메뉴 건너뛰기




Volumn 7, Issue , 2015, Pages 167-183

Structure of, and functional insight into the GLUT family of membrane transporters

Author keywords

Cancer imaging; Facilitated hexose transporters; Genetic diseases; GLUT proteins; Protein trafficking

Indexed keywords

FRUCTOSE; GALACTOSE; GLUCOSE; GLUCOSE TRANSPORTER; GLUCOSE TRANSPORTER 1; GLUCOSE TRANSPORTER 2; GLUCOSE TRANSPORTER 3; GLUCOSE TRANSPORTER 4; GLUCOSE TRANSPORTER 5; ISOPROTEIN; PROTEIN GLUT10; PROTEIN GLUT11; PROTEIN GLUT12; PROTEIN GLUT13; PROTEIN GLUT6; PROTEIN GLUT7; PROTEIN GLUT8; PROTEIN GLUT9; UNCLASSIFIED DRUG;

EID: 84943596297     PISSN: None     EISSN: 11791330     Source Type: Journal    
DOI: 10.2147/CHC.S60484     Document Type: Review
Times cited : (37)

References (212)
  • 1
    • 84920986037 scopus 로고    scopus 로고
    • Prenatal physical activity and diet composition affect the expression of nutrient transporters and mTOR signaling molecules in the human placenta
    • Brett KE, Ferraro ZM, Holcik M, Adamo KB. Prenatal physical activity and diet composition affect the expression of nutrient transporters and mTOR signaling molecules in the human placenta. Placenta. 2015;36:204-212.
    • (2015) Placenta , vol.36 , pp. 204-212
    • Brett, K.E.1    Ferraro, Z.M.2    Holcik, M.3    Adamo, K.B.4
  • 6
    • 84862163151 scopus 로고    scopus 로고
    • The role of monosaccharide transport proteins in carbohydrate assimilation, distribution, metabolism and homeostasis
    • Cura AJ, Carruthers AJ. The role of monosaccharide transport proteins in carbohydrate assimilation, distribution, metabolism and homeostasis. Compr Physiol. 2013;2:863-914.
    • (2013) Compr Physiol , vol.2 , pp. 863-914
    • Cura, A.J.1    Carruthers, A.J.2
  • 9
    • 0017688926 scopus 로고
    • Reconstitution and purification of the D-glucose transporter from human erythrocytes
    • Kasahara M, Hinkle PC. Reconstitution and purification of the D-glucose transporter from human erythrocytes. J Biol Chem. 1977;252: 7384-7390.
    • (1977) J Biol Chem , vol.252 , pp. 7384-7390
    • Kasahara, M.1    Hinkle, P.C.2
  • 10
    • 0018123926 scopus 로고
    • Characterization of the glucose transporter from human erythrocytes
    • Sogin DC, Hinkle PC. Characterization of the glucose transporter from human erythrocytes. J Supramol Struct. 1978;8:447-453.
    • (1978) J Supramol Struct , vol.8 , pp. 447-453
    • Sogin, D.C.1    Hinkle, P.C.2
  • 11
    • 0022360064 scopus 로고
    • Sequence and structure of a human glucose transporter
    • Mueckler M, Caruso C, Baldwin SA, et al. Sequence and structure of a human glucose transporter. Science. 1985;229:941-945.
    • (1985) Science , vol.229 , pp. 941-945
    • Mueckler, M.1    Caruso, C.2    Baldwin, S.A.3
  • 12
    • 0023692118 scopus 로고
    • Cloning and functional expression in bacteria of a novel glucose transporter present in liver, intestine, kidney, and beta-pancreatic islet cells
    • Thorens B, Sarkar HK, Kaback HR, Lodish HF. Cloning and functional expression in bacteria of a novel glucose transporter present in liver, intestine, kidney, and beta-pancreatic islet cells. Cell. 1988;55: 281-290.
    • (1988) Cell , vol.55 , pp. 281-290
    • Thorens, B.1    Sarkar, H.K.2    Kaback, H.R.3    Lodish, H.F.4
  • 13
    • 0024399649 scopus 로고
    • Cloning and characterization of the major insulin-responsive glucose transporter expressed in human skeletal muscle and other insulin-responsive tissues
    • Fukumoto H, Kayano T, Buse JB, et al. Cloning and characterization of the major insulin-responsive glucose transporter expressed in human skeletal muscle and other insulin-responsive tissues. J Biol Chem. 1989;264:7776-7779.
    • (1989) J Biol Chem , vol.264 , pp. 7776-7779
    • Fukumoto, H.1    Kayano, T.2    Buse, J.B.3
  • 14
    • 0027261540 scopus 로고
    • GLUT2 is the transporter for fructose across the rat intestinal basolateral membrane
    • Cheeseman CI. GLUT2 is the transporter for fructose across the rat intestinal basolateral membrane. Gastroenterology. 1993;105: 1050-1056.
    • (1993) Gastroenterology , vol.105 , pp. 1050-1056
    • Cheeseman, C.I.1
  • 15
    • 0027536484 scopus 로고
    • Kinetic analysis of the liver-type (GLUT2) and brain-type (GLUT3) glucose transporters in Xenopus oocytes: Substrate specificities and effects of transport inhibitors
    • Colville CA, Seatter MJ, Jess TJ, Gould GW, Thomas HM. Kinetic analysis of the liver-type (GLUT2) and brain-type (GLUT3) glucose transporters in Xenopus oocytes: substrate specificities and effects of transport inhibitors. Biochem J. 1993;290 Pt 3:701-706.
    • (1993) Biochem J , vol.290 , pp. 701-706
    • Colville, C.A.1    Seatter, M.J.2    Jess, T.J.3    Gould, G.W.4    Thomas, H.M.5
  • 16
    • 0018672517 scopus 로고
    • Kinetics of 3-O-methyl-D-glucose transport in isolated rat hepatocytes
    • Craik JD, Elliott KR. Kinetics of 3-O-methyl-D-glucose transport in isolated rat hepatocytes. Biochem J. 1979;182:503-508.
    • (1979) Biochem J , vol.182 , pp. 503-508
    • Craik, J.D.1    Elliott, K.R.2
  • 17
    • 0023812475 scopus 로고
    • Evidence for a family of human glucose transporter-like proteins
    • Kayanos T, Fukumotoo H, Eddyl RL, et al. Evidence for a family of human glucose transporter-like proteins. Biol Chem. 1988;263: 15245-15248.
    • (1988) Biol Chem , vol.263 , pp. 15245-15248
    • Kayanos, T.1    Fukumotoo, H.2    Eddyl, R.L.3
  • 18
    • 0025976908 scopus 로고
    • Tissue distribution and species difference of the brain type glucose transporter (GLUT3
    • Yano H, Seino Y, Inagaki N, et al. Tissue distribution and species difference of the brain type glucose transporter (GLUT3). Biochem Biophys Res Commun. 1991;174:470-477.
    • (1991) Biochem Biophys Res Commun , vol.174 , pp. 470-477
    • Yano, H.1    Seino, Y.2    Inagaki, N.3
  • 20
    • 0036939298 scopus 로고    scopus 로고
    • GLUT14, a duplicon of GLUT3, is specially expressed in testis as alternative splice forms
    • Wu, X, Freeze HH. GLUT14, a duplicon of GLUT3, is specially expressed in testis as alternative splice forms. Genomics. 2002;80:553-557.
    • (2002) Genomics , vol.80 , pp. 553-557
    • Wu, X.1    Freeze, H.H.2
  • 21
    • 0025307293 scopus 로고
    • Hexose transport stimulation and membrane redistribution of glucose transporter isoforms in response to cholera toxin, dibutyryl cyclic AMP, and insulin in 3T3-L1 adipocytes
    • Clancy BM, Czech MP. Hexose transport stimulation and membrane redistribution of glucose transporter isoforms in response to cholera toxin, dibutyryl cyclic AMP, and insulin in 3T3-L1 adipocytes. J Biol Chem. 1990;265:12434-12443.
    • (1990) J Biol Chem , vol.265 , pp. 12434-12443
    • Clancy, B.M.1    Czech, M.P.2
  • 22
    • 0025329803 scopus 로고
    • Human facilitative glucose transporters. Isolation, functional characterization, and gene localization of cDNAs encoding an isoform (GLUT5) expressed in small intestine, kidney, muscle, and adipose tissue and an unusual glucose transporter pseudogene-like
    • Kayano T, Burant CF, Fukumoto H, et al. Human facilitative glucose transporters. Isolation, functional characterization, and gene localization of cDNAs encoding an isoform (GLUT5) expressed in small intestine, kidney, muscle, and adipose tissue and an unusual glucose transporter pseudogene-like. J Biol Chem. 1990;265:13276-13282.
    • (1990) J Biol Chem , vol.265 , pp. 13276-13282
    • Kayano, T.1    Burant, C.F.2    Fukumoto, H.3
  • 23
    • 0029946347 scopus 로고    scopus 로고
    • The regulation of GLUT5 and GLUT2 activity in the adaptation of intestinal brush-border fructose transport in diabetes
    • Corpe CP, Basaleh MM, Affleck J, Gould G, Jess TJ, Kellett GL. The regulation of GLUT5 and GLUT2 activity in the adaptation of intestinal brush-border fructose transport in diabetes. Pflugers Arch. 1996;432:192-201.
    • (1996) Pflugers Arch , vol.432 , pp. 192-201
    • Corpe, C.P.1    Basaleh, M.M.2    Affleck, J.3    Gould, G.4    Jess, T.J.5    Kellett, G.L.6
  • 24
    • 0026782099 scopus 로고
    • Cloning and expression of a hepatic microsomal glucose transport protein. Comparison with liver plasma-membrane glucose-transport protein GLUT 2
    • Waddell ID, Zomerschoe AG, Voice MW, Burchell A. Cloning and expression of a hepatic microsomal glucose transport protein. Comparison with liver plasma-membrane glucose-transport protein GLUT 2. Biochem J. 1992;286 Pt 1:173-177.
    • (1992) Biochem J , vol.286 , pp. 173-177
    • Waddell, I.D.1    Zomerschoe, A.G.2    Voice, M.W.3    Burchell, A.4
  • 25
    • 0032079451 scopus 로고    scopus 로고
    • A re-evaluation of GLUT 7
    • Burchell A. A re-evaluation of GLUT 7. Biochem J. 1998;331 Pt 3:973.
    • (1998) Biochem J , vol.331 , pp. 973
    • Burchell, A.1
  • 26
    • 3042690012 scopus 로고    scopus 로고
    • Cloning and functional characterization of the human GLUT7 isoform SLC2A7 from the small intestine
    • Li Q, Manolescu A, Ritzel M, et al. Cloning and functional characterization of the human GLUT7 isoform SLC2A7 from the small intestine. Am J Physiol Gastrointest Liver Physiol. 2004;287:G236-G242.
    • (2004) Am J Physiol Gastrointest Liver Physiol , vol.287 , pp. G236-G242
    • Li, Q.1    Manolescu, A.2    Ritzel, M.3
  • 27
    • 0034210208 scopus 로고    scopus 로고
    • Cloning and expression analysis of a novel member of the facilitative glucose transporter family
    • Phay JE, Hussain HB, Moley JF. Cloning and expression analysis of a novel member of the facilitative glucose transporter family, SLC2A9 (GLUT9). Genomics. 2000;9:217-220.
    • (2000) SLC2A9 (GLUT9). Genomics , vol.9 , pp. 217-220
    • Phay, J.E.1    Hussain, H.B.2    Moley, J.F.3
  • 28
    • 84896963895 scopus 로고    scopus 로고
    • Expression of SLC2A9 isoforms in the kidney and their localization in polarized epithelial cells
    • Kimura T, Takahashi M, Yan K, Sakurai H. Expression of SLC2A9 isoforms in the kidney and their localization in polarized epithelial cells. PLoS One. 2014;9:e84996.
    • (2014) Plos One , vol.9
    • Kimura, T.1    Takahashi, M.2    Yan, K.3    Sakurai, H.4
  • 29
    • 55949096514 scopus 로고    scopus 로고
    • SLC2A9 is a high-capacity urate transporter in humans
    • Caulfield MJ, Munroe PB, O’Neill D, et al. SLC2A9 is a high-capacity urate transporter in humans. PLoS Med. 2008;5:1509-1523.
    • (2008) Plos Med , vol.5 , pp. 1509-1523
    • Caulfield, M.J.1    Munroe, P.B.2    O’Neill, D.3
  • 30
    • 0034664974 scopus 로고    scopus 로고
    • Activity and genomic organization of human glucose transporter 9 (GLUT9), a novel member of the family of sugar-transport facilitators predominantly expressed in brain and leucocytes
    • Doege H, Bocianski A, Joost HG, Schürmann A. Activity and genomic organization of human glucose transporter 9 (GLUT9), a novel member of the family of sugar-transport facilitators predominantly expressed in brain and leucocytes. Biochem J. 2000;350 Pt 3:771-776.
    • (2000) Biochem J , vol.350 , pp. 771-776
    • Doege, H.1    Bocianski, A.2    Joost, H.G.3    Schürmann, A.4
  • 32
    • 41349103917 scopus 로고    scopus 로고
    • SLC2A9 is a newly identified urate transporter influencing serum urate concentration, urate excretion and gout
    • Vitart V, Rudan I, Hayward C, et al. SLC2A9 is a newly identified urate transporter influencing serum urate concentration, urate excretion and gout. Nat Genet. 2008;40:437-442.
    • (2008) Nat Genet , vol.40 , pp. 437-442
    • Vitart, V.1    Rudan, I.2    Hayward, C.3
  • 33
    • 0035887217 scopus 로고    scopus 로고
    • Characterization of human glucose transporter (GLUT) 11 (encoded by SLC2A11), a novel sugar-transport facilitator specifically expressed in heart and skeletal muscle
    • Doege H, Bocianski A, Scheepers A, et al. Characterization of human glucose transporter (GLUT) 11 (encoded by SLC2A11), a novel sugar-transport facilitator specifically expressed in heart and skeletal muscle. Biochem J. 2001;359:443-449.
    • (2001) Biochem J , vol.359 , pp. 443-449
    • Doege, H.1    Bocianski, A.2    Scheepers, A.3
  • 34
    • 0040435487 scopus 로고    scopus 로고
    • GLUT8, a novel member of the sugar transport facilitator family with glucose transport activity
    • Doege H, Schürmann A, Bahrenberg G, Brauers A, Joost HG. GLUT8, a novel member of the sugar transport facilitator family with glucose transport activity. J Biol Chem. 2000;275:16275-16280.
    • (2000) J Biol Chem , vol.275 , pp. 16275-16280
    • Doege, H.1    Schürmann, A.2    Bahrenberg, G.3    Brauers, A.4    Joost, H.G.5
  • 35
    • 0034681328 scopus 로고    scopus 로고
    • GLUTX1, a novel mammalian glucose transporter expressed in the central nervous system and insulin-sensitive tissues
    • Ibberson M, Uldry M, Thorens B. GLUTX1, a novel mammalian glucose transporter expressed in the central nervous system and insulin-sensitive tissues. J Biol Chem. 2000;275:4607-4612.
    • (2000) J Biol Chem , vol.275 , pp. 4607-4612
    • Ibberson, M.1    Uldry, M.2    Thorens, B.3
  • 36
    • 0035864965 scopus 로고    scopus 로고
    • Molecular cloning of a novel member of the GLUT family of transporters, SLC2a10 (GLUT10), localized on chromosome 20q13.1: A candidate gene for NIDDM susceptibility
    • McVie-Wylie AJ, Lamson DR, Chen YT. Molecular cloning of a novel member of the GLUT family of transporters, SLC2a10 (GLUT10), localized on chromosome 20q13.1: a candidate gene for NIDDM susceptibility. Genomics. 2001;72:113-117.
    • (2001) Genomics , vol.72 , pp. 113-117
    • McVie-Wylie, A.J.1    Lamson, D.R.2    Chen, Y.T.3
  • 37
    • 0034797683 scopus 로고    scopus 로고
    • Sequence and functional analysis of GLUT10: A glucose transporter in the type 2 diabetes-linked region of chromosome 20q12-13.1
    • Dawson PA, Mychaleckyj JC, Fossey SC, Mihic SJ, Craddock AL, Bowden DW. Sequence and functional analysis of GLUT10: a glucose transporter in the type 2 diabetes-linked region of chromosome 20q12-13.1. Mol Genet Metab. 2001;74:186-199.
    • (2001) Mol Genet Metab , vol.74 , pp. 186-199
    • Dawson, P.A.1    Mychaleckyj, J.C.2    Fossey, S.C.3    Mihic, S.J.4    Craddock, A.L.5    Bowden, D.W.6
  • 38
    • 0036081596 scopus 로고    scopus 로고
    • Identification of a novel glucose transporter-like protein GLUT-12
    • Rogers S, Macheda M, Docherty S, et al. Identification of a novel glucose transporter-like protein GLUT-12. Appl Phys Endocrinol Metab. 2002;283:E733-E738.
    • (2002) Appl Phys Endocrinol Metab , vol.283 , pp. E733-E738
    • Rogers, S.1    Macheda, M.2    Docherty, S.3
  • 39
    • 40849098654 scopus 로고    scopus 로고
    • Mitogen-stimulated and rapamycin-sensitive glucose transporter 12 targeting and functional glucose transport in renal epithelial cells
    • Wilson-O’Brien AL, DeHaan CL, Rogers S. Mitogen-stimulated and rapamycin-sensitive glucose transporter 12 targeting and functional glucose transport in renal epithelial cells. Endocrinology. 2008;149: 917-924.
    • (2008) Endocrinology , vol.149 , pp. 917-924
    • Wilson-O’brien, A.L.1    Dehaan, C.L.2    Rogers, S.3
  • 41
  • 42
    • 0141838090 scopus 로고    scopus 로고
    • GLUT12 expression in human placenta in first trimester and term
    • Gude NM, Stevenson JL, Rogers S, et al. GLUT12 expression in human placenta in first trimester and term. Placenta. 2003;24:566-570.
    • (2003) Placenta , vol.24 , pp. 566-570
    • Gude, N.M.1    Stevenson, J.L.2    Rogers, S.3
  • 44
    • 0035881509 scopus 로고    scopus 로고
    • Identification of a mammalian H+-myo-inositol symporter expressed predominantly in the brain
    • Uldry M, Ibberson M, Horisberger JD, Chatton JY, Riederer BM, Thorens B. Identification of a mammalian H+-myo-inositol symporter expressed predominantly in the brain. EMBO J. 2001;20: 4467-4477.
    • (2001) EMBO J , vol.20 , pp. 4467-4477
    • Uldry, M.1    Ibberson, M.2    Horisberger, J.D.3    Chatton, J.Y.4    Riederer, B.M.5    Thorens, B.6
  • 45
    • 0028131474 scopus 로고
    • Topology of the GLUT1 glucose transporter deduced from glycosylation scanning mutagenesis
    • Hresko RC, Kruse M, Strube M, Mueckler M. Topology of the GLUT1 glucose transporter deduced from glycosylation scanning mutagenesis. J Biol Chem. 1994;269:20482-20488.
    • (1994) J Biol Chem , vol.269 , pp. 20482-20488
    • Hresko, R.C.1    Kruse, M.2    Strube, M.3    Mueckler, M.4
  • 46
    • 0028152377 scopus 로고
    • Facilitative glucose transporters
    • Mueckler M. Facilitative glucose transporters. Eur J Biochem. 1994; 219: 713-725.
    • (1994) Eur J Biochem , vol.219 , pp. 713-725
    • Mueckler, M.1
  • 47
    • 0023513019 scopus 로고
    • Investigation of the structure and function of the human erythrocyte glucose transporter by proteolytic dissection
    • Cairns MT, Alvarez J, Panico M, et al. Investigation of the structure and function of the human erythrocyte glucose transporter by proteolytic dissection. Biochim Biophys Acta. 1987;905:295-310.
    • (1987) Biochim Biophys Acta , vol.905 , pp. 295-310
    • Cairns, M.T.1    Alvarez, J.2    Panico, M.3
  • 48
    • 34247842999 scopus 로고    scopus 로고
    • Functional properties and genomics of glucose transporters
    • Zhao F-Q, Keating AF. Functional properties and genomics of glucose transporters. Curr Genomics. 2007;8:113-128.
    • (2007) Curr Genomics , vol.8 , pp. 113-128
    • Zhao, F.-Q.1    Keating, A.F.2
  • 49
    • 0028246067 scopus 로고
    • Substitution of tyrosine 293 of GLUT1 locks the transporter into an outward facing conformation
    • Mori H, Hashiramoto M, Clark AE, et al. Substitution of tyrosine 293 of GLUT1 locks the transporter into an outward facing conformation. J Biol Chem. 1994;269:11578-11583.
    • (1994) J Biol Chem , vol.269 , pp. 11578-11583
    • Mori, H.1    Hashiramoto, M.2    Clark, A.E.3
  • 50
    • 0028169257 scopus 로고
    • Substitution at Pro385 of GLUTl perturbs the glucose transport function by reducing conformational flexibility
    • Moris H, Muraokas A. Substitution at Pro385 of GLUTl perturbs the glucose transport function by reducing conformational flexibility. J Biol Chem. 1994;269:2982-2986.
    • (1994) J Biol Chem , vol.269 , pp. 2982-2986
    • Moris, H.1    Muraokas, A.2
  • 51
    • 0041123574 scopus 로고    scopus 로고
    • Role of conserved arginine and glutamate residues on the cytosolic surface of glucose transporters for transporter function
    • Schürmann A, Doege H, Ohnimus H, Monser V, Buchs A, Joost HG. Role of conserved arginine and glutamate residues on the cytosolic surface of glucose transporters for transporter function. Biochemistry. 1997;36:12897-12902.
    • (1997) Biochemistry , vol.36 , pp. 12897-12902
    • Schürmann, A.1    Doege, H.2    Ohnimus, H.3    Monser, V.4    Buchs, A.5    Joost, H.G.6
  • 52
    • 0029849743 scopus 로고    scopus 로고
    • Structure, function, and regulation of the mammalian facilitative glucose transporter gene family
    • Olson AL, Pessin JE. Structure, function, and regulation of the mammalian facilitative glucose transporter gene family. Annu Rev Nutr. 1996;16:235-256.
    • (1996) Annu Rev Nutr , vol.16 , pp. 235-256
    • Olson, A.L.1    Pessin, J.E.2
  • 53
    • 0027997421 scopus 로고
    • Glutamine 161 of GLUT1 glucose transporter is critical for transport activity and exofacial ligand binding
    • Mueckler M, Weng W, Kruse M. Glutamine 161 of GLUT1 glucose transporter is critical for transport activity and exofacial ligand binding. J Biol Chem. 1994;269:20533-20538.
    • (1994) J Biol Chem , vol.269 , pp. 20533-20538
    • Mueckler, M.1    Weng, W.2    Kruse, M.3
  • 54
    • 0032518852 scopus 로고    scopus 로고
    • Serine-294 and threonine-295 in the exofacial loop domain between helices 7 and 8 of glucose transporters (GLUT) are involved in the conformational alterations during the transport process
    • Doege H, Schürmann A, Ohnimus H, Monser V, Holman GD, Joost HG. Serine-294 and threonine-295 in the exofacial loop domain between helices 7 and 8 of glucose transporters (GLUT) are involved in the conformational alterations during the transport process. Biochem J. 1998;329 Pt 2:289-293.
    • (1998) Biochem J , vol.329 , pp. 289-293
    • Doege, H.1    Schürmann, A.2    Ohnimus, H.3    Monser, V.4    Holman, G.D.5    Joost, H.G.6
  • 55
    • 0026738934 scopus 로고
    • Amino acid substitutions at tryptophan 388 and tryptophan 412 of the HepG2 (Glut1) glucose transporter inhibit transport activity and targeting to the plasma membrane in Xenopus oocytes
    • Garcia JC, Strube M, Leingang K, Keller K, Mueckler MM. Amino acid substitutions at tryptophan 388 and tryptophan 412 of the HepG2 (Glut1) glucose transporter inhibit transport activity and targeting to the plasma membrane in Xenopus oocytes. J Biol Chem. 1992;267: 7770-7776.
    • (1992) J Biol Chem , vol.267 , pp. 7770-7776
    • Garcia, J.C.1    Strube, M.2    Leingang, K.3    Keller, K.4    Mueckler, M.M.5
  • 56
    • 0027499045 scopus 로고
    • Glucose transport activity and photolabelling with 3-[125I]iodo-4-azidophenethylamido-7-O-succinyldeacetyl (IAPS)-forskolin of two mutants at tryptophan-388 and -412 of the glucose transporter GLUT1: Dissociation of the binding domains of forskolin and glucose
    • Schürmann A, Keller K, Monden I, et al. Glucose transport activity and photolabelling with 3-[125I]iodo-4-azidophenethylamido-7-O-succinyldeacetyl (IAPS)-forskolin of two mutants at tryptophan-388 and -412 of the glucose transporter GLUT1: dissociation of the binding domains of forskolin and glucose. Biochem J. 1993;290 Pt 2:497-501.
    • (1993) Biochem J , vol.290 , pp. 497-501
    • Schürmann, A.1    Keller, K.2    Monden, I.3
  • 57
    • 0032477798 scopus 로고    scopus 로고
    • QLS motif in transmembrane helix VII of the glucose transporter family interacts with the C-1 position of D-glucose and is involved in substrate selection at the exofacial binding site
    • Seatter MJ, De La Rue SA, Porter LM, Gould GW. QLS motif in transmembrane helix VII of the glucose transporter family interacts with the C-1 position of D-glucose and is involved in substrate selection at the exofacial binding site. Biochemistry. 1998;37:1322-1326.
    • (1998) Biochemistry , vol.37 , pp. 1322-1326
    • Seatter, M.J.1    De La Rue, S.A.2    Porter, L.M.3    Gould, G.W.4
  • 58
    • 0035685698 scopus 로고    scopus 로고
    • The extended GLUT-family of sugar/polyol transport facilitators: Nomenclature, sequence characteristics, and potential function of its novel members
    • Joost H, Thorens B. The extended GLUT-family of sugar/polyol transport facilitators: nomenclature, sequence characteristics, and potential function of its novel members. Mol Membr Biol. 2001;18:257-264.
    • (2001) Mol Membr Biol , vol.18 , pp. 257-264
    • Joost, H.1    Thorens, B.2
  • 59
    • 34548063727 scopus 로고    scopus 로고
    • A highly conserved hydrophobic motif in the exofacial vestibule of fructose transporting SLC2A proteins acts as a critical determinant of their substrate selectivity
    • Manolescu AR, Augustin R, Moley K, Cheeseman C. A highly conserved hydrophobic motif in the exofacial vestibule of fructose transporting SLC2A proteins acts as a critical determinant of their substrate selectivity. Mol Membr Biol. 2007;24:455-463.
    • (2007) Mol Membr Biol , vol.24 , pp. 455-463
    • Manolescu, A.R.1    Augustin, R.2    Moley, K.3    Cheeseman, C.4
  • 60
    • 30044446221 scopus 로고    scopus 로고
    • Identification of a hydrophobic residue as a key determinant of fructose transport by the facilitative hexose transporter SLC2A7 (GLUT7
    • Manolescu A, Salas-Burgos AM, Fischbarg J, Cheeseman CI. Identification of a hydrophobic residue as a key determinant of fructose transport by the facilitative hexose transporter SLC2A7 (GLUT7). J Biol Chem. 2005;280:42978-42983.
    • (2005) J Biol Chem , vol.280 , pp. 42978-42983
    • Manolescu, A.1    Salas-Burgos, A.M.2    Fischbarg, J.3    Cheeseman, C.I.4
  • 61
    • 84931281854 scopus 로고    scopus 로고
    • Critical roles of two hydrophobic residues within human glucose transporter 9 (HSLC2A9) in substrate selectivity and urate transport
    • Long W, Panwar P, Witkowska K, et al. Critical roles of two hydrophobic residues within human glucose transporter 9 (hSLC2A9) in substrate selectivity and urate transport. J Biol Chem. 2015;290: 15292-15303.
    • (2015) J Biol Chem , vol.290 , pp. 15292-15303
    • Long, W.1    Panwar, P.2    Witkowska, K.3
  • 62
    • 0023224412 scopus 로고
    • Fourier transform infrared spectroscopic study of the structure and conformational changes of the human erythrocyte glucose transporter
    • Alvarez J, Lee DC, Baldwin SA, Chapman D. Fourier transform infrared spectroscopic study of the structure and conformational changes of the human erythrocyte glucose transporter. J Biol Chem. 1987;262: 3502-3509.
    • (1987) J Biol Chem , vol.262 , pp. 3502-3509
    • Alvarez, J.1    Lee, D.C.2    Baldwin, S.A.3    Chapman, D.4
  • 63
    • 0023187412 scopus 로고
    • Structural basis of human erythrocyte glucose transporter function in proteoliposome vesicles: Circular dichroism measurements
    • Chin JJ, Jung EK, Chen V, Jung CY. Structural basis of human erythrocyte glucose transporter function in proteoliposome vesicles: circular dichroism measurements. Proc Natl Acad Sci U S A. 1987;84: 4113-4116.
    • (1987) Proc Natl Acad Sci U S A , vol.84 , pp. 4113-4116
    • Chin, J.J.1    Jung, E.K.2    Chen, V.3    Jung, C.Y.4
  • 64
    • 0942279700 scopus 로고    scopus 로고
    • Cysteine-scanning mutagenesis of transmembrane segment 1 of glucose transporter GLUT1: Extracellular accessibility of helix positions
    • Heinze M, Monden I, Keller K. Cysteine-scanning mutagenesis of transmembrane segment 1 of glucose transporter GLUT1: extracellular accessibility of helix positions. Biochemistry. 2004;43:931-936.
    • (2004) Biochemistry , vol.43 , pp. 931-936
    • Heinze, M.1    Monden, I.2    Keller, K.3
  • 65
    • 8744293151 scopus 로고    scopus 로고
    • Transmembrane segment 3 of the GLUT1 glucose transporter is an outer helix
    • Mueckler M, Roach W, Makepeace C. Transmembrane segment 3 of the GLUT1 glucose transporter is an outer helix. J Biol Chem. 2004;279:46876-46881.
    • (2004) J Biol Chem , vol.279 , pp. 46876-46881
    • Mueckler, M.1    Roach, W.2    Makepeace, C.3
  • 66
    • 28244474472 scopus 로고    scopus 로고
    • Cysteine-scanning mutagenesis and substituted cysteine accessibility analysis of transmembrane segment 4 of the GLUT1 glucose transporter
    • Mueckler M, Makepeace C. Cysteine-scanning mutagenesis and substituted cysteine accessibility analysis of transmembrane segment 4 of the GLUT1 glucose transporter. J Biol Chem. 2005;280:39562-39568.
    • (2005) J Biol Chem , vol.280 , pp. 39562-39568
    • Mueckler, M.1    Makepeace, C.2
  • 67
    • 0033574571 scopus 로고    scopus 로고
    • Transmembrane segment 5 of the Glut1 glucose transporter is an amphipathic helix that forms part of the sugar permeation pathway
    • Mueckler M, Makepeace C. Transmembrane segment 5 of the Glut1 glucose transporter is an amphipathic helix that forms part of the sugar permeation pathway. J Biol Chem. 1999;274:10923-10926.
    • (1999) J Biol Chem , vol.274 , pp. 10923-10926
    • Mueckler, M.1    Makepeace, C.2
  • 68
    • 45549092587 scopus 로고    scopus 로고
    • Transmembrane segment 6 of the Glut1 glucose transporter is an outer helix and contains amino acid side chains essential for transport activity
    • Mueckler M, Makepeace C. Transmembrane segment 6 of the Glut1 glucose transporter is an outer helix and contains amino acid side chains essential for transport activity. J Biol Chem. 2008;283:11550-11555.
    • (2008) J Biol Chem , vol.283 , pp. 11550-11555
    • Mueckler, M.1    Makepeace, C.2
  • 69
    • 0033579484 scopus 로고    scopus 로고
    • Cysteine-scanning mutagenesis of transmembrane segment 7 of the GLUT1 glucose transporter
    • Hruz PW, Mueckler MM. Cysteine-scanning mutagenesis of transmembrane segment 7 of the GLUT1 glucose transporter. J Biol Chem. 1999;274:36176-36180.
    • (1999) J Biol Chem , vol.274 , pp. 36176-36180
    • Hruz, P.W.1    Mueckler, M.M.2
  • 70
    • 67649616342 scopus 로고    scopus 로고
    • Model of the exofacial substrate-binding site and helical folding of the human Glut1 glucose transporter based on scanning mutagenesis
    • Mueckler M, Makepeace C. Model of the exofacial substrate-binding site and helical folding of the human Glut1 glucose transporter based on scanning mutagenesis. Biochemistry. 2009;48:5934-5942.
    • (2009) Biochemistry , vol.48 , pp. 5934-5942
    • Mueckler, M.1    Makepeace, C.2
  • 71
    • 0034622585 scopus 로고    scopus 로고
    • Cysteine-scanning mutagenesis of transmembrane segment 11 of the GLUT1 facilitative glucose transporter
    • Hruz PW, Mueckler MM. Cysteine-scanning mutagenesis of transmembrane segment 11 of the GLUT1 facilitative glucose transporter. Biochemistry. 2000;39(51):9367-9372.
    • (2000) Biochemistry , vol.39 , Issue.51 , pp. 9367-9372
    • Hruz, P.W.1    Mueckler, M.M.2
  • 72
    • 33845983649 scopus 로고    scopus 로고
    • Transmembrane segment 12 of the Glut1 glucose transporter is an outer helix and is not directly involved in the transport mechanism
    • Mueckler M, Makepeace C. Transmembrane segment 12 of the Glut1 glucose transporter is an outer helix and is not directly involved in the transport mechanism. J Biol Chem. 2006;281(48):36993-36998.
    • (2006) J Biol Chem , vol.281 , Issue.48 , pp. 36993-36998
    • Mueckler, M.1    Makepeace, C.2
  • 73
    • 1642375338 scopus 로고    scopus 로고
    • Analysis of Transmembrane Segment 8 of the GLUT1 Glucose Transporter by Cysteine-scanning Mutagenesis and Substituted Cysteine Accessibility
    • Mueckler M, Makepeace C. Analysis of Transmembrane Segment 8 of the GLUT1 Glucose Transporter by Cysteine-scanning Mutagenesis and Substituted Cysteine Accessibility. J Biol Chem. 2003;279: 10494-10499.
    • (2003) J Biol Chem , vol.279 , pp. 10494-10499
    • Mueckler, M.1    Makepeace, C.2
  • 74
    • 0036479247 scopus 로고    scopus 로고
    • Analysis of transmembrane segment 10 of the Glut1 glucose transporter by cysteine scanning mutagenesis and substituted cysteine accessibility
    • Mueckler M, Makepeace C. Analysis of transmembrane segment 10 of the Glut1 glucose transporter by cysteine scanning mutagenesis and substituted cysteine accessibility. J Biol Chem. 2002;277(5):3498-3503.
    • (2002) J Biol Chem , vol.277 , Issue.5 , pp. 3498-3503
    • Mueckler, M.1    Makepeace, C.2
  • 75
    • 12344321851 scopus 로고    scopus 로고
    • Predicting the three-dimensional structure of the human facilitative glucose transporter GLUT1 by a novel evolutionary homology strategy: Insights on the molecular mechanism of substrate migration, and binding sites for glucose and inhibitory molecules
    • Salas-Burgos A, Iserovich P, Zuniga F, Vera JC, Fischbarg J. Predicting the three-dimensional structure of the human facilitative glucose transporter GLUT1 by a novel evolutionary homology strategy: insights on the molecular mechanism of substrate migration, and binding sites for glucose and inhibitory molecules. Biophys J. 2004;87: 2990-2999.
    • (2004) Biophys J , vol.87 , pp. 2990-2999
    • Salas-Burgos, A.1    Iserovich, P.2    Zuniga, F.3    Vera, J.C.4    Fischbarg, J.5
  • 76
    • 0030309453 scopus 로고    scopus 로고
    • Phylogenetic approaches to the identification and characterization of protein families and superfamilies
    • Saier MH. Phylogenetic approaches to the identification and characterization of protein families and superfamilies. Microb Comp Genomics. 1996;1:129-150.
    • (1996) Microb Comp Genomics , vol.1 , pp. 129-150
    • Saier, M.H.1
  • 78
    • 34548099721 scopus 로고    scopus 로고
    • Eukaryotic major facilitator superfamily transporter modeling based on the prokaryotic GlpT crystal structure
    • Lemieux MJ. Eukaryotic major facilitator superfamily transporter modeling based on the prokaryotic GlpT crystal structure. Mol Membr Biol. 2007;24:333-341.
    • (2007) Mol Membr Biol , vol.24 , pp. 333-341
    • Lemieux, M.J.1
  • 79
    • 0035283196 scopus 로고    scopus 로고
    • Model of the 3-D structure of the GLUT3 glucose transporter and molecular dynamics simulation of glucose transport
    • Dwyer DS. Model of the 3-D structure of the GLUT3 glucose transporter and molecular dynamics simulation of glucose transport. Proteins. 2001;42:531-541.
    • (2001) Proteins , vol.42 , pp. 531-541
    • Dwyer, D.S.1
  • 80
    • 59649109384 scopus 로고    scopus 로고
    • Homology modeling of GLUT4, an insulin regulated facilitated glucose transporter and docking studies with ATP and its inhibitors
    • Mohan SS, Perry JJ, Poulose N, Nair BG, Anilkumar G. Homology modeling of GLUT4, an insulin regulated facilitated glucose transporter and docking studies with ATP and its inhibitors. J Biomol Struct Dyn. 2009;26:455-464.
    • (2009) J Biomol Struct Dyn , vol.26 , pp. 455-464
    • Mohan, S.S.1    Perry, J.J.2    Poulose, N.3    Nair, B.G.4    Anilkumar, G.5
  • 82
    • 84907699910 scopus 로고    scopus 로고
    • Expression, purification, and structural insights for the human uric acid transporter, GLUT9, using the Xenopus laevis oocytes system
    • Clémençon B, Lüscher BP, Fine M, et al. Expression, purification, and structural insights for the human uric acid transporter, GLUT9, using the Xenopus laevis oocytes system. PLoS One. 2014;9:e108852.
    • (2014) Plos One , vol.9
    • Clémençon, B.1    Lüscher, B.P.2    Fine, M.3
  • 83
    • 0032545321 scopus 로고    scopus 로고
    • Structure of the MscL homolog from Mycobacterium tuberculosis: A gated mechanosensitive ion channel
    • Chang G, Spencer RH, Lee AT, Barclay MT, Rees DC. Structure of the MscL homolog from Mycobacterium tuberculosis: a gated mechanosensitive ion channel. Science. 1998;282:2220-2226.
    • (1998) Science , vol.282 , pp. 2220-2226
    • Chang, G.1    Spencer, R.H.2    Lee, A.T.3    Barclay, M.T.4    Rees, D.C.5
  • 84
    • 84902002905 scopus 로고    scopus 로고
    • Crystal structure of the human glucose transporter GLUT1
    • Deng D, Xu C, Sun P, et al. Crystal structure of the human glucose transporter GLUT1. Nature. 2014;510:121-125.
    • (2014) Nature , vol.510 , pp. 121-125
    • Deng, D.1    Xu, C.2    Sun, P.3
  • 85
    • 84867657593 scopus 로고    scopus 로고
    • Crystal structure of a bacterial homologue of glucose transporters GLUT1-4
    • Sun L, Zeng X, Yan C, et al. Crystal structure of a bacterial homologue of glucose transporters GLUT1-4. Nature. 2012;490:361-366.
    • (2012) Nature , vol.490 , pp. 361-366
    • Sun, L.1    Zeng, X.2    Yan, C.3
  • 87
    • 84938299834 scopus 로고    scopus 로고
    • Molecular basis of ligand recognition and transport by glucose transporters
    • July 15
    • Deng D, Sun P, Yan C, et al. Molecular basis of ligand recognition and transport by glucose transporters. Nature. July 15, 2015. doi:10.1038/nature14655.
    • (2015) Nature
    • Deng, D.1    Sun, P.2    Yan, C.3
  • 88
    • 77049146099 scopus 로고
    • Inability of diffusion to account for placental glucose transfer in the sheep and consideration of the kinetics of a possible carrier transfer
    • Widdas W. Inability of diffusion to account for placental glucose transfer in the sheep and consideration of the kinetics of a possible carrier transfer. J Physiol. 1952;118:23-39.
    • (1952) J Physiol , vol.118 , pp. 23-39
    • Widdas, W.1
  • 89
    • 0000204575 scopus 로고
    • Glucose movements across the wall of the rat small intestine
    • Fisher RB, Parsons DS. Glucose movements across the wall of the rat small intestine. J Physiol. 1953;119:210-223.
    • (1953) J Physiol , vol.119 , pp. 210-223
    • Fisher, R.B.1    Parsons, D.S.2
  • 90
    • 77049139496 scopus 로고
    • Galatose absorption from the surviving small intestine of the rat
    • Fisher RB, Parsons DS. Galatose absorption from the surviving small intestine of the rat. J Physiol. 1953;119:224-232.
    • (1953) J Physiol , vol.119 , pp. 224-232
    • Fisher, R.B.1    Parsons, D.S.2
  • 92
    • 0001823653 scopus 로고
    • Transport of sugars in human red cells
    • Ellory JC, Lew V, editors, New York, NY, USA: Academic Press
    • Naftalin RJ, Holman GD. Transport of sugars in human red cells. In: Ellory JC, Lew V, editors. Membrane Transport in Red Cells. New York, NY, USA: Academic Press; 1977.
    • (1977) Membrane Transport in Red Cells
    • Naftalin, R.J.1    Holman, G.D.2
  • 93
    • 0015951431 scopus 로고
    • Anomalous transport kinetics and the glucose carrier hypothesis
    • Regen DM, Tarpley HL. Anomalous transport kinetics and the glucose carrier hypothesis. Biochim Biophys Acta. 1974;339:218-233.
    • (1974) Biochim Biophys Acta , vol.339 , pp. 218-233
    • Regen, D.M.1    Tarpley, H.L.2
  • 94
    • 0016696806 scopus 로고
    • Two-carrier models for mediated transport. 1. Theoretical analysis of several two-carrier models
    • Eilam Y. Two-carrier models for mediated transport. 1. Theoretical analysis of several two-carrier models. Biochim Biophys Acta. 1975; 401: 349-363.
    • (1975) Biochim Biophys Acta , vol.401 , pp. 349-363
    • Eilam, Y.1
  • 95
    • 0014936045 scopus 로고
    • Model for sugar transport across red cell membrane without carriers
    • Naftalin RJ. Model for sugar transport across red cell membrane without carriers. Biochim Biophys Acta. 1970;211:65-78.
    • (1970) Biochim Biophys Acta , vol.211 , pp. 65-78
    • Naftalin, R.J.1
  • 96
    • 0014820819 scopus 로고
    • Quantitative predictions of a noncarrier model for glucose transport across the human red cell membrane
    • Lieb WR, Stein WD. Quantitative predictions of a noncarrier model for glucose transport across the human red cell membrane. Biophys J. 1970;10:585-609.
    • (1970) Biophys J , vol.10 , pp. 585-609
    • Lieb, W.R.1    Stein, W.D.2
  • 97
    • 0015847440 scopus 로고
    • A model for erythrocyte sugar transport based on substrate-conditioned “introversion” of binding sites
    • LeFevre PG. A model for erythrocyte sugar transport based on substrate-conditioned “introversion” of binding sites. J Membr Biol. 1973;11:1-19.
    • (1973) J Membr Biol , vol.11 , pp. 1-19
    • Lefevre, P.G.1
  • 98
    • 84875135352 scopus 로고    scopus 로고
    • The SLC2 (GLUT) family of membrane transporters
    • Mueckler M, Thorens B. The SLC2 (GLUT) family of membrane transporters. Mol Asp Med. 2013;34:121-138.
    • (2013) Mol Asp Med , vol.34 , pp. 121-138
    • Mueckler, M.1    Thorens, B.2
  • 99
    • 57649114095 scopus 로고    scopus 로고
    • Alternating carrier models of asymmetric glucose transport violate the energy conservation laws
    • Naftalin RJ. Alternating carrier models of asymmetric glucose transport violate the energy conservation laws. Biophys J. 2008;95: 4300-4314.
    • (2008) Biophys J , vol.95 , pp. 4300-4314
    • Naftalin, R.J.1
  • 100
    • 84871131879 scopus 로고    scopus 로고
    • Sequence determinants of GLUT1-mediated accelerated-exchange transport: Analysis by homology-scanning mutagenesis
    • Vollers SS, Carruthers A. Sequence determinants of GLUT1-mediated accelerated-exchange transport: analysis by homology-scanning mutagenesis. J Biol Chem. 2012;287:42533-42544.
    • (2012) J Biol Chem , vol.287 , pp. 42533-42544
    • Vollers, S.S.1    Carruthers, A.2
  • 102
    • 0023190188 scopus 로고
    • Reassessment of insulin effects on the V(Max) and K(m) values of hexose transport in isolated rat epididymal adipocytes
    • Toyoda N, Flanagan JE, Kono T. Reassessment of insulin effects on the V(max) and K(m) values of hexose transport in isolated rat epididymal adipocytes. J Biol Chem. 1987;262:2737-2745.
    • (1987) J Biol Chem , vol.262 , pp. 2737-2745
    • Toyoda, N.1    Flanagan, J.E.2    Kono, T.3
  • 103
    • 0019432650 scopus 로고
    • Symmetrical kinetic parameters for 3-O-methyl-D-glucose transport in adipocytes in the presence and in the absence of insulin
    • Taylor LP, Holman GD. Symmetrical kinetic parameters for 3-O-methyl-D-glucose transport in adipocytes in the presence and in the absence of insulin. Biochim Biophys Acta. 1981;642:325-335.
    • (1981) Biochim Biophys Acta , vol.642 , pp. 325-335
    • Taylor, L.P.1    Holman, G.D.2
  • 104
    • 0025837453 scopus 로고
    • Evidence that functional erythrocyte-type glucose transporters are oligomers
    • Pessino A, Hebert DN, Woon CW, et al. Evidence that functional erythrocyte-type glucose transporters are oligomers. J Biol Chem. 1991;266:20213-20217.
    • (1991) J Biol Chem , vol.266 , pp. 20213-20217
    • Pessino, A.1    Hebert, D.N.2    Woon, C.W.3
  • 105
    • 0029131908 scopus 로고
    • Glucose transporter function is controlled by transporter oligomeric structure. A single, intramolecular disulfide promotes GLUT1 tetramerization
    • Zottola RJ, Cloherty EK, Coderre PE, Hansen A, Hebert DN, Carruthers A. Glucose transporter function is controlled by transporter oligomeric structure. A single, intramolecular disulfide promotes GLUT1 tetramerization. Biochemistry. 1995;34:9734-9747.
    • (1995) Biochemistry , vol.34 , pp. 9734-9747
    • Zottola, R.J.1    Cloherty, E.K.2    Coderre, P.E.3    Hansen, A.4    Hebert, D.N.5    Carruthers, A.6
  • 106
    • 0035951093 scopus 로고    scopus 로고
    • The red blood cell glucose transporter presents multiple, nucleotide-sensitive sugar exit sites
    • Cloherty EK, Levine KB, Carruthers A. The red blood cell glucose transporter presents multiple, nucleotide-sensitive sugar exit sites. Biochemistry. 2001;40:15549-15561.
    • (2001) Biochemistry , vol.40 , pp. 15549-15561
    • Cloherty, E.K.1    Levine, K.B.2    Carruthers, A.3
  • 107
    • 84880049245 scopus 로고    scopus 로고
    • Sequence determinants of GLUT1 oligomerization: Analysis by homology-scanning mutagenesis
    • De Zutter JK, Levine KB, Deng D, Carruthers A. Sequence determinants of GLUT1 oligomerization: analysis by homology-scanning mutagenesis. J Biol Chem. 2013;288:20734-20744.
    • (2013) J Biol Chem , vol.288 , pp. 20734-20744
    • De Zutter, J.K.1    Levine, K.B.2    Deng, D.3    Carruthers, A.4
  • 108
    • 33750212348 scopus 로고    scopus 로고
    • Crystal structure and mechanism of GlpT, the glycerol-3-phosphate transporter from E. Coli
    • Lemieux MJ, Huang Y, Wang da N. Crystal structure and mechanism of GlpT, the glycerol-3-phosphate transporter from E. coli. J Electron Microsc (Tokyo). 2005;54 Suppl 1:43-46.
    • J Electron Microsc (Tokyo). 2005;54 Suppl , vol.1 , pp. 43-46
    • Lemieux, M.J.1    Huang, Y.2    Wang Da, N.3
  • 109
    • 77958010505 scopus 로고    scopus 로고
    • Structure of a fucose transporter in an outward-open conformation
    • Dang S, Sun L, Huang Y, et al. Structure of a fucose transporter in an outward-open conformation. Nature. 2010;467:734-738.
    • (2010) Nature , vol.467 , pp. 734-738
    • Dang, S.1    Sun, L.2    Huang, Y.3
  • 110
    • 0014029736 scopus 로고
    • Simple allosteric model for membrane pumps
    • Jardetzky O. Simple allosteric model for membrane pumps. Nature. 1966;211:969-970.
    • (1966) Nature , vol.211 , pp. 969-970
    • Jardetzky, O.1
  • 111
    • 0014312389 scopus 로고
    • Mediated (Nonactive) transport of glucose in mammalian cells and its regulation
    • Park CR, Crofford OB, Kono T. Mediated (nonactive) transport of glucose in mammalian cells and its regulation. J Gen Physiol. 1968;52: 296-318.
    • (1968) J Gen Physiol , vol.52 , pp. 296-318
    • Park, C.R.1    Crofford, O.B.2    Kono, T.3
  • 112
    • 70449167967 scopus 로고
    • Uphill transport induced by counterflow
    • Rosenberg T, Wilbrandt W. Uphill transport induced by counterflow. J Gen Physiol. 1957;41:289-296.
    • (1957) J Gen Physiol , vol.41 , pp. 289-296
    • Rosenberg, T.1    Wilbrandt, W.2
  • 113
    • 0029912996 scopus 로고    scopus 로고
    • Substrate specificity and kinetic parameters of GLUT3 in rat cerebellar granule neurons
    • Maher F, Davies-Hill TM, Simpson IA. Substrate specificity and kinetic parameters of GLUT3 in rat cerebellar granule neurons. J Biol Chem. 1996;315:827-831.
    • (1996) J Biol Chem , vol.315 , pp. 827-831
    • Maher, F.1    Davies-Hill, T.M.2    Simpson, I.A.3
  • 114
    • 0035800060 scopus 로고    scopus 로고
    • The predicted ATP-binding domains in the hexose transporter GLUT1 critically affect transporter activity
    • Liu Q, Vera JC, Peng H, Golde DW. The predicted ATP-binding domains in the hexose transporter GLUT1 critically affect transporter activity. Biochemistry. 2001;40:7874-7881.
    • (2001) Biochemistry , vol.40 , pp. 7874-7881
    • Liu, Q.1    Vera, J.C.2    Peng, H.3    Golde, D.W.4
  • 115
    • 0031013884 scopus 로고    scopus 로고
    • Are there kinetic advantages of GLUT2 in pancreatic glucose sensing?
    • Sweet IR, Matschinsky FM. Are there kinetic advantages of GLUT2 in pancreatic glucose sensing? Diabetologia. 1997;40: 112-119.
    • (1997) Diabetologia , vol.40 , pp. 112-119
    • Sweet, I.R.1    Matschinsky, F.M.2
  • 116
    • 0025916808 scopus 로고
    • Determination of the rates of appearance and loss of glucose transporters at the cell surface of rat adipose cells
    • Clark AE, Holman GD, Kozka IJ. Determination of the rates of appearance and loss of glucose transporters at the cell surface of rat adipose cells. Biochem J. 1991;278 Pt 1:235-241.
    • (1991) Biochem J , vol.278 , pp. 235-241
    • Clark, A.E.1    Holman, G.D.2    Kozka, I.J.3
  • 117
    • 0025923845 scopus 로고
    • Intracellular targeting of the insulin-regulatable glucose transporter (GLUT4) is isoform specific and independent of cell type
    • Haney PM, Slot JW, Piper RC, James DE, Mueckler M. Intracellular targeting of the insulin-regulatable glucose transporter (GLUT4) is isoform specific and independent of cell type. J Cell Biol. 1991;114: 689-699.
    • (1991) J Cell Biol , vol.114 , pp. 689-699
    • Haney, P.M.1    Slot, J.W.2    Piper, R.C.3    James, D.E.4    Mueckler, M.5
  • 118
    • 0026596043 scopus 로고
    • Isoform-specific subcellular targeting of glucose transporters in mouse fibroblasts
    • Hudson AW, Ruiz M, Birnbaum MJ. Isoform-specific subcellular targeting of glucose transporters in mouse fibroblasts. J Cell Biol. 1992;116:785-797.
    • (1992) J Cell Biol , vol.116 , pp. 785-797
    • Hudson, A.W.1    Ruiz, M.2    Birnbaum, M.J.3
  • 119
    • 0027184471 scopus 로고
    • Targeting of the “insulin-responsive” glucose transporter (GLUT4) to the regulated secretory pathway in PC12 cells
    • Hudson AW, Fingar DC, Seidner GA, Griffiths G, Burke B, Birnbaum MJ. Targeting of the “insulin-responsive” glucose transporter (GLUT4) to the regulated secretory pathway in PC12 cells. J Cell Biol. 1993;122:579-588.
    • (1993) J Cell Biol , vol.122 , pp. 579-588
    • Hudson, A.W.1    Fingar, D.C.2    Seidner, G.A.3    Griffiths, G.4    Burke, B.5    Birnbaum, M.J.6
  • 120
    • 0026651193 scopus 로고
    • The efficient intracellular sequestration of the insulin-regulatable glucose transporter (GLUT-4) is conferred by the NH2 terminus
    • Piper RC, Tai C, Slot JW, et al. The efficient intracellular sequestration of the insulin-regulatable glucose transporter (GLUT-4) is conferred by the NH2 terminus. J Cell Biol. 1992;117:729-743.
    • (1992) J Cell Biol , vol.117 , pp. 729-743
    • Piper, R.C.1    Tai, C.2    Slot, J.W.3
  • 121
    • 0026597364 scopus 로고
    • Two glucose transporter isoforms are sorted differentially and are expressed in distinct cellular compartments
    • Shibasaki Y, Asano T, Lin JL, et al. Two glucose transporter isoforms are sorted differentially and are expressed in distinct cellular compartments. Biochem J. 1992;281 Pt 3:829-834.
    • (1992) Biochem J , vol.281 , pp. 829-834
    • Shibasaki, Y.1    Asano, T.2    Lin, J.L.3
  • 122
    • 0027517451 scopus 로고
    • Identification of the carboxy terminus as important for the isoform-specific subcellular targeting of glucose transporter proteins
    • Verhey KJ, Hausdorff SF, Birnbaum MJ. Identification of the carboxy terminus as important for the isoform-specific subcellular targeting of glucose transporter proteins. J Cell Biol. 1993;123:137-147.
    • (1993) J Cell Biol , vol.123 , pp. 137-147
    • Verhey, K.J.1    Hausdorff, S.F.2    Birnbaum, M.J.3
  • 123
    • 37549040563 scopus 로고    scopus 로고
    • Acute effectors of GLUT1 glucose transporter subcellular targeting in CIT3 mouse mammary epithelial cells
    • Riskin A, Nannegari VH, Mond Y. Acute effectors of GLUT1 glucose transporter subcellular targeting in CIT3 mouse mammary epithelial cells. Pediatr Res. 2008;63:56-61.
    • (2008) Pediatr Res , vol.63 , pp. 56-61
    • Riskin, A.1    Nannegari, V.H.2    Mond, Y.3
  • 124
    • 0027428676 scopus 로고
    • Exofacial epitope-tagged glucose transporter chimeras reveal COOH-terminal sequences governing cellular localization
    • Czech MP, Chawla A, Woon CW, et al. Exofacial epitope-tagged glucose transporter chimeras reveal COOH-terminal sequences governing cellular localization. J Cell Biol. 1993;123:127-135.
    • (1993) J Cell Biol , vol.123 , pp. 127-135
    • Czech, M.P.1    Chawla, A.2    Woon, C.W.3
  • 125
    • 84878916478 scopus 로고    scopus 로고
    • ATM and GLUT1-S490 phosphorylation regulate GLUT1 mediated transport in skeletal muscle
    • Andrisse S, Patel GD, Chen JE, et al. ATM and GLUT1-S490 phosphorylation regulate GLUT1 mediated transport in skeletal muscle. PLoS One. 2013;8:e66027.
    • (2013) Plos One , vol.8
    • Andrisse, S.1    Patel, G.D.2    Chen, J.E.3
  • 126
    • 0842291430 scopus 로고    scopus 로고
    • Carboxy terminus of glucose transporter 3 contains an apical membrane targeting domain
    • Inukai K, Shewan AM, Pascoe WS, Katayama S, James DE, Oka Y. Carboxy terminus of glucose transporter 3 contains an apical membrane targeting domain. Mol Endocrinol. 2004;18:339-349.
    • (2004) Mol Endocrinol , vol.18 , pp. 339-349
    • Inukai, K.1    Shewan, A.M.2    Pascoe, W.S.3    Katayama, S.4    James, D.E.5    Oka, Y.6
  • 127
    • 0027532611 scopus 로고
    • Comparison of GLUT4 and GLUT1 subcellular trafficking in basal and insulin-stimulated 3T3-L1 cells
    • Yang J, Holman GD. Comparison of GLUT4 and GLUT1 subcellular trafficking in basal and insulin-stimulated 3T3-L1 cells. J Biol Chem. 1993;268:4600-4603.
    • (1993) J Biol Chem , vol.268 , pp. 4600-4603
    • Yang, J.1    Holman, G.D.2
  • 129
    • 0033166625 scopus 로고    scopus 로고
    • Myocardial glucose transporter GLUT1: Translocation induced by insulin and ischemia
    • Egert S, Nguyen N, Schwaiger M. Myocardial glucose transporter GLUT1: translocation induced by insulin and ischemia. J Mol Cell Cardiol. 1999;31:1337-1344.
    • (1999) J Mol Cell Cardiol , vol.31 , pp. 1337-1344
    • Egert, S.1    Nguyen, N.2    Schwaiger, M.3
  • 130
    • 0032921576 scopus 로고    scopus 로고
    • The formation of an insulin-responsive vesicular cargo compartment is an early event in 3T3-L1 adipocyte differentiation
    • El-Jack AK, Kandror KV, Pilch PF. The formation of an insulin-responsive vesicular cargo compartment is an early event in 3T3-L1 adipocyte differentiation. Mol Biol Cell. 1999;10:1581-1594.
    • (1999) Mol Biol Cell , vol.10 , pp. 1581-1594
    • El-Jack, A.K.1    Kandror, K.V.2    Pilch, P.F.3
  • 131
    • 0026942296 scopus 로고
    • The molecular biology of mammalian glucose transporters
    • Mueckler M. The molecular biology of mammalian glucose transporters. Curr Opin Nephrol Hypertens. 1992;1:12-20.
    • (1992) Curr Opin Nephrol Hypertens , vol.1 , pp. 12-20
    • Mueckler, M.1
  • 132
    • 33847334259 scopus 로고    scopus 로고
    • PACSIN3 overexpression increases adipocyte glucose transport through GLUT1
    • Roach W, Plomann M. PACSIN3 overexpression increases adipocyte glucose transport through GLUT1. Biochem Biophys Res Commun. 2007;355:745-750.
    • (2007) Biochem Biophys Res Commun , vol.355 , pp. 745-750
    • Roach, W.1    Plomann, M.2
  • 133
    • 84861207997 scopus 로고    scopus 로고
    • Syntaxin 1C, a soluble form of syntaxin, attenuates membrane recycling by destabilizing microtubules
    • Nakayama T, Kamiguchi H, Akagawa K. Syntaxin 1C, a soluble form of syntaxin, attenuates membrane recycling by destabilizing microtubules. J Cell Sci. 2012;125:817-830.
    • (2012) J Cell Sci , vol.125 , pp. 817-830
    • Nakayama, T.1    Kamiguchi, H.2    Akagawa, K.3
  • 134
    • 84867592518 scopus 로고    scopus 로고
    • AMP kinase regulation of sugar transport in brain capillary endothelial cells during acute metabolic stress
    • Cura AJ, Carruthers A. AMP kinase regulation of sugar transport in brain capillary endothelial cells during acute metabolic stress. Am J Physiol Cell Physiol. 2012;303:C806-C814.
    • (2012) Am J Physiol Cell Physiol , vol.303 , pp. C806-C814
    • Cura, A.J.1    Carruthers, A.2
  • 135
    • 84864458736 scopus 로고    scopus 로고
    • Effect of plasma membrane cholesterol depletion on glucose transport regulation in leukemia cells
    • Caliceti C, Zambonin L, Prata C, et al. Effect of plasma membrane cholesterol depletion on glucose transport regulation in leukemia cells. PLoS One. 2012;7:e41246.
    • (2012) Plos One , vol.7
    • Caliceti, C.1    Zambonin, L.2    Prata, C.3
  • 136
    • 84916618849 scopus 로고    scopus 로고
    • Roles of glucose transporter-1 and the phosphatidylinositol 3-kinase/protein kinase B pathway in cancer radioresistance
    • Fang J, Zhou SH, Fan J, Yan SX. Roles of glucose transporter-1 and the phosphatidylinositol 3-kinase/protein kinase B pathway in cancer radioresistance. Mol Med Rep. 2015;11:1573-1578.
    • (2015) Mol Med Rep , vol.11 , pp. 1573-1578
    • Fang, J.1    Zhou, S.H.2    Fan, J.3    Yan, S.X.4
  • 137
    • 41349093966 scopus 로고    scopus 로고
    • IL-7 promotes Glut1 trafficking and glucose uptake via STAT5-mediated activation of Akt to support T cell survival
    • Wofford JA, Wieman HL, Jacobs SR, Zhao Y, Rathmell JC, Jeffrey C. IL-7 promotes Glut1 trafficking and glucose uptake via STAT5-mediated activation of Akt to support T cell survival. Blood. 2008;111: 2101-2112.
    • (2008) Blood , vol.111 , pp. 2101-2112
    • Wofford, J.A.1    Wieman, H.L.2    Jacobs, S.R.3    Zhao, Y.4    Rathmell, J.C.5    Jeffrey, C.6
  • 138
    • 77955502148 scopus 로고    scopus 로고
    • Cytokine stimulation promotes increased glucose uptake via translocation at the plasma membrane of GLUT1 in HEK293 cells
    • Zambrano A, Jara E, Murgas P, et al. Cytokine stimulation promotes increased glucose uptake via translocation at the plasma membrane of GLUT1 in HEK293 cells. J Cell Biochem. 2010;110:1471-1480.
    • (2010) J Cell Biochem , vol.110 , pp. 1471-1480
    • Zambrano, A.1    Jara, E.2    Murgas, P.3
  • 139
    • 82655176963 scopus 로고    scopus 로고
    • IKKβ and NF-κB transcription govern lymphoma cell survival through AKT-induced plasma membrane trafficking of GLUT1
    • Sommermann TG, O’Neill K, Plas DR, Cahir-McFarland E. IKKβ and NF-κB transcription govern lymphoma cell survival through AKT-induced plasma membrane trafficking of GLUT1. Cancer Res. 2011;71:7291-7300.
    • (2011) Cancer Res , vol.71 , pp. 7291-7300
    • Sommermann, T.G.1    O’Neill, K.2    Plas, D.R.3    Cahir-McFarland, E.4
  • 141
    • 84896275160 scopus 로고    scopus 로고
    • A proteolytic pathway that controls glucose uptake in fat and muscle
    • Belman JP, Habtemichael EN, Bogan JS. A proteolytic pathway that controls glucose uptake in fat and muscle. Rev Endocr Metab Disord. 2014;15:55-66.
    • (2014) Rev Endocr Metab Disord , vol.15 , pp. 55-66
    • Belman, J.P.1    Habtemichael, E.N.2    Bogan, J.S.3
  • 143
    • 0018820017 scopus 로고
    • Potential mechanism of insulin action on glucose transport in the isolated rat adipose cell. Apparent translocation of intracellular transport systems to the plasma membrane
    • Cushman SW, Wardzala LJ. Potential mechanism of insulin action on glucose transport in the isolated rat adipose cell. Apparent translocation of intracellular transport systems to the plasma membrane. J Biol Chem. 1980;255(10):4758-4762.
    • (1980) J Biol Chem , vol.255 , Issue.10 , pp. 4758-4762
    • Cushman, S.W.1    Wardzala, L.J.2
  • 144
    • 0033580823 scopus 로고    scopus 로고
    • Evidence for a role for ADP-ribosylation factor 6 in insulin-stimulated glucose transporter-4 (GLUT4) trafficking in 3T3-L1 adipocytes
    • Millar CA, Powell KA, Hickson GR, Bader MF, Gould GW. Evidence for a role for ADP-ribosylation factor 6 in insulin-stimulated glucose transporter-4 (GLUT4) trafficking in 3T3-L1 adipocytes. J Biol Chem. 1999;274:17619-17625.
    • (1999) J Biol Chem , vol.274 , pp. 17619-17625
    • Millar, C.A.1    Powell, K.A.2    Hickson, G.R.3    Bader, M.F.4    Gould, G.W.5
  • 145
    • 15244356165 scopus 로고    scopus 로고
    • Akt activation is required at a late stage of insulin-induced GLUT4 translocation to the plasma membrane
    • van Dam EM, Govers R, James DE. Akt activation is required at a late stage of insulin-induced GLUT4 translocation to the plasma membrane. Mol Endocrinol. 2005;19:1067-1077.
    • (2005) Mol Endocrinol , vol.19 , pp. 1067-1077
    • Van Dam, E.M.1    Govers, R.2    James, D.E.3
  • 146
    • 0026660653 scopus 로고
    • Phosphatidylinositol 3′-kinase is activated by association with IRS-1 during insulin stimulation
    • Backer JM, Myers MG, Shoelson SE, et al. Phosphatidylinositol 3′-kinase is activated by association with IRS-1 during insulin stimulation. EMBO J. 1992;11:3469-3479.
    • (1992) EMBO J , vol.11 , pp. 3469-3479
    • Backer, J.M.1    Myers, M.G.2    Shoelson, S.E.3
  • 147
    • 0028085078 scopus 로고
    • The insulin signaling system
    • White MF, Kahn CR. The insulin signaling system. J Biol Chem. 1994;269:1-4.
    • (1994) J Biol Chem , vol.269 , pp. 1-4
    • White, M.F.1    Kahn, C.R.2
  • 148
    • 0030034311 scopus 로고    scopus 로고
    • Insulin-induced redistribution of GLUT4 glucose carriers in the muscle fiber: In search of GLUT4 trafficking pathways
    • Zorzano A, Munoz P, Camps M, Mora C, Testar X, Palacin M. Insulin-induced redistribution of GLUT4 glucose carriers in the muscle fiber: in search of GLUT4 trafficking pathways. Diabetes. 1996;45 Suppl 1: S70-S81.
    • (1996) Diabetes , vol.45
    • Zorzano, A.1    Munoz, P.2    Camps, M.3    Mora, C.4    Testar, X.5    Palacin, M.6
  • 150
    • 36849076761 scopus 로고    scopus 로고
    • The glucose transporter 4 FQQI motif is necessary for Akt substrate of 160-kilodalton-dependent plasma membrane translocation but not Golgi-localized (Gamma)-ear-containing Arf-binding protein-dependent entry into the insulin-responsive storage compartment
    • Capilla E, Suzuki N, Pessin JE, Hou JC. The glucose transporter 4 FQQI motif is necessary for Akt substrate of 160-kilodalton-dependent plasma membrane translocation but not Golgi-localized (gamma)-ear-containing Arf-binding protein-dependent entry into the insulin-responsive storage compartment. Mol Endocrinol. 2007;21:3087-3099.
    • (2007) Mol Endocrinol , vol.21 , pp. 3087-3099
    • Capilla, E.1    Suzuki, N.2    Pessin, J.E.3    Hou, J.C.4
  • 151
    • 4444355078 scopus 로고    scopus 로고
    • Entry of newly synthesized GLUT4 into the insulin-responsive storage compartment is dependent upon both the amino terminus and the large cytoplasmic loop
    • Khan AH, Capilla E, Hou JC, Watson RT, Smith JE, Pessin JE. Entry of newly synthesized GLUT4 into the insulin-responsive storage compartment is dependent upon both the amino terminus and the large cytoplasmic loop. J Biol Chem. 2004;279:37505-37511.
    • (2004) J Biol Chem , vol.279 , pp. 37505-37511
    • Khan, A.H.1    Capilla, E.2    Hou, J.C.3    Watson, R.T.4    Smith, J.E.5    Pessin, J.E.6
  • 152
    • 84880839466 scopus 로고    scopus 로고
    • Diacylglycerol promotes GLUT4 translocation to the cell surface in a PKCε-dependent and PKCλ/ι and -ζ- independent manner
    • Tsuchiya A, Kanno T, Nishizaki T. Diacylglycerol promotes GLUT4 translocation to the cell surface in a PKCε-dependent and PKCλ/ι and -ζ- independent manner. Life Sci. 2013;93:240-246.
    • (2013) Life Sci , vol.93 , pp. 240-246
    • Tsuchiya, A.1    Kanno, T.2    Nishizaki, T.3
  • 153
    • 0034625182 scopus 로고    scopus 로고
    • P110β is up-regulated during differentiation of 3T3-L1 cells and contributes to the highly insulin-responsive glucose transport activity
    • Asano T, Kanda A, Katagiri H, et al. P110β is up-regulated during differentiation of 3T3-L1 cells and contributes to the highly insulin-responsive glucose transport activity. J Biol Chem. 2000;275:17671-17676.
    • (2000) J Biol Chem , vol.275 , pp. 17671-17676
    • Asano, T.1    Kanda, A.2    Katagiri, H.3
  • 154
    • 79960559552 scopus 로고    scopus 로고
    • Naturally-occurring compensated insulin resistance selectively alters glucose transporters in visceral and subcutaneous adipose tissue without change in AS 160 activation
    • Waller A, Kohler K, Burns T, Mudge M, Belknap J, Lacombe V. Naturally-occurring compensated insulin resistance selectively alters glucose transporters in visceral and subcutaneous adipose tissue without change in AS 160 activation. Biochim Biophys Acta. 2011;1812:1098-1103.
    • (2011) Biochim Biophys Acta , vol.1812 , pp. 1098-1103
    • Waller, A.1    Kohler, K.2    Burns, T.3    Mudge, M.4    Belknap, J.5    Lacombe, V.6
  • 155
    • 78049353457 scopus 로고    scopus 로고
    • Palmitate-induced down-regulation of sortilin and impaired GLUT4 trafficking in C2C12 myotubes
    • Tsuchiya Y, Hatakeyama H, Emoto N, Wagatsuma F, Matsushita S, Kanzaki M. Palmitate-induced down-regulation of sortilin and impaired GLUT4 trafficking in C2C12 myotubes. J Biol Chem. 2010;285: 34371-34381.
    • (2010) J Biol Chem , vol.285 , pp. 34371-34381
    • Tsuchiya, Y.1    Hatakeyama, H.2    Emoto, N.3    Wagatsuma, F.4    Matsushita, S.5    Kanzaki, M.6
  • 156
    • 84924974296 scopus 로고    scopus 로고
    • Role of nitric oxide in skeletal muscle glucose uptake during exercise
    • Hong YH, Betik AC, McConell GK. Role of nitric oxide in skeletal muscle glucose uptake during exercise. Exp Physiol. 2014;99:1569-1573.
    • (2014) Exp Physiol , vol.99 , pp. 1569-1573
    • Hong, Y.H.1    Betik, A.C.2    McConell, G.K.3
  • 157
    • 84904306864 scopus 로고    scopus 로고
    • Ca2+ signals promote GLUT4 exocytosis and reduce its endocytosis in muscle cells
    • Li Q, Zhu X, Ishikura S, et al. Ca2+ signals promote GLUT4 exocytosis and reduce its endocytosis in muscle cells. Am J Physiol Endocrinol Metab. 2014;307:e209-e224.
    • (2014) Am J Physiol Endocrinol Metab , vol.307 , pp. e209-e224
    • Li, Q.1    Zhu, X.2    Ishikura, S.3
  • 158
    • 0034663719 scopus 로고    scopus 로고
    • The diffusive component of intestinal glucose absorption is mediated by the glucose-induced recruitment of GLUT2 to the brush-border membrane
    • Kellett GL, Helliwell PA. The diffusive component of intestinal glucose absorption is mediated by the glucose-induced recruitment of GLUT2 to the brush-border membrane. Biochem J. 2000;350:155-162.
    • (2000) Biochem J , vol.350 , pp. 155-162
    • Kellett, G.L.1    Helliwell, P.A.2
  • 159
    • 40949160221 scopus 로고    scopus 로고
    • Insulin internalizes GLUT2 in the enterocytes of healthy but not insulin-resistant mice
    • Tobin V, Le Gall M, Fioramonti X, et al. Insulin internalizes GLUT2 in the enterocytes of healthy but not insulin-resistant mice. Diabetes. 2008;57:555-562.
    • (2008) Diabetes , vol.57 , pp. 555-562
    • Tobin, V.1    Le Gall, M.2    Fioramonti, X.3
  • 160
    • 0034663671 scopus 로고    scopus 로고
    • Stimulation of fructose transport across the intestinal brush-border membrane by PMA is mediated by GLUT2 and dynamically regulated by protein kinase C
    • Helliwell P, Richardson M, Affleck J, Kellett G. Stimulation of fructose transport across the intestinal brush-border membrane by PMA is mediated by GLUT2 and dynamically regulated by protein kinase C. Biochem J. 2000;350:149-154.
    • (2000) Biochem J , vol.350 , pp. 149-154
    • Helliwell, P.1    Richardson, M.2    Affleck, J.3    Kellett, G.4
  • 161
    • 58149312534 scopus 로고    scopus 로고
    • An energy supply network of nutrient absorption coordinated by calcium and T1R taste receptors in rat small intestine
    • Mace OJ, Lister N, Morgan E, et al. An energy supply network of nutrient absorption coordinated by calcium and T1R taste receptors in rat small intestine. J Physiol. 2009;587 Pt 1:195-210.
    • J Physiol. 2009;587 Pt , vol.1 , pp. 195-210
    • Mace, O.J.1    Lister, N.2    Morgan, E.3
  • 162
    • 0031697245 scopus 로고    scopus 로고
    • Basolateral D-glucose transport activity along the crypt-villus axis in rat jejunum and upregulation induced by gastric inhibitory peptide and glucagon-like peptide-2
    • Cheeseman CI, O’Neill D. Basolateral D-glucose transport activity along the crypt-villus axis in rat jejunum and upregulation induced by gastric inhibitory peptide and glucagon-like peptide-2. Exp Physiol. 1998;83:605-616.
    • (1998) Exp Physiol , vol.83 , pp. 605-616
    • Cheeseman, C.I.1    O’Neill, D.2
  • 163
    • 6444243493 scopus 로고    scopus 로고
    • Stress and glucocorticoid inhibit apical GLUT2-trafficking and intestinal glucose absorption in rat small intestine
    • Shepherd EJ, Helliwell PA, Mace OJ, Morgan EL, Patel N, Kellett GL. Stress and glucocorticoid inhibit apical GLUT2-trafficking and intestinal glucose absorption in rat small intestine. J Physiol. 2004;560 Pt 1: 281-290.
    • (2004) J Physiol , vol.560 , pp. 281-290
    • Shepherd, E.J.1    Helliwell, P.A.2    Mace, O.J.3    Morgan, E.L.4    Patel, N.5    Kellett, G.L.6
  • 164
    • 22744432789 scopus 로고    scopus 로고
    • Intestinal gluconeogenesis and glucose transport according to body fuel availability in rats
    • Habold C, Foltzer-Jourdainne C, Le Maho Y, Lignot J-H, Oudart H. Intestinal gluconeogenesis and glucose transport according to body fuel availability in rats. J Physiol. 2005;566 Pt 2:575-586.
    • (2005) J Physiol , vol.566 , pp. 575-586
    • Habold, C.1    Foltzer-Jourdainne, C.2    Le Maho, Y.3    Lignot, J.-H.4    Oudart, H.5
  • 165
    • 84920263464 scopus 로고    scopus 로고
    • The impact of high-fat diet on metabolism and immune defense in small intestine mucosa
    • Friedrich A, Keller T, Mann M, Koepsell H. The impact of high-fat diet on metabolism and immune defense in small intestine mucosa. J Proteome Res. 2015;14:353-365.
    • (2015) J Proteome Res , vol.14 , pp. 353-365
    • Friedrich, A.1    Keller, T.2    Mann, M.3    Koepsell, H.4
  • 166
    • 84904797805 scopus 로고    scopus 로고
    • Live imaging of GLUT2 glucose-dependent trafficking and its inhibition in polarized epithelial cysts
    • Cohen M, Kitsberg D, Tsytkin S, Shulman M, Aroeti B, Nahmias Y. Live imaging of GLUT2 glucose-dependent trafficking and its inhibition in polarized epithelial cysts. Open Biol. 2014;4:140091.
    • (2014) Open Biol , vol.4
    • Cohen, M.1    Kitsberg, D.2    Tsytkin, S.3    Shulman, M.4    Aroeti, B.5    Nahmias, Y.6
  • 167
    • 0043123337 scopus 로고    scopus 로고
    • Glucose uptake in PC12 cells: GLUT3 vesicle trafficking and fusion as revealed with a novel GLUT3-GFP fusion protein
    • Greenlee W, Heather M, Uemura E, Carpenter SL, Doyle RT, Buss JE. Glucose uptake in PC12 cells: GLUT3 vesicle trafficking and fusion as revealed with a novel GLUT3-GFP fusion protein. J Neurosci Res. 2003;73:518-525.
    • (2003) J Neurosci Res , vol.73 , pp. 518-525
    • Greenlee, W.1    Heather, M.2    Uemura, E.3    Carpenter, S.L.4    Doyle, R.T.5    Buss, J.E.6
  • 168
    • 84964696955 scopus 로고    scopus 로고
    • Glucose transporter 3 is a rab11-dependent trafficking cargo and its transport to the cell surface is reduced in neurons of CAG140 Huntington’s disease mice
    • McClory H, Williams D, Sapp E, et al. Glucose transporter 3 is a rab11-dependent trafficking cargo and its transport to the cell surface is reduced in neurons of CAG140 Huntington’s disease mice. Acta Neuropathol Commun. 2014;2:1-9.
    • (2014) Acta Neuropathol Commun , vol.2 , pp. 1-9
    • McClory, H.1    Williams, D.2    Sapp, E.3
  • 169
    • 0035988216 scopus 로고    scopus 로고
    • Glucose transporter 8 expression and translocation are critical for murine blastocyst survival
    • Pinto AB, Carayannopoulos MO, Hoehn A, Dowd L, Moley KH. Glucose transporter 8 expression and translocation are critical for murine blastocyst survival. Biol Reprod. 2002;66:1729-1733.
    • (2002) Biol Reprod , vol.66 , pp. 1729-1733
    • Pinto, A.B.1    Carayannopoulos, M.O.2    Hoehn, A.3    Dowd, L.4    Moley, K.H.5
  • 170
    • 0034691172 scopus 로고    scopus 로고
    • GLUT8 is a glucose transporter responsible for insulin-stimulated glucose uptake in the blastocyst
    • Carayannopoulos MO, Chi MM, Cui Y, et al. GLUT8 is a glucose transporter responsible for insulin-stimulated glucose uptake in the blastocyst. Proc Natl Acad Sci U S A. 2000;97:7313-7318.
    • (2000) Proc Natl Acad Sci U S A , vol.97 , pp. 7313-7318
    • Carayannopoulos, M.O.1    Chi, M.M.2    Cui, Y.3
  • 171
    • 0142024945 scopus 로고    scopus 로고
    • Syntaxin 4 expression affects glucose transporter 8 translocation and embryo survival
    • Wyman AH, Chi M, Riley J, et al. Syntaxin 4 expression affects glucose transporter 8 translocation and embryo survival. Mol Endocrinol. 2003;17:2096-2102.
    • (2003) Mol Endocrinol , vol.17 , pp. 2096-2102
    • Wyman, A.H.1    Chi, M.2    Riley, J.3
  • 172
    • 0037078231 scopus 로고    scopus 로고
    • Peripheral glucose administration stimulates the translocation of GLUT8 glucose transporter to the endoplasmic reticulum in the rat hippocampus
    • Piroli GG, Grillo CA, Hoskin EK, et al. Peripheral glucose administration stimulates the translocation of GLUT8 glucose transporter to the endoplasmic reticulum in the rat hippocampus. J Comp Neurol. 2002;452:103-114.
    • (2002) J Comp Neurol , vol.452 , pp. 103-114
    • Piroli, G.G.1    Grillo, C.A.2    Hoskin, E.K.3
  • 173
    • 27744523940 scopus 로고    scopus 로고
    • GLUT8 contains [DE]XXXL[LI] sorting motif and localizes to a late endomosal/lysosomal compartment
    • Augustin R, Riley J, Moley KH. GLUT8 contains [DE]XXXL[LI] sorting motif and localizes to a late endomosal/lysosomal compartment. Traffic. 2005;6:1196-1212.
    • (2005) Traffic , vol.6 , pp. 1196-1212
    • Augustin, R.1    Riley, J.2    Moley, K.H.3
  • 174
    • 59849115547 scopus 로고    scopus 로고
    • Similar [DE]XXX[LI] motif differentially target GLUT8 and GLUT12 in Chinese hamster ovary cells
    • Flessner L, Moley K. Similar [DE]XXX[LI] motif differentially target GLUT8 and GLUT12 in Chinese hamster ovary cells. Traffic. 2010;10:324-333.
    • (2010) Traffic , vol.10 , pp. 324-333
    • Flessner, L.1    Moley, K.2
  • 175
    • 0037078231 scopus 로고    scopus 로고
    • Peripheral glucose administration stimulates the translocation of GLUT8 glucose transporter to the endoplasmic reticulum in the rat hippocampus
    • Piroli GG, Grillo C A., Hoskin EK, et al. Peripheral glucose administration stimulates the translocation of GLUT8 glucose transporter to the endoplasmic reticulum in the rat hippocampus. J Comp Neurol. 2002;452(2):103-114.
    • (2002) J Comp Neurol , vol.452 , Issue.2 , pp. 103-114
    • Piroli, G.G.1    Grillo, C.A.2    Hoskin, E.K.3
  • 176
    • 78651325787 scopus 로고    scopus 로고
    • The amino acids upstream of NH(2)-terminal dileucine motif play a role in regulating the intracellular sorting of the Class III transporters GLUT8 and GLUT12
    • Aerni-Flessner L, Otu M, Moley K. The amino acids upstream of NH(2)-terminal dileucine motif play a role in regulating the intracellular sorting of the Class III transporters GLUT8 and GLUT12. Mol Membr Biol. 2011;28:30-41.
    • (2011) Mol Membr Biol , vol.28 , pp. 30-41
    • Aerni-Flessner, L.1    Otu, M.2    Moley, K.3
  • 177
    • 0025819954 scopus 로고
    • Defective glucose transport across the blood-brain barrier as a cause of persistent hypoglycorrhachia, seizures, and development delay
    • De Vivo DC, Trifiletti RR, Jacobson RI, Ronen GM, Behmand RA, Harik SI. Defective glucose transport across the blood-brain barrier as a cause of persistent hypoglycorrhachia, seizures, and development delay. N Engl J Med. 1991;325:703-709.
    • (1991) N Engl J Med , vol.325 , pp. 703-709
    • De Vivo, D.C.1    Trifiletti, R.R.2    Jacobson, R.I.3    Ronen, G.M.4    Behmand, R.A.5    Harik, S.I.6
  • 178
    • 84927759790 scopus 로고    scopus 로고
    • Clinical reasoning: Novel GLUT1-DS mutation refractory seizures and ataxia
    • Sen S, Keough K, Gibson J. Clinical reasoning: novel GLUT1-DS mutation refractory seizures and ataxia. Am Acad Neurol. 2015;84:e111-e114.
    • (2015) Am Acad Neurol , vol.84 , pp. e111-e114
    • Sen, S.1    Keough, K.2    Gibson, J.3
  • 179
    • 84926387851 scopus 로고    scopus 로고
    • Pathogenic mutations causing glucose transport defects in GLUT1 transporter: The role of intermolecular forces in protein structure-function
    • Raja M, Kinne RK. Pathogenic mutations causing glucose transport defects in GLUT1 transporter: the role of intermolecular forces in protein structure-function. Biophys Chem. 2015;200:9-17.
    • (2015) Biophys Chem , vol.200 , pp. 9-17
    • Raja, M.1    Kinne, R.K.2
  • 180
    • 84255194777 scopus 로고    scopus 로고
    • Glut1 deficiency syndrome and erythrocyte glucose uptake assay
    • Yang H, Wang D, Engelstad K, et al. Glut1 deficiency syndrome and erythrocyte glucose uptake assay. Ann Neurol. 2011;70:996-1005.
    • (2011) Ann Neurol , vol.70 , pp. 996-1005
    • Yang, H.1    Wang, D.2    Engelstad, K.3
  • 181
    • 0347580548 scopus 로고
    • Familial panmyelophthisis, Fanconi syndrome in adults
    • Rohr K. Familial panmyelophthisis, Fanconi syndrome in adults. Blood. 1949;4:130-141.
    • (1949) Blood , vol.4 , pp. 130-141
    • Rohr, K.1
  • 182
    • 84943627086 scopus 로고    scopus 로고
    • Mutation in GLUT2, the gene for the liver-type glucose transporter, in patients with Fanconi-Bickel syndrome
    • Santer R, Schneppenheim R, Dombrowske A, Gotzer H, Steinmann B, Schaub J. Mutation in GLUT2, the gene for the liver-type glucose transporter, in patients with Fanconi-Bickel syndrome. Nat Genet. 1997;15:57-61.
    • (1997) Nat Genet , vol.15 , pp. 57-61
    • Santer, R.1    Schneppenheim, R.2    Dombrowske, A.3    Gotzer, H.4    Steinmann, B.5    Schaub, J.6
  • 183
    • 0042303943 scopus 로고    scopus 로고
    • Hypothalamic ependymal-glial cells express the glucose transporter GLUT2, a protein involved in glucose sensing
    • Delos Angeles García M, Millán C, Balmaceda-Aguilera C, et al. Hypothalamic ependymal-glial cells express the glucose transporter GLUT2, a protein involved in glucose sensing. J Neurochem. 2003;86: 709-724.
    • (2003) J Neurochem , vol.86 , pp. 709-724
    • Delos Angeles García, M.1    Millán, C.2    Balmaceda-Aguilera, C.3
  • 184
    • 84877059420 scopus 로고    scopus 로고
    • N-glycosylation modulates the membrane sub-domain distribution and activity of glucose transporter 2 in pancreatic beta cells
    • Ohtsubo K, Takamatsu S, Gao C, Korekane H, Kurosawa TM, Taniguchi N. N-glycosylation modulates the membrane sub-domain distribution and activity of glucose transporter 2 in pancreatic beta cells. Biochem Biophys Res Comm. 2013;434:346-351.
    • (2013) Biochem Biophys Res Comm , vol.434 , pp. 346-351
    • Ohtsubo, K.1    Takamatsu, S.2    Gao, C.3    Korekane, H.4    Kurosawa, T.M.5    Taniguchi, N.6
  • 185
    • 84920157959 scopus 로고    scopus 로고
    • Segregation of a novel homozygous 6 nucleotide deletion in GLUT2 gene in a Fanconi-Bickel syndrome family
    • Abbasi F, Azizi F, Javaheri M, Mosallanejad A, Ebrahim-Habibi A, Ghafouri-Fard S. Segregation of a novel homozygous 6 nucleotide deletion in GLUT2 gene in a Fanconi-Bickel syndrome family. Gene. 2015;557:103-105.
    • (2015) Gene , vol.557 , pp. 103-105
    • Abbasi, F.1    Azizi, F.2    Javaheri, M.3    Mosallanejad, A.4    Ebrahim-Habibi, A.5    Ghafouri-Fard, S.6
  • 186
    • 57049174486 scopus 로고    scopus 로고
    • Mutations in glucose transporter 9 gene SLC2A9 cause renal hypouricemia
    • Matsuo H, Chiba T, Nagamori S, et al. Mutations in glucose transporter 9 gene SLC2A9 cause renal hypouricemia. Am J Hum Genet. 2008;83: 744-751.
    • (2008) Am J Hum Genet , vol.83 , pp. 744-751
    • Matsuo, H.1    Chiba, T.2    Nagamori, S.3
  • 187
    • 84892153409 scopus 로고    scopus 로고
    • Recurrent exercise-induced acute renal failure in a young Pakistani man with severe renal hypouricemia and SLC2A9 compound heterozygosity
    • Jeannin G, Chiarelli N, Gaggiotti M, et al. Recurrent exercise-induced acute renal failure in a young Pakistani man with severe renal hypouricemia and SLC2A9 compound heterozygosity. BMC Med Genet. 2014:15:1-8.
    • (2014) BMC Med Genet , vol.15 , pp. 1-8
    • Jeannin, G.1    Chiarelli, N.2    Gaggiotti, M.3
  • 188
    • 84930207611 scopus 로고    scopus 로고
    • A novel homozygous GLUT9 mutation cause recurrent exercise-induced acute renal failure and posterior reversible encephalopathy syndrome
    • Mou L, Jiang L, Hu Y. A novel homozygous GLUT9 mutation cause recurrent exercise-induced acute renal failure and posterior reversible encephalopathy syndrome. J Nephrol. 2015;28:387-392.
    • (2015) J Nephrol , vol.28 , pp. 387-392
    • Mou, L.1    Jiang, L.2    Hu, Y.3
  • 189
    • 79952622269 scopus 로고    scopus 로고
    • Novel homozygous insertion in SLC2A9 gene caused renal hypouricemia
    • Stiburkova B, Ichida K, Sebesta I. Novel homozygous insertion in SLC2A9 gene caused renal hypouricemia. Mol Genet Metab. 2011;102: 430-435.
    • (2011) Mol Genet Metab , vol.102 , pp. 430-435
    • Stiburkova, B.1    Ichida, K.2    Sebesta, I.3
  • 190
    • 84861137621 scopus 로고    scopus 로고
    • Two novel homozygous SLC2A9 mutations cause renal hypouricemia type 2
    • Dinour D, Gray NK, Ganon L, et al. Two novel homozygous SLC2A9 mutations cause renal hypouricemia type 2. Nephrol Dial Transplant. 2012;27:1035-1041.
    • (2012) Nephrol Dial Transplant , vol.27 , pp. 1035-1041
    • Dinour, D.1    Gray, N.K.2    Ganon, L.3
  • 191
    • 84863980287 scopus 로고    scopus 로고
    • Acute kidney injury in two children caused by renal hypouricaemia type 2
    • Stiburkova B, Taylor J, Marinaki AM, Sebesta I. Acute kidney injury in two children caused by renal hypouricaemia type 2. Pediatr Nephrol. 2012;27:1411-1415.
    • (2012) Pediatr Nephrol , vol.27 , pp. 1411-1415
    • Stiburkova, B.1    Taylor, J.2    Marinaki, A.M.3    Sebesta, I.4
  • 192
    • 75149114710 scopus 로고    scopus 로고
    • Homozygous SLC2A9 mutations cause severe renal hypouricemia
    • Dinour D, Gray NK, Campbell S, et al. Homozygous SLC2A9 mutations cause severe renal hypouricemia. J Am Soc Nephrol. 2010;21:64-72.
    • (2010) J am Soc Nephrol , vol.21 , pp. 64-72
    • Dinour, D.1    Gray, N.K.2    Campbell, S.3
  • 193
    • 33746900560 scopus 로고
    • On the origin of cancer cells
    • Warburg O. On the origin of cancer cells. Oncologia. 1956;9:75-83.
    • (1956) Oncologia , vol.9 , pp. 75-83
    • Warburg, O.1
  • 194
    • 0019883373 scopus 로고
    • Warburg effect revisited: Merger of biochemistry and molecular biology
    • Racker E, Spector M. Warburg effect revisited: merger of biochemistry and molecular biology. Science. 1981;213:303-307.
    • (1981) Science , vol.213 , pp. 303-307
    • Racker, E.1    Spector, M.2
  • 195
    • 84930364246 scopus 로고    scopus 로고
    • Small animal PET imaging of pancreatic cancer xenografts using 64Cu labeled monoclonal antibody MAb159
    • Wang H, Li D, Liu S, et al. Small animal PET imaging of pancreatic cancer xenografts using 64Cu labeled monoclonal antibody MAb159. J Nucl Med. 2015:56:908-913.
    • (2015) J Nucl Med , vol.56 , pp. 908-913
    • Wang, H.1    Li, D.2    Liu, S.3
  • 196
    • 84931566556 scopus 로고    scopus 로고
    • PET-CT use and the occurrence of elective nodal failure in involved field radiotherapy for non-small cell lung cancer: A systematic review
    • Kepka L, Socha J. PET-CT use and the occurrence of elective nodal failure in involved field radiotherapy for non-small cell lung cancer: a systematic review. Radiother Oncol. 2015;115:151-156.
    • (2015) Radiother Oncol , vol.115 , pp. 151-156
    • Kepka, L.1    Socha, J.2
  • 197
    • 84943361914 scopus 로고    scopus 로고
    • Correlation between 18F-FDG uptake on PET/CT and prognostic factors in triple-negative breast cancer
    • April 23, 2015. [Epub ahead of print.]
    • Koo HR, Park JS, Kang KW, Han W, Park IA, Moon WK. Correlation between 18F-FDG uptake on PET/CT and prognostic factors in triple-negative breast cancer. Eur Radiol. April 23, 2015. [Epub ahead of print.]
    • Eur Radiol
    • Koo, H.R.1    Park, J.S.2    Kang, K.W.3    Han, W.4    Park, I.A.5    Moon, W.K.6
  • 198
    • 84938849601 scopus 로고    scopus 로고
    • Repeatability of 18F-FDG PET/CT in advanced non-small cell lung cancer: Prospective assessment in two multicenter trials
    • April 23, 2015. [Epub ahead of print.]
    • Weber WA, Gatsonis CA, Mozley PD, et al. Repeatability of 18F-FDG PET/CT in advanced non-small cell lung cancer: prospective assessment in two multicenter trials. J Nucl Med. April 23, 2015. [Epub ahead of print.]
    • J Nucl Med
    • Weber, W.A.1    Gatsonis, C.A.2    Mozley, P.D.3
  • 199
    • 34347335783 scopus 로고    scopus 로고
    • Fluorescent fructose derivatives for imaging breast cancer cells
    • Levi J, Cheng Z, Gheysens O, et al. Fluorescent fructose derivatives for imaging breast cancer cells. Bioconjug Chem. 2007;18:628-634.
    • (2007) Bioconjug Chem , vol.18 , pp. 628-634
    • Levi, J.1    Cheng, Z.2    Gheysens, O.3
  • 200
    • 0029926785 scopus 로고    scopus 로고
    • Expression of the fructose transporter GLUT5 in human breast cancer
    • Zamora-León SP, Golde D, Concha I, et al. Expression of the fructose transporter GLUT5 in human breast cancer. Proc Natl Acad Sci U S A. 1996;93:1847-1852.
    • (1996) Proc Natl Acad Sci U S A , vol.93 , pp. 1847-1852
    • Zamora-León, S.P.1    Golde, D.2    Concha, I.3
  • 201
    • 79955478798 scopus 로고    scopus 로고
    • Radiopharmacological evaluation of 6-deoxy-6-[18F]fluoro-d-fructose as a radiotracer for PET imaging of GLUT5 in breast cancer
    • Wuest M, Trayner BJ, Grant TN, et al. Radiopharmacological evaluation of 6-deoxy-6-[18F]fluoro-d-fructose as a radiotracer for PET imaging of GLUT5 in breast cancer. Nucl Med Biol. 2011;38:461-475.
    • (2011) Nucl Med Biol , vol.38 , pp. 461-475
    • Wuest, M.1    Trayner, B.J.2    Grant, T.N.3
  • 202
    • 67651114030 scopus 로고    scopus 로고
    • Synthesis and characterization of 6-deoxy-6-fluoro-d-fructose as a potential compound for imaging breast cancer with PET
    • Trayner BJ, Grant TN, West FG, Cheeseman CI. Synthesis and characterization of 6-deoxy-6-fluoro-d-fructose as a potential compound for imaging breast cancer with PET. Bioorg Med Chem. 2009;17: 5488-5495.
    • (2009) Bioorg Med Chem , vol.17 , pp. 5488-5495
    • Trayner, B.J.1    Grant, T.N.2    West, F.G.3    Cheeseman, C.I.4
  • 203
    • 84889571154 scopus 로고    scopus 로고
    • Heart energy metabolism impairment in Western-diet induced obese mice
    • Neves FA, Cortez E, Bernardo AF, et al. Heart energy metabolism impairment in Western-diet induced obese mice. J Nutr Biochem. 2014;25:50-57.
    • (2014) J Nutr Biochem , vol.25 , pp. 50-57
    • Neves, F.A.1    Cortez, E.2    Bernardo, A.F.3
  • 204
    • 84861938337 scopus 로고    scopus 로고
    • GLUT4, GLUT1, and GLUT8 are the dominant GLUT transcripts expressed in the murine left ventricle
    • Aerni-Flessner L, Abi-Jaoude M, Koenig A, Payne M, Hruz PW. GLUT4, GLUT1, and GLUT8 are the dominant GLUT transcripts expressed in the murine left ventricle. Cardiovasc Diabetol. 2012;11:63-73.
    • (2012) Cardiovasc Diabetol , vol.11 , pp. 63-73
    • Aerni-Flessner, L.1    Abi-Jaoude, M.2    Koenig, A.3    Payne, M.4    Hruz, P.W.5
  • 205
    • 84891709280 scopus 로고    scopus 로고
    • Inducible overexpression of GLUT1 prevents mitochondrial dysfunction and attenuates structural remodeling in pressure overload but does not prevent left ventricular dysfunction
    • Pereira RO, Wende AR, Olsen C, et al. Inducible overexpression of GLUT1 prevents mitochondrial dysfunction and attenuates structural remodeling in pressure overload but does not prevent left ventricular dysfunction. J Am Heart Assoc. 2013;2:e000301.
    • (2013) J am Heart Assoc , vol.2
    • Pereira, R.O.1    Wende, A.R.2    Olsen, C.3
  • 207
  • 208
    • 84912535396 scopus 로고    scopus 로고
    • Glucose transporter 1 expressing proinflammatory monocytes are elevated in combination antiretroviral therapy treated and untreated HIV+ subjects
    • Palmer CS, Anzinger JJ, Zhou J, et al. Glucose transporter 1 expressing proinflammatory monocytes are elevated in combination antiretroviral therapy treated and untreated HIV+ subjects. J Immunol. 2014;193: 5595-5603.
    • (2014) J Immunol , vol.193 , pp. 5595-5603
    • Palmer, C.S.1    Anzinger, J.J.2    Zhou, J.3
  • 209
    • 84861215287 scopus 로고    scopus 로고
    • Multiple myeloma exhibits novel dependence on GLUT4, GLUT8, and GLUT11: Implications for glucose transporter- directed therapy
    • McBrayer SK, Cheng JC, Singhal S, Krett NL, Rosen ST, Shanmugam M. Multiple myeloma exhibits novel dependence on GLUT4, GLUT8, and GLUT11: implications for glucose transporter- directed therapy. Blood. 2012;119:4686-4697.
    • (2012) Blood , vol.119 , pp. 4686-4697
    • McBrayer, S.K.1    Cheng, J.C.2    Singhal, S.3    Krett, N.L.4    Rosen, S.T.5    Shanmugam, M.6
  • 211
    • 0032104120 scopus 로고    scopus 로고
    • Evidence for defects in the trafficking and translocation of GLUT4 glucose transporters in skeletal muscle as a cause of human insulin resistance
    • Garvey WT, Maianu L, Zhu JH, Brechtel-Hook G, Wallace P, Baron AD. Evidence for defects in the trafficking and translocation of GLUT4 glucose transporters in skeletal muscle as a cause of human insulin resistance. J Clin Invest. 1998;101:2377-2386.
    • (1998) J Clin Invest , vol.101 , pp. 2377-2386
    • Garvey, W.T.1    Maianu, L.2    Zhu, J.H.3    Brechtel-Hook, G.4    Wallace, P.5    Baron, A.D.6
  • 212
    • 84907804616 scopus 로고    scopus 로고
    • GLUT4 defects in adipose tissue are early signs of metabolic alterations in alms1GT/GT, a mouse model for obesity and insulin resistance
    • Favaretto F, Milan G, Collin GB, et al. GLUT4 defects in adipose tissue are early signs of metabolic alterations in alms1GT/GT, a mouse model for obesity and insulin resistance. PLoS One. 2014;9:e109540.
    • (2014) Plos One , vol.9
    • Favaretto, F.1    Milan, G.2    Collin, G.B.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.