메뉴 건너뛰기




Volumn 84, Issue , 2015, Pages 37-45

Ensemble of surrogates-based optimization for identifying an optimal surfactant-enhanced aquifer remediation strategy at heterogeneous DNAPL-contaminated sites

Author keywords

DNAPL contamination; Ensemble surrogate; KELM; Optimization; Remediation strategy

Indexed keywords

AQUIFERS; CONSTRAINED OPTIMIZATION; CONTAMINATION; COST EFFECTIVENESS; GENETIC ALGORITHMS; HYDROGEOLOGY; LEARNING SYSTEMS; NEURAL NETWORKS; NITROBENZENE; NONLINEAR PROGRAMMING; OPTIMIZATION; POLLUTION; RADIAL BASIS FUNCTION NETWORKS; SURFACE ACTIVE AGENTS;

EID: 84941565370     PISSN: 00983004     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.cageo.2015.08.003     Document Type: Article
Times cited : (48)

References (37)
  • 1
    • 56449097052 scopus 로고    scopus 로고
    • Ensemble of metamodels with optimized weight factors
    • Acar E., Rais-Rohani M. Ensemble of metamodels with optimized weight factors. Struct. Multidiscip. Optim. 2009, 37(3):279-294.
    • (2009) Struct. Multidiscip. Optim. , vol.37 , Issue.3 , pp. 279-294
    • Acar, E.1    Rais-Rohani, M.2
  • 2
    • 0023701268 scopus 로고
    • Contaminated groundwater remediation design using simulation, optimization and sensitivity theory model development
    • Ahlfeld D.P., Mulvey M.J., Pinder G.F., Wood E.F. Contaminated groundwater remediation design using simulation, optimization and sensitivity theory model development. Water Resour. Res. 1988, 24(3):431-441.
    • (1988) Water Resour. Res. , vol.24 , Issue.3 , pp. 431-441
    • Ahlfeld, D.P.1    Mulvey, M.J.2    Pinder, G.F.3    Wood, E.F.4
  • 3
    • 70349419638 scopus 로고    scopus 로고
    • Artificial neural network models for forecasting monthly precipitation in Jordan
    • Aksoy H., Dahamsheh A. Artificial neural network models for forecasting monthly precipitation in Jordan. Stoch. Environ. Res. Risk Assess. 2009, 23(7):917-931.
    • (2009) Stoch. Environ. Res. Risk Assess. , vol.23 , Issue.7 , pp. 917-931
    • Aksoy, H.1    Dahamsheh, A.2
  • 4
    • 70350189939 scopus 로고    scopus 로고
    • Application of a radial basis function artificial neural network to seismic data inversion
    • Baddari K., Aïfa T., Djarfour N., Ferahtia J. Application of a radial basis function artificial neural network to seismic data inversion. Comput. Geosci. 2009, 35(12):2338-2344.
    • (2009) Comput. Geosci. , vol.35 , Issue.12 , pp. 2338-2344
    • Baddari, K.1    Aïfa, T.2    Djarfour, N.3    Ferahtia, J.4
  • 5
    • 84941598464 scopus 로고    scopus 로고
    • University of Texas at Austin. UTCHEM 9.0 Volume I. Users Guide, Austin, TX
    • Center for Petroleum and Geosystems Engineering, University of Texas at Austin, 2000. UTCHEM 9.0 Volume I. Users Guide, Austin, TX.
    • (2000)
  • 6
    • 84912029121 scopus 로고    scopus 로고
    • Spectral-spatial classification of hyperspectral image based on kernel extreme learning machine
    • Chen C., Li W., Su H., Liu K. Spectral-spatial classification of hyperspectral image based on kernel extreme learning machine. Remote Sens. 2014, 6(6):5795-5814.
    • (2014) Remote Sens. , vol.6 , Issue.6 , pp. 5795-5814
    • Chen, C.1    Li, W.2    Su, H.3    Liu, K.4
  • 7
    • 25144486629 scopus 로고    scopus 로고
    • Analysis of support vector regression for approximation of complex engineering analyses
    • Clarke S.M., Griebsch J.H., Simpson T.W. Analysis of support vector regression for approximation of complex engineering analyses. J. Mech. Des. 2005, 127(6):1077-1087.
    • (2005) J. Mech. Des. , vol.127 , Issue.6 , pp. 1077-1087
    • Clarke, S.M.1    Griebsch, J.H.2    Simpson, T.W.3
  • 8
    • 0030201402 scopus 로고    scopus 로고
    • A compositional simulator for modeling surfactant-enhanced aquifer remediation, 1 formulation
    • Delshad M., Pope G.A., Sepehrnoori K. A compositional simulator for modeling surfactant-enhanced aquifer remediation, 1 formulation. J. Contam. Hydrol. 1996, 23(4):303-327.
    • (1996) J. Contam. Hydrol. , vol.23 , Issue.4 , pp. 303-327
    • Delshad, M.1    Pope, G.A.2    Sepehrnoori, K.3
  • 9
    • 0026261757 scopus 로고
    • The use of surfactants for in situ extraction of organic pollutants from a contaminated aquifer
    • Fountain J.C., Klimek A., Beikirch M.G., Middleton T.M. The use of surfactants for in situ extraction of organic pollutants from a contaminated aquifer. J. Hazard. Mater. 1991, 28(3):295-311.
    • (1991) J. Hazard. Mater. , vol.28 , Issue.3 , pp. 295-311
    • Fountain, J.C.1    Klimek, A.2    Beikirch, M.G.3    Middleton, T.M.4
  • 10
    • 84953360217 scopus 로고    scopus 로고
    • Fast detection of impact location using kernel extreme learning machine
    • Fu H., Vong C.M., Wong P.K., Yang Z. Fast detection of impact location using kernel extreme learning machine. Neural Comput. Appl. 2014, 1-10. 10.1007/s00521-014-1568-2.
    • (2014) Neural Comput. Appl.
    • Fu, H.1    Vong, C.M.2    Wong, P.K.3    Yang, Z.4
  • 12
    • 0033575753 scopus 로고    scopus 로고
    • Optimal remediation with well locations and pumping rates selected as continuous decision variables
    • Guan J., Aral M.M. Optimal remediation with well locations and pumping rates selected as continuous decision variables. J. Hydrol. 1999, 221(1):20-42.
    • (1999) J. Hydrol. , vol.221 , Issue.1 , pp. 20-42
    • Guan, J.1    Aral, M.M.2
  • 13
    • 85005512109 scopus 로고
    • Evaluating the effectiveness of ground water extraction systems
    • Haley J.L., Hanson B., Enfield C., Glass J. Evaluating the effectiveness of ground water extraction systems. Groundw. Monit. Remediat. 1991, 11(1):119-124.
    • (1991) Groundw. Monit. Remediat. , vol.11 , Issue.1 , pp. 119-124
    • Haley, J.L.1    Hanson, B.2    Enfield, C.3    Glass, J.4
  • 15
    • 78049279737 scopus 로고    scopus 로고
    • A systematic comparison of metamodeling techniques for simulation optimization in decision support systems
    • Li Y.F., Ng S.H., Xie M., Goh T.N. A systematic comparison of metamodeling techniques for simulation optimization in decision support systems. Appl. Soft Comput. 2010, 10(4):1257-1273.
    • (2010) Appl. Soft Comput. , vol.10 , Issue.4 , pp. 1257-1273
    • Li, Y.F.1    Ng, S.H.2    Xie, M.3    Goh, T.N.4
  • 16
    • 84884231993 scopus 로고    scopus 로고
    • Optimization of denser nonaqueous phase liquids-contaminated groundwater remediation based on Kriging surrogate model
    • Lu W.X., Chu H.B., Zhao Y., Luo J.N. Optimization of denser nonaqueous phase liquids-contaminated groundwater remediation based on Kriging surrogate model. Water Pract. Technol. 2013, 8(2):304-314.
    • (2013) Water Pract. Technol. , vol.8 , Issue.2 , pp. 304-314
    • Lu, W.X.1    Chu, H.B.2    Zhao, Y.3    Luo, J.N.4
  • 17
    • 84912070481 scopus 로고    scopus 로고
    • Comparison of surrogate models with different methods in groundwater remediation process
    • Luo J.N., Lu W.X. Comparison of surrogate models with different methods in groundwater remediation process. J. Earth Syst. Sci. 2014, 123(7):1579-1589.
    • (2014) J. Earth Syst. Sci. , vol.123 , Issue.7 , pp. 1579-1589
    • Luo, J.N.1    Lu, W.X.2
  • 18
    • 84897935264 scopus 로고    scopus 로고
    • Sobol' sensitivity analysis of NAPL-contaminated aquifer remediation process based on multiple surrogates
    • Luo J.N., Lu W.X. Sobol' sensitivity analysis of NAPL-contaminated aquifer remediation process based on multiple surrogates. Comput. Geosci. 2014, 67:110-116.
    • (2014) Comput. Geosci. , vol.67 , pp. 110-116
    • Luo, J.N.1    Lu, W.X.2
  • 19
    • 84890378844 scopus 로고    scopus 로고
    • Surrogate model application to the identification of an optimal surfactant-enhanced aquifer remediation strategy for DNAPL-contaminated sites
    • Luo J.N., Lu W.X., Xin X., Chu H.B. Surrogate model application to the identification of an optimal surfactant-enhanced aquifer remediation strategy for DNAPL-contaminated sites. J. Earth Sci. 2013, 24(6):1023-1032.
    • (2013) J. Earth Sci. , vol.24 , Issue.6 , pp. 1023-1032
    • Luo, J.N.1    Lu, W.X.2    Xin, X.3    Chu, H.B.4
  • 20
    • 84857145035 scopus 로고    scopus 로고
    • Lightweight design of vehicle front-end structure: contributions of multiple surrogates
    • Pan F., Zhu P. Lightweight design of vehicle front-end structure: contributions of multiple surrogates. Int. J. Veh. Des. 2011, 57(2):124-147.
    • (2011) Int. J. Veh. Des. , vol.57 , Issue.2 , pp. 124-147
    • Pan, F.1    Zhu, P.2
  • 21
    • 70350783875 scopus 로고    scopus 로고
    • Metamodel-based lightweight design of B-pillar with TWB structure via support vector regression
    • Pan F., Zhu P., Zhang Y. Metamodel-based lightweight design of B-pillar with TWB structure via support vector regression. Comput. Struct. 2010, 88(1):36-44.
    • (2010) Comput. Struct. , vol.88 , Issue.1 , pp. 36-44
    • Pan, F.1    Zhu, P.2    Zhang, Y.3
  • 23
    • 0028434198 scopus 로고
    • Surfactant enhanced remediation of soil columns contaminated by residual tetrachloroethylene
    • Pennell K.D., Jin M., Abriola L.M., Pope G.A. Surfactant enhanced remediation of soil columns contaminated by residual tetrachloroethylene. J. Contam. Hydrol. 1994, 16(1):35-53.
    • (1994) J. Contam. Hydrol. , vol.16 , Issue.1 , pp. 35-53
    • Pennell, K.D.1    Jin, M.2    Abriola, L.M.3    Pope, G.A.4
  • 24
    • 34249821064 scopus 로고    scopus 로고
    • Simulation-based process optimization for surfactant-enhanced aquifer remediation at heterogeneous DNAPL-contaminated sites
    • Qin X.S., Huang G.H., Chakma A., Chen B., Zeng G.M. Simulation-based process optimization for surfactant-enhanced aquifer remediation at heterogeneous DNAPL-contaminated sites. Sci. Total Environ. 2007, 381(1):17-37.
    • (2007) Sci. Total Environ. , vol.381 , Issue.1 , pp. 17-37
    • Qin, X.S.1    Huang, G.H.2    Chakma, A.3    Chen, B.4    Zeng, G.M.5
  • 26
    • 0028988614 scopus 로고
    • Optimal field-scale groundwater remediation using neural networks and the genetic algorithm
    • Rogers L.L., Dowla F.U., Johnson V.M. Optimal field-scale groundwater remediation using neural networks and the genetic algorithm. Environ. Sci. Technol. 1995, 29(5):1145-1155.
    • (1995) Environ. Sci. Technol. , vol.29 , Issue.5 , pp. 1145-1155
    • Rogers, L.L.1    Dowla, F.U.2    Johnson, V.M.3
  • 27
    • 33746210143 scopus 로고    scopus 로고
    • A multi-objective optimization framework for surfactant-enhanced remediation of DNAPL contaminations
    • Schaerlaekens J., Mertens J., Van Linden J., Vermeiren G., Carmeliet J., Feyen J. A multi-objective optimization framework for surfactant-enhanced remediation of DNAPL contaminations. J. Contam. Hydrol. 2006, 86(3):176-194.
    • (2006) J. Contam. Hydrol. , vol.86 , Issue.3 , pp. 176-194
    • Schaerlaekens, J.1    Mertens, J.2    Van Linden, J.3    Vermeiren, G.4    Carmeliet, J.5    Feyen, J.6
  • 28
    • 84896273670 scopus 로고    scopus 로고
    • Recognition model based feature extraction and kernel extreme learning machine for high dimensional data
    • Shi Y., Zhao L.J., Tang J. Recognition model based feature extraction and kernel extreme learning machine for high dimensional data. Adv. Mater. Res. 2014, 875:2020-2024.
    • (2014) Adv. Mater. Res. , vol.875 , pp. 2020-2024
    • Shi, Y.1    Zhao, L.J.2    Tang, J.3
  • 29
    • 77957874307 scopus 로고    scopus 로고
    • Multi-objective management of saltwater intrusion in coastal aquifers using genetic programming and modular neural network based surrogate models
    • Sreekanth J., Datta B. Multi-objective management of saltwater intrusion in coastal aquifers using genetic programming and modular neural network based surrogate models. J. Hydrol. 2010, 393(3-4):245-256.
    • (2010) J. Hydrol. , vol.393 , Issue.3-4 , pp. 245-256
    • Sreekanth, J.1    Datta, B.2
  • 30
    • 84906938183 scopus 로고    scopus 로고
    • Online sequential extreme learning machine with kernels for nonstationary time series prediction
    • Wang X., Han M. Online sequential extreme learning machine with kernels for nonstationary time series prediction. Neurocomputing 2014, 145:90-97.
    • (2014) Neurocomputing , vol.145 , pp. 90-97
    • Wang, X.1    Han, M.2
  • 31
    • 84885381962 scopus 로고    scopus 로고
    • Modelling of diesel engine performance using advanced machine learning methods under scarce and exponential data set
    • Wong K.I., Wong P.K., Cheung C.S., Vong C.M. Modelling of diesel engine performance using advanced machine learning methods under scarce and exponential data set. Appl. Soft Comput. 2013, 13(11):4428-4441.
    • (2013) Appl. Soft Comput. , vol.13 , Issue.11 , pp. 4428-4441
    • Wong, K.I.1    Wong, P.K.2    Cheung, C.S.3    Vong, C.M.4
  • 32
    • 84907483639 scopus 로고    scopus 로고
    • Modeling and optimization of biodiesel engine performance using kernel-based extreme learning machine and cuckoo search
    • Wong P.K., Wong K.I., Vong C.M., Cheung C.S. Modeling and optimization of biodiesel engine performance using kernel-based extreme learning machine and cuckoo search. Renew. Energy 2015, 74:640-647.
    • (2015) Renew. Energy , vol.74 , pp. 640-647
    • Wong, P.K.1    Wong, K.I.2    Vong, C.M.3    Cheung, C.S.4
  • 33
    • 84870254661 scopus 로고    scopus 로고
    • Extreme learning machine based wind speed estimation and sensorless control for wind turbine power generation system
    • Wu S., Wang Y.Y., Cheng S.J. Extreme learning machine based wind speed estimation and sensorless control for wind turbine power generation system. Neurocomputing 2013, 102:163-175.
    • (2013) Neurocomputing , vol.102 , pp. 163-175
    • Wu, S.1    Wang, Y.Y.2    Cheng, S.J.3
  • 34
    • 84874020146 scopus 로고    scopus 로고
    • Extreme learning machine-based predictor for real-time frequency stability assessment of electric power systems
    • Xu Y., Dai Y.Y., Dong Z.Y., Zhang R., Meng K. Extreme learning machine-based predictor for real-time frequency stability assessment of electric power systems. Neural Comput. Appl. 2013, 22(3-4):501-508.
    • (2013) Neural Comput. Appl. , vol.22 , Issue.3-4 , pp. 501-508
    • Xu, Y.1    Dai, Y.Y.2    Dong, Z.Y.3    Zhang, R.4    Meng, K.5
  • 35
    • 33745438549 scopus 로고    scopus 로고
    • Optimal groundwater remediation design using an adaptive neural network genetic algorithm
    • Yan S., Minsker B. Optimal groundwater remediation design using an adaptive neural network genetic algorithm. Water Resour. Res. 2006, 42(5):1145-1155.
    • (2006) Water Resour. Res. , vol.42 , Issue.5 , pp. 1145-1155
    • Yan, S.1    Minsker, B.2
  • 36
    • 79955899724 scopus 로고    scopus 로고
    • Applying dynamic surrogate models in noisy genetic algorithms to optimize groundwater remediation designs
    • Yan S., Minsker B. Applying dynamic surrogate models in noisy genetic algorithms to optimize groundwater remediation designs. J. Water Resour. Plan. Manag. 2011, 137(3):284-292.
    • (2011) J. Water Resour. Plan. Manag. , vol.137 , Issue.3 , pp. 284-292
    • Yan, S.1    Minsker, B.2
  • 37
    • 84874108748 scopus 로고    scopus 로고
    • Ensemble of surrogates for dual response surface surface modeling in robust parameter design
    • Zhou X., Ma Y., Tu Y., Feng Y. Ensemble of surrogates for dual response surface surface modeling in robust parameter design. Qual. Reliab. Eng. Int. 2013, 29(2):173-197.
    • (2013) Qual. Reliab. Eng. Int. , vol.29 , Issue.2 , pp. 173-197
    • Zhou, X.1    Ma, Y.2    Tu, Y.3    Feng, Y.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.