메뉴 건너뛰기




Volumn 125, Issue 9, 2015, Pages 3461-3476

Kruppel-like factor 4 is critical for transcriptional control of cardiac mitochondrial homeostasis

Author keywords

[No Author keywords available]

Indexed keywords

ADENOSINE TRIPHOSPHATE; GENOMIC DNA; KRUPPEL LIKE FACTOR 4; PEROXISOME PROLIFERATOR ACTIVATED RECEPTOR GAMMA; REACTIVE OXYGEN METABOLITE; REDUCED NICOTINAMIDE ADENINE DINUCLEOTIDE DEHYDROGENASE (UBIQUINONE); KRUPPEL LIKE FACTOR; PEROXISOME-PROLIFERATOR-ACTIVATED RECEPTOR-GAMMA COACTIVATOR-1; PPARGC1A PROTEIN, RAT; TRANSCRIPTION FACTOR;

EID: 84941659052     PISSN: 00219738     EISSN: 15588238     Source Type: Journal    
DOI: 10.1172/JCI79964     Document Type: Article
Times cited : (104)

References (66)
  • 2
    • 0026712942 scopus 로고
    • Ultrastructural quantitation of mitochondria and myofilaments in cardiac muscle from 10 different animal species including man
    • Barth E, Stammler G, Speiser B, Schaper J. Ultrastructural quantitation of mitochondria and myofilaments in cardiac muscle from 10 different animal species including man. J Mol Cell Cardiol. 1992;24(7):669-681.
    • (1992) J Mol Cell Cardiol , vol.24 , Issue.7 , pp. 669-681
    • Barth, E.1    Stammler, G.2    Speiser, B.3    Schaper, J.4
  • 3
    • 0034960785 scopus 로고    scopus 로고
    • Mitochondrial dysfunction in cardiac disease: Ischemia-reperfusion, aging, and heart failure
    • Lesnefsky EJ, Moghaddas S, Tandler B, Kerner J, Hoppel CL. Mitochondrial dysfunction in cardiac disease: ischemia-reperfusion, aging, and heart failure. J Mol Cell Cardiol. 2001;33(6):1065-1089.
    • (2001) J Mol Cell Cardiol , vol.33 , Issue.6 , pp. 1065-1089
    • Lesnefsky, E.J.1    Moghaddas, S.2    Tandler, B.3    Kerner, J.4    Hoppel, C.L.5
  • 4
    • 0026537433 scopus 로고
    • Adaptations of glucose and fatty acid metabolism during perinatal period and suckling-weaning transition
    • Girard J, Ferre P, Pegorier JP, Duee PH. Adaptations of glucose and fatty acid metabolism during perinatal period and suckling-weaning transition. Physiol Rev. 1992;72(2):507-562.
    • (1992) Physiol Rev , vol.72 , Issue.2 , pp. 507-562
    • Girard, J.1    Ferre, P.2    Pegorier, J.P.3    Duee, P.H.4
  • 5
    • 47549114849 scopus 로고    scopus 로고
    • Transcriptional coactivators PGC-1alpha and PGC-lbeta control overlapping programs required for perinatal maturation of the heart
    • Lai L, et al. Transcriptional coactivators PGC-1alpha and PGC-lbeta control overlapping programs required for perinatal maturation of the heart. Genes Dev. 2008;22(14):1948-1961.
    • (2008) Genes Dev , vol.22 , Issue.14 , pp. 1948-1961
    • Lai, L.1
  • 6
    • 84865544952 scopus 로고    scopus 로고
    • Mitochondrial fission, fusion, and stress
    • Youle RJ, van der Bliek AM. Mitochondrial fission, fusion, and stress. Science. 2012;337(6098):1062-1065.
    • (2012) Science , vol.337 , Issue.6098 , pp. 1062-1065
    • Youle, R.J.1    Van Der Bliek, A.M.2
  • 7
    • 84867724832 scopus 로고    scopus 로고
    • Mitochondria and mitophagy: The yin and yang of cell death control
    • Kubli DA, Gustafsson AB. Mitochondria and mitophagy: the yin and yang of cell death control. Circ Res. 2012;111(9):1208-1221.
    • (2012) Circ Res , vol.111 , Issue.9 , pp. 1208-1221
    • Kubli, D.A.1    Gustafsson, A.B.2
  • 8
    • 84856109625 scopus 로고    scopus 로고
    • Mitochondrial fusion is essential for organelle function and cardiac homeostasis
    • Chen Y, Liu Y, Dorn GW. Mitochondrial fusion is essential for organelle function and cardiac homeostasis. Circ Res. 2011;109(12):1327-1331.
    • (2011) Circ Res , vol.109 , Issue.12 , pp. 1327-1331
    • Chen, Y.1    Liu, Y.2    Dorn, G.W.3
  • 9
    • 11144245626 scopus 로고    scopus 로고
    • The role of autophagy during the early neonatal starvation period
    • Kuma A, et al. The role of autophagy during the early neonatal starvation period. Nature. 2004;432(7020):1032-1036.
    • (2004) Nature , vol.432 , Issue.7020 , pp. 1032-1036
    • Kuma, A.1
  • 10
    • 34249714158 scopus 로고    scopus 로고
    • The role of autophagy in cardiomyocytes in the basal state and in response to hemodynamic stress
    • Nakai A, et al. The role of autophagy in cardiomyocytes in the basal state and in response to hemodynamic stress. Nat Med. 2007;13(5):619-624.
    • (2007) Nat Med , vol.13 , Issue.5 , pp. 619-624
    • Nakai, A.1
  • 11
    • 34347259219 scopus 로고    scopus 로고
    • ERRgamma directs and maintains the transition to oxidative metabolism in the postnatal heart
    • Alaynick WA, et al. ERRgamma directs and maintains the transition to oxidative metabolism in the postnatal heart. Cell Metab. 2007;6(1):13-24.
    • (2007) Cell Metab , vol.6 , Issue.1 , pp. 13-24
    • Alaynick, W.A.1
  • 12
    • 34247554887 scopus 로고    scopus 로고
    • Genome-wide orchestration of cardiac functions by the orphan nuclear receptors ERRα and γ
    • Dufour CR, et al. Genome-wide orchestration of cardiac functions by the orphan nuclear receptors ERRα and γ. Cell Metab. 2007;5(5):345-356.
    • (2007) Cell Metab , vol.5 , Issue.5 , pp. 345-356
    • Dufour, C.R.1
  • 13
    • 34347248013 scopus 로고    scopus 로고
    • The nuclear receptor ERRα is required for the bioenergetic and functional adaptation to cardiac pressure overload
    • Huss JM, et al. The nuclear receptor ERRα is required for the bioenergetic and functional adaptation to cardiac pressure overload. Cell Metab. 2007;6(1):25-37.
    • (2007) Cell Metab , vol.6 , Issue.1 , pp. 25-37
    • Huss, J.M.1
  • 14
    • 84894425052 scopus 로고    scopus 로고
    • A role for peroxisome proliferator-activated receptor γ coactivator-1 in the control of mitochondrial dynamics during postnatal cardiac growth
    • Martin OJ, et al. A role for peroxisome proliferator-activated receptor γ coactivator-1 in the control of mitochondrial dynamics during postnatal cardiac growth. Circ Res. 2014;114(4):626-636.
    • (2014) Circ Res , vol.114 , Issue.4 , pp. 626-636
    • Martin, O.J.1
  • 15
    • 22144434964 scopus 로고    scopus 로고
    • Transcriptional coactivator PGC-1α controls the energy state and contractile function of cardiac muscle
    • Arany Z, et al. Transcriptional coactivator PGC-1α controls the energy state and contractile function of cardiac muscle. Cell Metab. 2005;1(4):259-271.
    • (2005) Cell Metab , vol.1 , Issue.4 , pp. 259-271
    • Arany, Z.1
  • 16
    • 4644231528 scopus 로고    scopus 로고
    • Nuclear receptor signaling and cardiac energetics
    • Huss JM, Kelly DP. Nuclear receptor signaling and cardiac energetics. Circ Res. 2004;95(6):568-578.
    • (2004) Circ Res , vol.95 , Issue.6 , pp. 568-578
    • Huss, J.M.1    Kelly, D.P.2
  • 17
    • 73949099327 scopus 로고    scopus 로고
    • Increased muscle PGC-1α expression protects from sarcopenia and metabolic disease during aging
    • Wenz T, Rossi SG, Rotundo RL, Spiegelman BM, Moraes CT. Increased muscle PGC-1α expression protects from sarcopenia and metabolic disease during aging. Proc Natl Acad Sci U S A. 2009;106(48):20405-20410.
    • (2009) Proc Natl Acad Sci U S A , vol.106 , Issue.48 , pp. 20405-20410
    • Wenz, T.1    Rossi, S.G.2    Rotundo, R.L.3    Spiegelman, B.M.4    Moraes, C.T.5
  • 19
    • 84891014899 scopus 로고    scopus 로고
    • The return of the nucleus: Transcriptional and epigenetic control of autophagy
    • Fullgrabe J, Klionsky DJ, Joseph B. The return of the nucleus: transcriptional and epigenetic control of autophagy. Nat Rev Mol Cell Biol. 2014;15(1):65-74.
    • (2014) Nat Rev Mol Cell Biol , vol.15 , Issue.1 , pp. 65-74
    • Fullgrabe, J.1    Klionsky, D.J.2    Joseph, B.3
  • 20
    • 78149481592 scopus 로고    scopus 로고
    • Mammalian Kruppellike factors in health and diseases
    • McConnell BB, Yang VW. Mammalian Kruppellike factors in health and diseases. Physiol Rev. 2010;90(4):1337-1381.
    • (2011) Physiol Rev , vol.90 , Issue.4 , pp. 1337-1381
    • McConnell, B.B.1    Yang, V.W.2
  • 21
    • 20144389501 scopus 로고    scopus 로고
    • Kruppel-like transcription factor KLF5 is a key regulator of adipocyte differentiation
    • Oishi Y, et al. Kruppel-like transcription factor KLF5 is a key regulator of adipocyte differentiation. Cell Metab. 2005;1(1):27-39.
    • (2005) Cell Metab , vol.1 , Issue.1 , pp. 27-39
    • Oishi, Y.1
  • 22
    • 33947575572 scopus 로고    scopus 로고
    • Regulation of gluconeogenesis by Kruppel-like factor 15
    • Gray S, et al. Regulation of gluconeogenesis by Kruppel-like factor 15. Cell Metab. 2007;5(4):305-312.
    • (2007) Cell Metab , vol.5 , Issue.4 , pp. 305-312
    • Gray, S.1
  • 23
    • 84890255267 scopus 로고    scopus 로고
    • Genome-wide analysis of histone marks identifying an epigenetic signature of promoters and enhancers underlying cardiac hypertrophy
    • Papait R, et al. Genome-wide analysis of histone marks identifying an epigenetic signature of promoters and enhancers underlying cardiac hypertrophy. Proc Natl Acad Sci U S A. 2013;110(50):20164-20169.
    • (2013) Proc Natl Acad Sci U S A , vol.110 , Issue.50 , pp. 20164-20169
    • Papait, R.1
  • 24
    • 77953713216 scopus 로고    scopus 로고
    • Kruppel-like factor 4 regulates pressure-induced cardiac hypertrophy
    • Liao X, et al. Kruppel-like factor 4 regulates pressure-induced cardiac hypertrophy. J Mol Cell Cardiol. 2010;49(2):334-338.
    • (2011) J Mol Cell Cardiol , vol.49 , Issue.2 , pp. 334-338
    • Liao, X.1
  • 25
    • 84871762432 scopus 로고    scopus 로고
    • Mitochondrial dynamics in heart disease
    • Dorn GW. Mitochondrial dynamics in heart disease. Biochim Biophys Acta. 2013;1833(1):233-241.
    • (2013) Biochim Biophys Acta , vol.1833 , Issue.1 , pp. 233-241
    • Dorn, G.W.1
  • 26
    • 0033803048 scopus 로고    scopus 로고
    • Peroxisome proliferator-activated receptor γ coactivator-1 promotes cardiac mitochondrial biogenesis
    • Lehman JJ, Barger PM, Kovacs A, Saffitz JE, Medeiros DM, Kelly DP. Peroxisome proliferator-activated receptor γ coactivator-1 promotes cardiac mitochondrial biogenesis. J Clin Invest. 2000;106(7):847-856.
    • (2000) J Clin Invest , vol.106 , Issue.7 , pp. 847-856
    • Lehman, J.J.1    Barger, P.M.2    Kovacs, A.3    Saffitz, J.E.4    Medeiros, D.M.5    Kelly, D.P.6
  • 27
    • 77949890048 scopus 로고    scopus 로고
    • Heart-specific deletion of CnB1 reveals multiple mechanisms whereby calcineurin regulates cardiac growth and function
    • Maillet M, et al. Heart-specific deletion of CnB1 reveals multiple mechanisms whereby calcineurin regulates cardiac growth and function. J Biol Chem. 2010;285(9):6716-6724.
    • (2011) J Biol Chem , vol.285 , Issue.9 , pp. 6716-6724
    • Maillet, M.1
  • 28
    • 18544365376 scopus 로고    scopus 로고
    • High-efficiency somatic mutagenesis in smooth muscle cells and cardiac myocytes in SM22α-Cre transgenic mice
    • Lepore JJ, Cheng L, Min Lu M, Mericko PA, Morrisey EE, Parmacek MS. High-efficiency somatic mutagenesis in smooth muscle cells and cardiac myocytes in SM22α-Cre transgenic mice. Genesis. 2005;41(4):179-184.
    • (2005) Genesis , vol.41 , Issue.4 , pp. 179-184
    • Lepore, J.J.1    Cheng, L.2    Min Lu, M.3    Mericko, P.A.4    Morrisey, E.E.5    Parmacek, M.S.6
  • 29
    • 77954231839 scopus 로고    scopus 로고
    • Smooth and cardiac muscle-selective knock-out of Kruppel-like factor 4 causes postnatal death and growth retardation
    • Yoshida T, et al. Smooth and cardiac muscle-selective knock-out of Kruppel-like factor 4 causes postnatal death and growth retardation. J Biol Chem. 2010;285(27):21175-21184.
    • (2011) J Biol Chem , vol.285 , Issue.27 , pp. 21175-21184
    • Yoshida, T.1
  • 30
    • 33745627066 scopus 로고    scopus 로고
    • Transverse aortic constriction leads to accelerated heart failure in mice lacking PPAR-γ coactivator 1α
    • Arany Z, Novikov M, Chin S, Ma Y, Rosenzweig A, Spiegelman BM. Transverse aortic constriction leads to accelerated heart failure in mice lacking PPAR-γ coactivator 1α. Proc Natl Acad Sci U S A. 2006;103(26):10086-10091.
    • (2006) Proc Natl Acad Sci U S A , vol.103 , Issue.26 , pp. 10086-10091
    • Arany, Z.1    Novikov, M.2    Chin, S.3    Ma, Y.4    Rosenzweig, A.5    Spiegelman, B.M.6
  • 31
    • 4744371376 scopus 로고    scopus 로고
    • Estrogen-related receptor α directs peroxisome proliferator-activated receptor alpha signaling in the transcriptional control of energy metabolism in cardiac and skeletal muscle
    • Huss JM, Torra IP, Staels B, Giguere V, Kelly DP. Estrogen-related receptor α directs peroxisome proliferator-activated receptor alpha signaling in the transcriptional control of energy metabolism in cardiac and skeletal muscle. Mol Cell Biol. 2004;24(20):9079-9091.
    • (2004) Mol Cell Biol , vol.24 , Issue.20 , pp. 9079-9091
    • Huss, J.M.1    Torra, I.P.2    Staels, B.3    Giguere, V.4    Kelly, D.P.5
  • 32
    • 28544438180 scopus 로고    scopus 로고
    • PGC-1α coactivates PDK4 gene expression via the orphan nuclear receptor ERRα: A mechanism for transcriptional control of muscle glucose metabolism
    • Wende AR, Huss JM, Schaeffer PJ, Giguere V, Kelly DP. PGC-1α coactivates PDK4 gene expression via the orphan nuclear receptor ERRα: a mechanism for transcriptional control of muscle glucose metabolism. Mol Cell Biol. 2005;25(24):10684-10694.
    • (2005) Mol Cell Biol , vol.25 , Issue.24 , pp. 10684-10694
    • Wende, A.R.1    Huss, J.M.2    Schaeffer, P.J.3    Giguere, V.4    Kelly, D.P.5
  • 33
    • 0037174798 scopus 로고    scopus 로고
    • Peroxisome proliferator-activated receptor coactivator-1alpha (PGC-1α) coactivates the cardiac-enriched nuclear receptors estrogen-related receptor-α and -γ. Identification of novel leucine-rich interaction motif within PGC-1α
    • Huss JM, Kopp RP, Kelly DP. Peroxisome proliferator-activated receptor coactivator-1alpha (PGC-1α) coactivates the cardiac-enriched nuclear receptors estrogen-related receptor-α and -γ. Identification of novel leucine-rich interaction motif within PGC-1α. J Biol Chem. 2002;277(43):40265-40274.
    • (2002) J Biol Chem , vol.277 , Issue.43 , pp. 40265-40274
    • Huss, J.M.1    Kopp, R.P.2    Kelly, D.P.3
  • 34
    • 33644660537 scopus 로고    scopus 로고
    • PGC-1 coactivators: Inducible regulators of energy metabolism in health and disease
    • Finck BN, Kelly DP. PGC-1 coactivators: inducible regulators of energy metabolism in health and disease. J Clin Invest. 2006;116(3):615-622.
    • (2006) J Clin Invest , vol.116 , Issue.3 , pp. 615-622
    • Finck, B.N.1    Kelly, D.P.2
  • 35
    • 84860705893 scopus 로고    scopus 로고
    • Mitochondrial DNA that escapes from autophagy causes inflammation and heart failure
    • Oka T, et al. Mitochondrial DNA that escapes from autophagy causes inflammation and heart failure. Nature. 2012;485(7397):251-255.
    • (2012) Nature , vol.485 , Issue.7397 , pp. 251-255
    • Oka, T.1
  • 36
    • 84876531457 scopus 로고    scopus 로고
    • PINK1-phosphorylated mitofusin 2 is a Parkin receptor for culling damaged mitochondria
    • Chen Y, Dorn GW. PINK1-phosphorylated mitofusin 2 is a Parkin receptor for culling damaged mitochondria. Science. 2013;340(6131):471-475.
    • (2013) Science , vol.340 , Issue.6131 , pp. 471-475
    • Chen, Y.1    Dorn, G.W.2
  • 37
    • 67649467294 scopus 로고    scopus 로고
    • Dynamics and diversity in autophagy mechanisms: Lessons from yeast
    • Nakatogawa H, Suzuki K, Kamada Y, Ohsumi Y. Dynamics and diversity in autophagy mechanisms: lessons from yeast. Nat Rev Mol Cell Biol. 2009;10(7):458-467.
    • (2009) Nat Rev Mol Cell Biol , vol.10 , Issue.7 , pp. 458-467
    • Nakatogawa, H.1    Suzuki, K.2    Kamada, Y.3    Ohsumi, Y.4
  • 38
    • 79960020908 scopus 로고    scopus 로고
    • The requirement of uncoordinated 51-like kinase 1 (ULK1) and ULK2 in the regulation of autophagy
    • Lee EJ, Tournier C. The requirement of uncoordinated 51-like kinase 1 (ULK1) and ULK2 in the regulation of autophagy. Autophagy. 2011;7(7):689-695.
    • (2011) Autophagy , vol.7 , Issue.7 , pp. 689-695
    • Lee, E.J.1    Tournier, C.2
  • 39
    • 79251587803 scopus 로고    scopus 로고
    • Phosphorylation of ULK1 (hATG1) by AMP-activated protein kinase connects energy sensing to mitophagy
    • Egan DF, et al. Phosphorylation of ULK1 (hATG1) by AMP-activated protein kinase connects energy sensing to mitophagy. Science. 2011;331(6016):456-461.
    • (2011) Science , vol.331 , Issue.6016 , pp. 456-461
    • Egan, D.F.1
  • 40
    • 79551598347 scopus 로고    scopus 로고
    • AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1
    • Kim J, Kundu M, Viollet B, Guan KL. AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat Cell Biol. 2011;13(2):132-141.
    • (2011) Nat Cell Biol , vol.13 , Issue.2 , pp. 132-141
    • Kim, J.1    Kundu, M.2    Viollet, B.3    Guan, K.L.4
  • 41
    • 44949181877 scopus 로고    scopus 로고
    • SUMOylation of Kruppel-like transcription factor 5 acts as a molecular switch in transcriptional programs of lipid metabolism involving PPAR-δ
    • Oishi Y, et al. SUMOylation of Kruppel-like transcription factor 5 acts as a molecular switch in transcriptional programs of lipid metabolism involving PPAR-δ. Nat Med. 2008;14(6):656-666.
    • (2008) Nat Med , vol.14 , Issue.6 , pp. 656-666
    • Oishi, Y.1
  • 42
    • 84924390186 scopus 로고    scopus 로고
    • KLF15 and PPARα cooperate to regulate cardiomyocyte lipid gene expression and oxidation
    • Prosdocimo DA, et al. KLF15 and PPARα cooperate to regulate cardiomyocyte lipid gene expression and oxidation. PPAR Res. 2015;2015:201625.
    • (2015) PPAR Res , vol.2015 , pp. 201625
    • Prosdocimo, D.A.1
  • 43
    • 80052550954 scopus 로고    scopus 로고
    • Expression profiling identifies Klf15 as a glucocorticoid target that regulates airway hyperresponsiveness
    • Masuno K, et al. Expression profiling identifies Klf15 as a glucocorticoid target that regulates airway hyperresponsiveness. Am J Respir Cell Mol Biol. 2011;45(3):642-649.
    • (2011) Am J Respir Cell Mol Biol , vol.45 , Issue.3 , pp. 642-649
    • Masuno, K.1
  • 44
    • 84878969321 scopus 로고    scopus 로고
    • The glucocorticoid receptor and KLF15 regulate gene expression dynamics and integrate signals through feed-forward circuitry
    • Sasse SK, et al. The glucocorticoid receptor and KLF15 regulate gene expression dynamics and integrate signals through feed-forward circuitry. Mol Cell Biol. 2013;33(11):2104-2115.
    • (2013) Mol Cell Biol , vol.33 , Issue.11 , pp. 2104-2115
    • Sasse, S.K.1
  • 45
    • 84863798866 scopus 로고    scopus 로고
    • Mechanistic role for a novel glucocorticoid-KLF11 (TIEG2) protein pathway in stress-induced monoamine oxidase A expression
    • Grunewald M, et al. Mechanistic role for a novel glucocorticoid-KLF11 (TIEG2) protein pathway in stress-induced monoamine oxidase A expression. J Biol Chem. 2012;287(29):24195-24206.
    • (2012) J Biol Chem , vol.287 , Issue.29 , pp. 24195-24206
    • Grunewald, M.1
  • 46
    • 42949145380 scopus 로고    scopus 로고
    • KLF4 is a FOXO target gene that suppresses B cell proliferation
    • Yusuf I, et al. KLF4 is a FOXO target gene that suppresses B cell proliferation. Int Immunol. 2008;20(5):671-681.
    • (2008) Int Immunol , vol.20 , Issue.5 , pp. 671-681
    • Yusuf, I.1
  • 47
    • 79960021457 scopus 로고    scopus 로고
    • Kruppel-like factor 4 regulates macrophage polarization
    • Liao X, et al. Kruppel-like factor 4 regulates macrophage polarization. J Clin Invest. 2011;121(7):2736-2749.
    • (2011) J Clin Invest , vol.121 , Issue.7 , pp. 2736-2749
    • Liao, X.1
  • 48
    • 30144440248 scopus 로고    scopus 로고
    • The KLF4 tumour suppressor is a transcriptional repressor of p53 that acts as a context-dependent oncogene
    • Rowland BD, Bernards R, Peeper DS. The KLF4 tumour suppressor is a transcriptional repressor of p53 that acts as a context-dependent oncogene. Nat Cell Biol. 2005;7(11):1074-1082.
    • (2005) Nat Cell Biol , vol.7 , Issue.11 , pp. 1074-1082
    • Rowland, B.D.1    Bernards, R.2    Peeper, D.S.3
  • 49
    • 79959908506 scopus 로고    scopus 로고
    • HIF induces human embryonic stem cell markers in cancer cells
    • Mathieu J, et al. HIF induces human embryonic stem cell markers in cancer cells. Cancer Res. 2011;71(13):4640-4652.
    • (2011) Cancer Res , vol.71 , Issue.13 , pp. 4640-4652
    • Mathieu, J.1
  • 50
    • 80052970004 scopus 로고    scopus 로고
    • PGC-1β deficiency accelerates the transition to heart failure in pressure overload hypertrophy
    • Riehle C, et al. PGC-1β deficiency accelerates the transition to heart failure in pressure overload hypertrophy. Circ Res. 2011;109(7):783-793.
    • (2011) Circ Res , vol.109 , Issue.7 , pp. 783-793
    • Riehle, C.1
  • 51
    • 0037072874 scopus 로고    scopus 로고
    • The Kruppel-like factor KLF15 regulates the insulin-sensitive glucose transporter GLUT4
    • Gray S, et al. The Kruppel-like factor KLF15 regulates the insulin-sensitive glucose transporter GLUT4. J Biol Chem. 2002;277(37):34322-34328.
    • (2002) J Biol Chem , vol.277 , Issue.37 , pp. 34322-34328
    • Gray, S.1
  • 52
  • 53
    • 84871393232 scopus 로고    scopus 로고
    • Kruppel-like factor KLF8 plays a critical role in adipocyte differentiation
    • Lee H, et al. Kruppel-like factor KLF8 plays a critical role in adipocyte differentiation. PLoS One. 2012;7(12):e52474.
    • (2012) PLoS One , vol.7 , Issue.12 , pp. e52474
    • Lee, H.1
  • 54
    • 77953394284 scopus 로고    scopus 로고
    • Kruppel-like factor KLF10 is a link between the circadian clock and metabolism in liver
    • Guillaumond F, et al. Kruppel-like factor KLF10 is a link between the circadian clock and metabolism in liver. Mol Cell Biol. 2010;30(12):3059-3070.
    • (2011) Mol Cell Biol , vol.30 , Issue.12 , pp. 3059-3070
    • Guillaumond, F.1
  • 55
    • 84880942314 scopus 로고    scopus 로고
    • Mouse KLF11 regulates hepatic lipid metabolism
    • Zhang H, et al. Mouse KLF11 regulates hepatic lipid metabolism. J Hepatol. 2013;58(4):763-770.
    • (2013) J Hepatol , vol.58 , Issue.4 , pp. 763-770
    • Zhang, H.1
  • 56
    • 84863230321 scopus 로고    scopus 로고
    • Klf15 orchestrates circadian nitrogen homeostasis
    • Jeyaraj D, et al. Klf15 orchestrates circadian nitrogen homeostasis. Cell Metab. 2012;15(3):311-323.
    • (2012) Cell Metab , vol.15 , Issue.3 , pp. 311-323
    • Jeyaraj, D.1
  • 57
    • 84896882746 scopus 로고    scopus 로고
    • Kruppel-like factor 15 is a critical regulator of cardiac lipid metabolism
    • Prosdocimo DA, et al. Kruppel-like factor 15 is a critical regulator of cardiac lipid metabolism. J Biol Chem. 2014;289(9):5914-5924.
    • (2014) J Biol Chem , vol.289 , Issue.9 , pp. 5914-5924
    • Prosdocimo, D.A.1
  • 58
    • 84860168859 scopus 로고    scopus 로고
    • Kruppel-like factor 15 regulates skeletal muscle lipid flux and exercise adaptation
    • Haldar SM, et al. Kruppel-like factor 15 regulates skeletal muscle lipid flux and exercise adaptation. Proc Natl Acad Sci U S A. 2012;109(17):6739-6744.
    • (2012) Proc Natl Acad Sci U S A , vol.109 , Issue.17 , pp. 6739-6744
    • Haldar, S.M.1
  • 59
    • 84862777353 scopus 로고    scopus 로고
    • Circadian rhythms govern cardiac repolarization and arrhythmogenesis
    • Jeyaraj D, et al. Circadian rhythms govern cardiac repolarization and arrhythmogenesis. Nature. 2012;483(7387):96-99.
    • (2012) Nature , vol.483 , Issue.7387 , pp. 96-99
    • Jeyaraj, D.1
  • 60
    • 84899446193 scopus 로고    scopus 로고
    • Endothelial Kruppel-like factor 4 regulates angiogenesis and the Notch signaling pathway
    • Hale AT, et al. Endothelial Kruppel-like factor 4 regulates angiogenesis and the Notch signaling pathway. J Biol Chem. 2014;289(17):12016-12028.
    • (2014) J Biol Chem , vol.289 , Issue.17 , pp. 12016-12028
    • Hale, A.T.1
  • 61
    • 33645123097 scopus 로고    scopus 로고
    • Immunohistochemical expression of endothelial markers CD31 CD34 von Willebrand factor and Fli-1 in normal human tissues
    • Pusztaszeri MP, Seelentag W, Bosman FT. Immunohistochemical expression of endothelial markers CD31, CD34, von Willebrand factor, and Fli-1 in normal human tissues. J Histochem Cytochem. 2006;54(4):385-395.
    • (2006) J Histochem Cytochem , vol.54 , Issue.4 , pp. 385-395
    • Pusztaszeri, M.P.1    Seelentag, W.2    Bosman, F.T.3
  • 62
    • 33644968171 scopus 로고    scopus 로고
    • Differential levels of tissue hypoxia in the developing chicken heart
    • Wikenheiser J, Doughman YQ, Fisher SA, Watanabe M. Differential levels of tissue hypoxia in the developing chicken heart. Dev Dyn. 2006;235(1):115-123.
    • (2006) Dev Dyn , vol.235 , Issue.1 , pp. 115-123
    • Wikenheiser, J.1    Doughman, Y.Q.2    Fisher, S.A.3    Watanabe, M.4
  • 63
    • 79953816704 scopus 로고    scopus 로고
    • Murine prolylcarboxypeptidase depletion induces vascular dysfunction with hypertension and faster arterial thrombosis
    • Adams GN, et al. Murine prolylcarboxypeptidase depletion induces vascular dysfunction with hypertension and faster arterial thrombosis. Blood. 2011;117(14):3929-3937.
    • (2011) Blood , vol.117 , Issue.14 , pp. 3929-3937
    • Adams, G.N.1
  • 64
    • 51749113618 scopus 로고    scopus 로고
    • Cardiac mitochondria in heart failure: Decrease in respirasomes and oxidative phosphorylation
    • Rosca MG, et al. Cardiac mitochondria in heart failure: decrease in respirasomes and oxidative phosphorylation. Cardiovasc Res. 2008;80(1):30-39.
    • (2008) Cardiovasc Res , vol.80 , Issue.1 , pp. 30-39
    • Rosca, M.G.1
  • 65
    • 84865297692 scopus 로고    scopus 로고
    • Mitochondrial division in rat cardiomyocytes: An electron microscope study
    • Fujioka H, Tandler B, Hoppel CL. Mitochondrial division in rat cardiomyocytes: an electron microscope study. Anat Rec (Hoboken). 2012;295(9):1455-1461.
    • (2012) Anat Rec (Hoboken , vol.295 , Issue.9 , pp. 1455-1461
    • Fujioka, H.1    Tandler, B.2    Hoppel, C.L.3
  • 66
    • 84862137804 scopus 로고    scopus 로고
    • Ventricular assist device implantation corrects myocardial lipotoxicity, reverses insulin resistance, and normalizes cardiac metabolism in patients with advanced heart failure
    • Chokshi A, et al. Ventricular assist device implantation corrects myocardial lipotoxicity, reverses insulin resistance, and normalizes cardiac metabolism in patients with advanced heart failure. Circulation. 2012;125(23):2844-2853.
    • (2012) Circulation , vol.125 , Issue.23 , pp. 2844-2853
    • Chokshi, A.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.