-
1
-
-
74949133862
-
Myocardial fatty acid metabolism in health and disease
-
Lopaschuk GD, Ussher JR, Folmes CD, Jaswal JS, Stanley WC. Myocardial fatty acid metabolism in health and disease. Physiol Rev. 2010;90(1):207-258.
-
(2011)
Physiol Rev
, vol.90
, Issue.1
, pp. 207-258
-
-
Lopaschuk, G.D.1
Ussher, J.R.2
Folmes, C.D.3
Jaswal, J.S.4
Stanley, W.C.5
-
2
-
-
0026712942
-
Ultrastructural quantitation of mitochondria and myofilaments in cardiac muscle from 10 different animal species including man
-
Barth E, Stammler G, Speiser B, Schaper J. Ultrastructural quantitation of mitochondria and myofilaments in cardiac muscle from 10 different animal species including man. J Mol Cell Cardiol. 1992;24(7):669-681.
-
(1992)
J Mol Cell Cardiol
, vol.24
, Issue.7
, pp. 669-681
-
-
Barth, E.1
Stammler, G.2
Speiser, B.3
Schaper, J.4
-
3
-
-
0034960785
-
Mitochondrial dysfunction in cardiac disease: Ischemia-reperfusion, aging, and heart failure
-
Lesnefsky EJ, Moghaddas S, Tandler B, Kerner J, Hoppel CL. Mitochondrial dysfunction in cardiac disease: ischemia-reperfusion, aging, and heart failure. J Mol Cell Cardiol. 2001;33(6):1065-1089.
-
(2001)
J Mol Cell Cardiol
, vol.33
, Issue.6
, pp. 1065-1089
-
-
Lesnefsky, E.J.1
Moghaddas, S.2
Tandler, B.3
Kerner, J.4
Hoppel, C.L.5
-
4
-
-
0026537433
-
Adaptations of glucose and fatty acid metabolism during perinatal period and suckling-weaning transition
-
Girard J, Ferre P, Pegorier JP, Duee PH. Adaptations of glucose and fatty acid metabolism during perinatal period and suckling-weaning transition. Physiol Rev. 1992;72(2):507-562.
-
(1992)
Physiol Rev
, vol.72
, Issue.2
, pp. 507-562
-
-
Girard, J.1
Ferre, P.2
Pegorier, J.P.3
Duee, P.H.4
-
5
-
-
47549114849
-
Transcriptional coactivators PGC-1alpha and PGC-lbeta control overlapping programs required for perinatal maturation of the heart
-
Lai L, et al. Transcriptional coactivators PGC-1alpha and PGC-lbeta control overlapping programs required for perinatal maturation of the heart. Genes Dev. 2008;22(14):1948-1961.
-
(2008)
Genes Dev
, vol.22
, Issue.14
, pp. 1948-1961
-
-
Lai, L.1
-
6
-
-
84865544952
-
Mitochondrial fission, fusion, and stress
-
Youle RJ, van der Bliek AM. Mitochondrial fission, fusion, and stress. Science. 2012;337(6098):1062-1065.
-
(2012)
Science
, vol.337
, Issue.6098
, pp. 1062-1065
-
-
Youle, R.J.1
Van Der Bliek, A.M.2
-
7
-
-
84867724832
-
Mitochondria and mitophagy: The yin and yang of cell death control
-
Kubli DA, Gustafsson AB. Mitochondria and mitophagy: the yin and yang of cell death control. Circ Res. 2012;111(9):1208-1221.
-
(2012)
Circ Res
, vol.111
, Issue.9
, pp. 1208-1221
-
-
Kubli, D.A.1
Gustafsson, A.B.2
-
8
-
-
84856109625
-
Mitochondrial fusion is essential for organelle function and cardiac homeostasis
-
Chen Y, Liu Y, Dorn GW. Mitochondrial fusion is essential for organelle function and cardiac homeostasis. Circ Res. 2011;109(12):1327-1331.
-
(2011)
Circ Res
, vol.109
, Issue.12
, pp. 1327-1331
-
-
Chen, Y.1
Liu, Y.2
Dorn, G.W.3
-
9
-
-
11144245626
-
The role of autophagy during the early neonatal starvation period
-
Kuma A, et al. The role of autophagy during the early neonatal starvation period. Nature. 2004;432(7020):1032-1036.
-
(2004)
Nature
, vol.432
, Issue.7020
, pp. 1032-1036
-
-
Kuma, A.1
-
10
-
-
34249714158
-
The role of autophagy in cardiomyocytes in the basal state and in response to hemodynamic stress
-
Nakai A, et al. The role of autophagy in cardiomyocytes in the basal state and in response to hemodynamic stress. Nat Med. 2007;13(5):619-624.
-
(2007)
Nat Med
, vol.13
, Issue.5
, pp. 619-624
-
-
Nakai, A.1
-
11
-
-
34347259219
-
ERRgamma directs and maintains the transition to oxidative metabolism in the postnatal heart
-
Alaynick WA, et al. ERRgamma directs and maintains the transition to oxidative metabolism in the postnatal heart. Cell Metab. 2007;6(1):13-24.
-
(2007)
Cell Metab
, vol.6
, Issue.1
, pp. 13-24
-
-
Alaynick, W.A.1
-
12
-
-
34247554887
-
Genome-wide orchestration of cardiac functions by the orphan nuclear receptors ERRα and γ
-
Dufour CR, et al. Genome-wide orchestration of cardiac functions by the orphan nuclear receptors ERRα and γ. Cell Metab. 2007;5(5):345-356.
-
(2007)
Cell Metab
, vol.5
, Issue.5
, pp. 345-356
-
-
Dufour, C.R.1
-
13
-
-
34347248013
-
The nuclear receptor ERRα is required for the bioenergetic and functional adaptation to cardiac pressure overload
-
Huss JM, et al. The nuclear receptor ERRα is required for the bioenergetic and functional adaptation to cardiac pressure overload. Cell Metab. 2007;6(1):25-37.
-
(2007)
Cell Metab
, vol.6
, Issue.1
, pp. 25-37
-
-
Huss, J.M.1
-
14
-
-
84894425052
-
A role for peroxisome proliferator-activated receptor γ coactivator-1 in the control of mitochondrial dynamics during postnatal cardiac growth
-
Martin OJ, et al. A role for peroxisome proliferator-activated receptor γ coactivator-1 in the control of mitochondrial dynamics during postnatal cardiac growth. Circ Res. 2014;114(4):626-636.
-
(2014)
Circ Res
, vol.114
, Issue.4
, pp. 626-636
-
-
Martin, O.J.1
-
15
-
-
22144434964
-
Transcriptional coactivator PGC-1α controls the energy state and contractile function of cardiac muscle
-
Arany Z, et al. Transcriptional coactivator PGC-1α controls the energy state and contractile function of cardiac muscle. Cell Metab. 2005;1(4):259-271.
-
(2005)
Cell Metab
, vol.1
, Issue.4
, pp. 259-271
-
-
Arany, Z.1
-
16
-
-
4644231528
-
Nuclear receptor signaling and cardiac energetics
-
Huss JM, Kelly DP. Nuclear receptor signaling and cardiac energetics. Circ Res. 2004;95(6):568-578.
-
(2004)
Circ Res
, vol.95
, Issue.6
, pp. 568-578
-
-
Huss, J.M.1
Kelly, D.P.2
-
17
-
-
73949099327
-
Increased muscle PGC-1α expression protects from sarcopenia and metabolic disease during aging
-
Wenz T, Rossi SG, Rotundo RL, Spiegelman BM, Moraes CT. Increased muscle PGC-1α expression protects from sarcopenia and metabolic disease during aging. Proc Natl Acad Sci U S A. 2009;106(48):20405-20410.
-
(2009)
Proc Natl Acad Sci U S A
, vol.106
, Issue.48
, pp. 20405-20410
-
-
Wenz, T.1
Rossi, S.G.2
Rotundo, R.L.3
Spiegelman, B.M.4
Moraes, C.T.5
-
18
-
-
84925845280
-
PGC-1α modulates denervation-induced mitophagy in skeletal muscle
-
Vainshtein A, Desjardins EM, Armani A, Sandri M, Hood DA. PGC-1α modulates denervation-induced mitophagy in skeletal muscle. Skelet Muscle. 2015;5:9.
-
(2015)
Skelet Muscle
, vol.5
, pp. 9
-
-
Vainshtein, A.1
Desjardins, E.M.2
Armani, A.3
Sandri, M.4
Hood, D.A.5
-
19
-
-
84891014899
-
The return of the nucleus: Transcriptional and epigenetic control of autophagy
-
Fullgrabe J, Klionsky DJ, Joseph B. The return of the nucleus: transcriptional and epigenetic control of autophagy. Nat Rev Mol Cell Biol. 2014;15(1):65-74.
-
(2014)
Nat Rev Mol Cell Biol
, vol.15
, Issue.1
, pp. 65-74
-
-
Fullgrabe, J.1
Klionsky, D.J.2
Joseph, B.3
-
20
-
-
78149481592
-
Mammalian Kruppellike factors in health and diseases
-
McConnell BB, Yang VW. Mammalian Kruppellike factors in health and diseases. Physiol Rev. 2010;90(4):1337-1381.
-
(2011)
Physiol Rev
, vol.90
, Issue.4
, pp. 1337-1381
-
-
McConnell, B.B.1
Yang, V.W.2
-
21
-
-
20144389501
-
Kruppel-like transcription factor KLF5 is a key regulator of adipocyte differentiation
-
Oishi Y, et al. Kruppel-like transcription factor KLF5 is a key regulator of adipocyte differentiation. Cell Metab. 2005;1(1):27-39.
-
(2005)
Cell Metab
, vol.1
, Issue.1
, pp. 27-39
-
-
Oishi, Y.1
-
22
-
-
33947575572
-
Regulation of gluconeogenesis by Kruppel-like factor 15
-
Gray S, et al. Regulation of gluconeogenesis by Kruppel-like factor 15. Cell Metab. 2007;5(4):305-312.
-
(2007)
Cell Metab
, vol.5
, Issue.4
, pp. 305-312
-
-
Gray, S.1
-
23
-
-
84890255267
-
Genome-wide analysis of histone marks identifying an epigenetic signature of promoters and enhancers underlying cardiac hypertrophy
-
Papait R, et al. Genome-wide analysis of histone marks identifying an epigenetic signature of promoters and enhancers underlying cardiac hypertrophy. Proc Natl Acad Sci U S A. 2013;110(50):20164-20169.
-
(2013)
Proc Natl Acad Sci U S A
, vol.110
, Issue.50
, pp. 20164-20169
-
-
Papait, R.1
-
24
-
-
77953713216
-
Kruppel-like factor 4 regulates pressure-induced cardiac hypertrophy
-
Liao X, et al. Kruppel-like factor 4 regulates pressure-induced cardiac hypertrophy. J Mol Cell Cardiol. 2010;49(2):334-338.
-
(2011)
J Mol Cell Cardiol
, vol.49
, Issue.2
, pp. 334-338
-
-
Liao, X.1
-
25
-
-
84871762432
-
Mitochondrial dynamics in heart disease
-
Dorn GW. Mitochondrial dynamics in heart disease. Biochim Biophys Acta. 2013;1833(1):233-241.
-
(2013)
Biochim Biophys Acta
, vol.1833
, Issue.1
, pp. 233-241
-
-
Dorn, G.W.1
-
26
-
-
0033803048
-
Peroxisome proliferator-activated receptor γ coactivator-1 promotes cardiac mitochondrial biogenesis
-
Lehman JJ, Barger PM, Kovacs A, Saffitz JE, Medeiros DM, Kelly DP. Peroxisome proliferator-activated receptor γ coactivator-1 promotes cardiac mitochondrial biogenesis. J Clin Invest. 2000;106(7):847-856.
-
(2000)
J Clin Invest
, vol.106
, Issue.7
, pp. 847-856
-
-
Lehman, J.J.1
Barger, P.M.2
Kovacs, A.3
Saffitz, J.E.4
Medeiros, D.M.5
Kelly, D.P.6
-
27
-
-
77949890048
-
Heart-specific deletion of CnB1 reveals multiple mechanisms whereby calcineurin regulates cardiac growth and function
-
Maillet M, et al. Heart-specific deletion of CnB1 reveals multiple mechanisms whereby calcineurin regulates cardiac growth and function. J Biol Chem. 2010;285(9):6716-6724.
-
(2011)
J Biol Chem
, vol.285
, Issue.9
, pp. 6716-6724
-
-
Maillet, M.1
-
28
-
-
18544365376
-
High-efficiency somatic mutagenesis in smooth muscle cells and cardiac myocytes in SM22α-Cre transgenic mice
-
Lepore JJ, Cheng L, Min Lu M, Mericko PA, Morrisey EE, Parmacek MS. High-efficiency somatic mutagenesis in smooth muscle cells and cardiac myocytes in SM22α-Cre transgenic mice. Genesis. 2005;41(4):179-184.
-
(2005)
Genesis
, vol.41
, Issue.4
, pp. 179-184
-
-
Lepore, J.J.1
Cheng, L.2
Min Lu, M.3
Mericko, P.A.4
Morrisey, E.E.5
Parmacek, M.S.6
-
29
-
-
77954231839
-
Smooth and cardiac muscle-selective knock-out of Kruppel-like factor 4 causes postnatal death and growth retardation
-
Yoshida T, et al. Smooth and cardiac muscle-selective knock-out of Kruppel-like factor 4 causes postnatal death and growth retardation. J Biol Chem. 2010;285(27):21175-21184.
-
(2011)
J Biol Chem
, vol.285
, Issue.27
, pp. 21175-21184
-
-
Yoshida, T.1
-
30
-
-
33745627066
-
Transverse aortic constriction leads to accelerated heart failure in mice lacking PPAR-γ coactivator 1α
-
Arany Z, Novikov M, Chin S, Ma Y, Rosenzweig A, Spiegelman BM. Transverse aortic constriction leads to accelerated heart failure in mice lacking PPAR-γ coactivator 1α. Proc Natl Acad Sci U S A. 2006;103(26):10086-10091.
-
(2006)
Proc Natl Acad Sci U S A
, vol.103
, Issue.26
, pp. 10086-10091
-
-
Arany, Z.1
Novikov, M.2
Chin, S.3
Ma, Y.4
Rosenzweig, A.5
Spiegelman, B.M.6
-
31
-
-
4744371376
-
Estrogen-related receptor α directs peroxisome proliferator-activated receptor alpha signaling in the transcriptional control of energy metabolism in cardiac and skeletal muscle
-
Huss JM, Torra IP, Staels B, Giguere V, Kelly DP. Estrogen-related receptor α directs peroxisome proliferator-activated receptor alpha signaling in the transcriptional control of energy metabolism in cardiac and skeletal muscle. Mol Cell Biol. 2004;24(20):9079-9091.
-
(2004)
Mol Cell Biol
, vol.24
, Issue.20
, pp. 9079-9091
-
-
Huss, J.M.1
Torra, I.P.2
Staels, B.3
Giguere, V.4
Kelly, D.P.5
-
32
-
-
28544438180
-
PGC-1α coactivates PDK4 gene expression via the orphan nuclear receptor ERRα: A mechanism for transcriptional control of muscle glucose metabolism
-
Wende AR, Huss JM, Schaeffer PJ, Giguere V, Kelly DP. PGC-1α coactivates PDK4 gene expression via the orphan nuclear receptor ERRα: a mechanism for transcriptional control of muscle glucose metabolism. Mol Cell Biol. 2005;25(24):10684-10694.
-
(2005)
Mol Cell Biol
, vol.25
, Issue.24
, pp. 10684-10694
-
-
Wende, A.R.1
Huss, J.M.2
Schaeffer, P.J.3
Giguere, V.4
Kelly, D.P.5
-
33
-
-
0037174798
-
Peroxisome proliferator-activated receptor coactivator-1alpha (PGC-1α) coactivates the cardiac-enriched nuclear receptors estrogen-related receptor-α and -γ. Identification of novel leucine-rich interaction motif within PGC-1α
-
Huss JM, Kopp RP, Kelly DP. Peroxisome proliferator-activated receptor coactivator-1alpha (PGC-1α) coactivates the cardiac-enriched nuclear receptors estrogen-related receptor-α and -γ. Identification of novel leucine-rich interaction motif within PGC-1α. J Biol Chem. 2002;277(43):40265-40274.
-
(2002)
J Biol Chem
, vol.277
, Issue.43
, pp. 40265-40274
-
-
Huss, J.M.1
Kopp, R.P.2
Kelly, D.P.3
-
34
-
-
33644660537
-
PGC-1 coactivators: Inducible regulators of energy metabolism in health and disease
-
Finck BN, Kelly DP. PGC-1 coactivators: inducible regulators of energy metabolism in health and disease. J Clin Invest. 2006;116(3):615-622.
-
(2006)
J Clin Invest
, vol.116
, Issue.3
, pp. 615-622
-
-
Finck, B.N.1
Kelly, D.P.2
-
35
-
-
84860705893
-
Mitochondrial DNA that escapes from autophagy causes inflammation and heart failure
-
Oka T, et al. Mitochondrial DNA that escapes from autophagy causes inflammation and heart failure. Nature. 2012;485(7397):251-255.
-
(2012)
Nature
, vol.485
, Issue.7397
, pp. 251-255
-
-
Oka, T.1
-
36
-
-
84876531457
-
PINK1-phosphorylated mitofusin 2 is a Parkin receptor for culling damaged mitochondria
-
Chen Y, Dorn GW. PINK1-phosphorylated mitofusin 2 is a Parkin receptor for culling damaged mitochondria. Science. 2013;340(6131):471-475.
-
(2013)
Science
, vol.340
, Issue.6131
, pp. 471-475
-
-
Chen, Y.1
Dorn, G.W.2
-
37
-
-
67649467294
-
Dynamics and diversity in autophagy mechanisms: Lessons from yeast
-
Nakatogawa H, Suzuki K, Kamada Y, Ohsumi Y. Dynamics and diversity in autophagy mechanisms: lessons from yeast. Nat Rev Mol Cell Biol. 2009;10(7):458-467.
-
(2009)
Nat Rev Mol Cell Biol
, vol.10
, Issue.7
, pp. 458-467
-
-
Nakatogawa, H.1
Suzuki, K.2
Kamada, Y.3
Ohsumi, Y.4
-
38
-
-
79960020908
-
The requirement of uncoordinated 51-like kinase 1 (ULK1) and ULK2 in the regulation of autophagy
-
Lee EJ, Tournier C. The requirement of uncoordinated 51-like kinase 1 (ULK1) and ULK2 in the regulation of autophagy. Autophagy. 2011;7(7):689-695.
-
(2011)
Autophagy
, vol.7
, Issue.7
, pp. 689-695
-
-
Lee, E.J.1
Tournier, C.2
-
39
-
-
79251587803
-
Phosphorylation of ULK1 (hATG1) by AMP-activated protein kinase connects energy sensing to mitophagy
-
Egan DF, et al. Phosphorylation of ULK1 (hATG1) by AMP-activated protein kinase connects energy sensing to mitophagy. Science. 2011;331(6016):456-461.
-
(2011)
Science
, vol.331
, Issue.6016
, pp. 456-461
-
-
Egan, D.F.1
-
40
-
-
79551598347
-
AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1
-
Kim J, Kundu M, Viollet B, Guan KL. AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat Cell Biol. 2011;13(2):132-141.
-
(2011)
Nat Cell Biol
, vol.13
, Issue.2
, pp. 132-141
-
-
Kim, J.1
Kundu, M.2
Viollet, B.3
Guan, K.L.4
-
41
-
-
44949181877
-
SUMOylation of Kruppel-like transcription factor 5 acts as a molecular switch in transcriptional programs of lipid metabolism involving PPAR-δ
-
Oishi Y, et al. SUMOylation of Kruppel-like transcription factor 5 acts as a molecular switch in transcriptional programs of lipid metabolism involving PPAR-δ. Nat Med. 2008;14(6):656-666.
-
(2008)
Nat Med
, vol.14
, Issue.6
, pp. 656-666
-
-
Oishi, Y.1
-
42
-
-
84924390186
-
KLF15 and PPARα cooperate to regulate cardiomyocyte lipid gene expression and oxidation
-
Prosdocimo DA, et al. KLF15 and PPARα cooperate to regulate cardiomyocyte lipid gene expression and oxidation. PPAR Res. 2015;2015:201625.
-
(2015)
PPAR Res
, vol.2015
, pp. 201625
-
-
Prosdocimo, D.A.1
-
43
-
-
80052550954
-
Expression profiling identifies Klf15 as a glucocorticoid target that regulates airway hyperresponsiveness
-
Masuno K, et al. Expression profiling identifies Klf15 as a glucocorticoid target that regulates airway hyperresponsiveness. Am J Respir Cell Mol Biol. 2011;45(3):642-649.
-
(2011)
Am J Respir Cell Mol Biol
, vol.45
, Issue.3
, pp. 642-649
-
-
Masuno, K.1
-
44
-
-
84878969321
-
The glucocorticoid receptor and KLF15 regulate gene expression dynamics and integrate signals through feed-forward circuitry
-
Sasse SK, et al. The glucocorticoid receptor and KLF15 regulate gene expression dynamics and integrate signals through feed-forward circuitry. Mol Cell Biol. 2013;33(11):2104-2115.
-
(2013)
Mol Cell Biol
, vol.33
, Issue.11
, pp. 2104-2115
-
-
Sasse, S.K.1
-
45
-
-
84863798866
-
Mechanistic role for a novel glucocorticoid-KLF11 (TIEG2) protein pathway in stress-induced monoamine oxidase A expression
-
Grunewald M, et al. Mechanistic role for a novel glucocorticoid-KLF11 (TIEG2) protein pathway in stress-induced monoamine oxidase A expression. J Biol Chem. 2012;287(29):24195-24206.
-
(2012)
J Biol Chem
, vol.287
, Issue.29
, pp. 24195-24206
-
-
Grunewald, M.1
-
46
-
-
42949145380
-
KLF4 is a FOXO target gene that suppresses B cell proliferation
-
Yusuf I, et al. KLF4 is a FOXO target gene that suppresses B cell proliferation. Int Immunol. 2008;20(5):671-681.
-
(2008)
Int Immunol
, vol.20
, Issue.5
, pp. 671-681
-
-
Yusuf, I.1
-
47
-
-
79960021457
-
Kruppel-like factor 4 regulates macrophage polarization
-
Liao X, et al. Kruppel-like factor 4 regulates macrophage polarization. J Clin Invest. 2011;121(7):2736-2749.
-
(2011)
J Clin Invest
, vol.121
, Issue.7
, pp. 2736-2749
-
-
Liao, X.1
-
48
-
-
30144440248
-
The KLF4 tumour suppressor is a transcriptional repressor of p53 that acts as a context-dependent oncogene
-
Rowland BD, Bernards R, Peeper DS. The KLF4 tumour suppressor is a transcriptional repressor of p53 that acts as a context-dependent oncogene. Nat Cell Biol. 2005;7(11):1074-1082.
-
(2005)
Nat Cell Biol
, vol.7
, Issue.11
, pp. 1074-1082
-
-
Rowland, B.D.1
Bernards, R.2
Peeper, D.S.3
-
49
-
-
79959908506
-
HIF induces human embryonic stem cell markers in cancer cells
-
Mathieu J, et al. HIF induces human embryonic stem cell markers in cancer cells. Cancer Res. 2011;71(13):4640-4652.
-
(2011)
Cancer Res
, vol.71
, Issue.13
, pp. 4640-4652
-
-
Mathieu, J.1
-
50
-
-
80052970004
-
PGC-1β deficiency accelerates the transition to heart failure in pressure overload hypertrophy
-
Riehle C, et al. PGC-1β deficiency accelerates the transition to heart failure in pressure overload hypertrophy. Circ Res. 2011;109(7):783-793.
-
(2011)
Circ Res
, vol.109
, Issue.7
, pp. 783-793
-
-
Riehle, C.1
-
51
-
-
0037072874
-
The Kruppel-like factor KLF15 regulates the insulin-sensitive glucose transporter GLUT4
-
Gray S, et al. The Kruppel-like factor KLF15 regulates the insulin-sensitive glucose transporter GLUT4. J Biol Chem. 2002;277(37):34322-34328.
-
(2002)
J Biol Chem
, vol.277
, Issue.37
, pp. 34322-34328
-
-
Gray, S.1
-
52
-
-
84876947878
-
Partner in fat metabolism: Role of KLFs in fat burning and reproductive behavior
-
Hashmi S, Zhang J, Siddiqui SS, Parhar RS, Bakheet R, Al-Mohanna F. Partner in fat metabolism: role of KLFs in fat burning and reproductive behavior. 3 Biotech. 2011;1(2):59-72.
-
(2011)
3 Biotech
, vol.1
, Issue.2
, pp. 59-72
-
-
Hashmi, S.1
Zhang, J.2
Siddiqui, S.S.3
Parhar, R.S.4
Bakheet, R.5
Al-Mohanna, F.6
-
53
-
-
84871393232
-
Kruppel-like factor KLF8 plays a critical role in adipocyte differentiation
-
Lee H, et al. Kruppel-like factor KLF8 plays a critical role in adipocyte differentiation. PLoS One. 2012;7(12):e52474.
-
(2012)
PLoS One
, vol.7
, Issue.12
, pp. e52474
-
-
Lee, H.1
-
54
-
-
77953394284
-
Kruppel-like factor KLF10 is a link between the circadian clock and metabolism in liver
-
Guillaumond F, et al. Kruppel-like factor KLF10 is a link between the circadian clock and metabolism in liver. Mol Cell Biol. 2010;30(12):3059-3070.
-
(2011)
Mol Cell Biol
, vol.30
, Issue.12
, pp. 3059-3070
-
-
Guillaumond, F.1
-
55
-
-
84880942314
-
Mouse KLF11 regulates hepatic lipid metabolism
-
Zhang H, et al. Mouse KLF11 regulates hepatic lipid metabolism. J Hepatol. 2013;58(4):763-770.
-
(2013)
J Hepatol
, vol.58
, Issue.4
, pp. 763-770
-
-
Zhang, H.1
-
56
-
-
84863230321
-
Klf15 orchestrates circadian nitrogen homeostasis
-
Jeyaraj D, et al. Klf15 orchestrates circadian nitrogen homeostasis. Cell Metab. 2012;15(3):311-323.
-
(2012)
Cell Metab
, vol.15
, Issue.3
, pp. 311-323
-
-
Jeyaraj, D.1
-
57
-
-
84896882746
-
Kruppel-like factor 15 is a critical regulator of cardiac lipid metabolism
-
Prosdocimo DA, et al. Kruppel-like factor 15 is a critical regulator of cardiac lipid metabolism. J Biol Chem. 2014;289(9):5914-5924.
-
(2014)
J Biol Chem
, vol.289
, Issue.9
, pp. 5914-5924
-
-
Prosdocimo, D.A.1
-
58
-
-
84860168859
-
Kruppel-like factor 15 regulates skeletal muscle lipid flux and exercise adaptation
-
Haldar SM, et al. Kruppel-like factor 15 regulates skeletal muscle lipid flux and exercise adaptation. Proc Natl Acad Sci U S A. 2012;109(17):6739-6744.
-
(2012)
Proc Natl Acad Sci U S A
, vol.109
, Issue.17
, pp. 6739-6744
-
-
Haldar, S.M.1
-
59
-
-
84862777353
-
Circadian rhythms govern cardiac repolarization and arrhythmogenesis
-
Jeyaraj D, et al. Circadian rhythms govern cardiac repolarization and arrhythmogenesis. Nature. 2012;483(7387):96-99.
-
(2012)
Nature
, vol.483
, Issue.7387
, pp. 96-99
-
-
Jeyaraj, D.1
-
60
-
-
84899446193
-
Endothelial Kruppel-like factor 4 regulates angiogenesis and the Notch signaling pathway
-
Hale AT, et al. Endothelial Kruppel-like factor 4 regulates angiogenesis and the Notch signaling pathway. J Biol Chem. 2014;289(17):12016-12028.
-
(2014)
J Biol Chem
, vol.289
, Issue.17
, pp. 12016-12028
-
-
Hale, A.T.1
-
61
-
-
33645123097
-
Immunohistochemical expression of endothelial markers CD31 CD34 von Willebrand factor and Fli-1 in normal human tissues
-
Pusztaszeri MP, Seelentag W, Bosman FT. Immunohistochemical expression of endothelial markers CD31, CD34, von Willebrand factor, and Fli-1 in normal human tissues. J Histochem Cytochem. 2006;54(4):385-395.
-
(2006)
J Histochem Cytochem
, vol.54
, Issue.4
, pp. 385-395
-
-
Pusztaszeri, M.P.1
Seelentag, W.2
Bosman, F.T.3
-
62
-
-
33644968171
-
Differential levels of tissue hypoxia in the developing chicken heart
-
Wikenheiser J, Doughman YQ, Fisher SA, Watanabe M. Differential levels of tissue hypoxia in the developing chicken heart. Dev Dyn. 2006;235(1):115-123.
-
(2006)
Dev Dyn
, vol.235
, Issue.1
, pp. 115-123
-
-
Wikenheiser, J.1
Doughman, Y.Q.2
Fisher, S.A.3
Watanabe, M.4
-
63
-
-
79953816704
-
Murine prolylcarboxypeptidase depletion induces vascular dysfunction with hypertension and faster arterial thrombosis
-
Adams GN, et al. Murine prolylcarboxypeptidase depletion induces vascular dysfunction with hypertension and faster arterial thrombosis. Blood. 2011;117(14):3929-3937.
-
(2011)
Blood
, vol.117
, Issue.14
, pp. 3929-3937
-
-
Adams, G.N.1
-
64
-
-
51749113618
-
Cardiac mitochondria in heart failure: Decrease in respirasomes and oxidative phosphorylation
-
Rosca MG, et al. Cardiac mitochondria in heart failure: decrease in respirasomes and oxidative phosphorylation. Cardiovasc Res. 2008;80(1):30-39.
-
(2008)
Cardiovasc Res
, vol.80
, Issue.1
, pp. 30-39
-
-
Rosca, M.G.1
-
65
-
-
84865297692
-
Mitochondrial division in rat cardiomyocytes: An electron microscope study
-
Fujioka H, Tandler B, Hoppel CL. Mitochondrial division in rat cardiomyocytes: an electron microscope study. Anat Rec (Hoboken). 2012;295(9):1455-1461.
-
(2012)
Anat Rec (Hoboken
, vol.295
, Issue.9
, pp. 1455-1461
-
-
Fujioka, H.1
Tandler, B.2
Hoppel, C.L.3
-
66
-
-
84862137804
-
Ventricular assist device implantation corrects myocardial lipotoxicity, reverses insulin resistance, and normalizes cardiac metabolism in patients with advanced heart failure
-
Chokshi A, et al. Ventricular assist device implantation corrects myocardial lipotoxicity, reverses insulin resistance, and normalizes cardiac metabolism in patients with advanced heart failure. Circulation. 2012;125(23):2844-2853.
-
(2012)
Circulation
, vol.125
, Issue.23
, pp. 2844-2853
-
-
Chokshi, A.1
|