang F., and Wong W.H. Real parameter evolutionary Monte Carlo with applications in Bayesian mixture models. J. Amer. Statist. Assoc. 96 (2001) 653-666
    • (2001) J. Amer. Statist. Assoc. , vol.96 , pp. 653-666
    • Liang, F.1    Wong, W.H.2
  • 15
    • 0029690375 scopus 로고    scopus 로고
    • An extension of Shannon-McMillan theorem and some limit properties for nonhomogeneous Markov chains
    • Liu W., and Yang W. An extension of Shannon-McMillan theorem and some limit properties for nonhomogeneous Markov chains. Stochastic Process. Appl. 61 (1996) 129-145
    • (1996) Stochastic Process. Appl. , vol.61 , pp. 129-145
    • Liu, W.1    Yang, W.2
  • 16
    • 33644899039 scopus 로고
    • Simulated tempering: A new Monte Carlo scheme
    • Marinari E., and Parisi G. Simulated tempering: A new Monte Carlo scheme. Europhys. Lett. 19 (1992) 451-458
    • (1992) Europhys. Lett. , vol.19 , pp. 451-458
    • Marinari, E.1    Parisi, G.2
  • 19
    • 0000016172 scopus 로고
    • A stochastic approximation method
    • Robbins H., and Monro S. A stochastic approximation method. Ann. Math. Statist. 22 (1951) 400-407
    • (1951) Ann. Math. Statist. , vol.22 , pp. 400-407
    • Robbins, H.1    Monro, S.2
  • 20
    • 84890736685 scopus 로고    scopus 로고
    • General state-space Markov chains and MCMC algorithms
    • Roberts G.O., and Rosenthal J.S. General state-space Markov chains and MCMC algorithms. Prob. Surv. 1 (2004) 20-71
    • (2004) Prob. Surv. , vol.1 , pp. 20-71
    • Roberts, G.O.1    Rosenthal, J.S.2
  • 21
    • 33746388444 scopus 로고    scopus 로고
    • Geometric convergence and central limit theorems for multidimensional Hastings and Metropolis Algorithms
    • Roberts G.O., and Tweedie R.L. Geometric convergence and central limit theorems for multidimensional Hastings and Metropolis Algorithms. Biometrika 83 (1996) 95-110
    • (1996) Biometrika , vol.83 , pp. 95-110
    • Roberts, G.O.1    Tweedie, R.L.2
  • 22
    • 84923618271 scopus 로고
    • Minorization conditions and convergence rate for Markov chain Monte Carlo
    • Rosenthal J.S. Minorization conditions and convergence rate for Markov chain Monte Carlo. J. Amer. Statist. Assoc. 90 (1995) 558-566
    • (1995) J. Amer. Statist. Assoc. , vol.90 , pp. 558-566
    • Rosenthal, J.S.1
  • 23
    • 6644221271 scopus 로고    scopus 로고
    • Efficient, multiple-range random walk algorithm to calculate the density of states
    • Wang F., and Landau D.P. Efficient, multiple-range random walk algorithm to calculate the density of states. Phys. Rev. Lett. 86 (2001) 2050-2053
    • (2001) Phys. Rev. Lett. , vol.86 , pp. 2050-2053
    • Wang, F.1    Landau, D.P.2
  • 24
    • 0031447220 scopus 로고    scopus 로고
    • Dynamic weighting in Monte Carlo and optimization
    • Wong W.H., and Liang F. Dynamic weighting in Monte Carlo and optimization. Proc. Natl. Acad. Sci. USA 94 (1997) 14220-14224
    • (1997) Proc. Natl. Acad. Sci. USA , vol.94 , pp. 14220-14224
    • Wong, W.H.1    Liang, F.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.