메뉴 건너뛰기




Volumn 13, Issue 11, 2013, Pages 4428-4441

Modelling of diesel engine performance using advanced machine learning methods under scarce and exponential data set

Author keywords

Data exponentiality; Data scarcity; Diesel engine modelling; Engine performance; Hybrid inference; Kernel based extreme learning machine

Indexed keywords

BACKPROPAGATION; BAYESIAN NETWORKS; COMPLEX NETWORKS; DIESEL ENGINES; FORECASTING; INFERENCE ENGINES; KNOWLEDGE ACQUISITION; LEARNING ALGORITHMS; RADIAL BASIS FUNCTION NETWORKS; STATISTICAL METHODS; STRUCTURAL OPTIMIZATION; SUPPORT VECTOR MACHINES; TWO PHASE FLOW;

EID: 84885381962     PISSN: 15684946     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.asoc.2013.06.006     Document Type: Article
Times cited : (51)

References (48)
  • 1
    • 0037411469 scopus 로고    scopus 로고
    • Exhaust emissions from a diesel engine fueled with transesterified waste olive oil
    • M.P. Dorado, E. Ballesteros, J.M. Arnal, J. Gómez, F.J. López, Exhaust emissions from a diesel engine fueled with transesterified waste olive oil, Fuel 82 (2003) 1311-1315.
    • (2003) Fuel , vol.82 , pp. 1311-1315
    • Dorado, M.P.1    Ballesteros, E.2    Arnal, J.M.3    Gómez, J.4    López, F.J.5
  • 2
    • 0028240040 scopus 로고
    • Acute respiratory effects of particulate air pollution
    • D.W. Dockery, C.A. Pope III, Acute respiratory effects of particulate air pollution, Annual Review of Public Health 15 (1994) 107-132. (Pubitemid 24178996)
    • (1994) Annual Review of Public Health , vol.15 , pp. 107-132
    • Dockery, D.W.1    Pope III, C.A.2
  • 3
    • 0037136933 scopus 로고    scopus 로고
    • Air pollution and health
    • DOI 10.1016/S0140-6736(02)11274-8
    • B. Brunekreef, S.T. Holgate, Air pollution and health, Lancet 360 (2002) 1233-1242. (Pubitemid 35232725)
    • (2002) Lancet , vol.360 , Issue.9341 , pp. 1233-1242
    • Brunekreef, B.1    Holgate, S.T.2
  • 4
    • 84871055775 scopus 로고    scopus 로고
    • A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990-2010: A systematic analysis for the Global Burden of Disease Study 2010
    • S.S. Lim, T. Vos, A.D. Flaxman, et al., A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990-2010: a systematic analysis for the Global Burden of Disease Study 2010, Lancet 380 (2012) 2224-2260.
    • (2012) Lancet , vol.380 , pp. 2224-2260
    • Lim, S.S.1    Vos, T.2    Flaxman, A.D.3
  • 5
    • 84866092678 scopus 로고    scopus 로고
    • IEA, International Energy Agency, Paris
    • IEA, World Energy Outlook 2012, International Energy Agency, Paris, 2012.
    • (2012) World Energy Outlook 2012
  • 6
    • 33644895012 scopus 로고    scopus 로고
    • Performance and exhaust emissions of a biodiesel engine
    • M. Canakci, A. Erdil, E. Arcaklioglu, Performance and exhaust emissions of a biodiesel engine, Applied Energy 83 (2006) 594-605.
    • (2006) Applied Energy , vol.83 , pp. 594-605
    • Canakci, M.1    Erdil, A.2    Arcaklioglu, E.3
  • 10
    • 0020736385 scopus 로고
    • Development and use of a spray combustion modeling to predict diesel engine efficiency and pollutant emissions (part 1 combustion modeling)
    • H. Hiroyasu, T. Kadota, M. Arai, Development and use of a spray combustion modeling to predict diesel engine efficiency and pollutant emissions (Part 1. Combustion modeling), Bulletin of the JSME 26 (1983) 569-575. (Pubitemid 13559277)
    • (1983) Bulletin of the JSME , vol.26 , Issue.214 , pp. 569-575
    • Hiroyasu Hiroyuki1    Kadota Toshikazu2    Arai Masataka3
  • 11
    • 39749114440 scopus 로고    scopus 로고
    • Multi-zone modeling of combustion and emissions formation in DI diesel engine operating on ethanol-diesel fuel blends
    • DOI 10.1016/j.enconman.2007.07.035, PII S0196890407002634
    • C.D. Rakopoulos, K.A. Antonopoulos, D.C. Rakopoulos, D.T. Hountalas, Multizone modeling of combustion and emissions formation in DI diesel engine operating on ethanol-diesel fuel blends, Energy Conversion and Management 49 (2008) 625-643. (Pubitemid 351625386)
    • (2008) Energy Conversion and Management , vol.49 , Issue.4 , pp. 625-643
    • Rakopoulos, C.D.1    Antonopoulos, K.A.2    Rakopoulos, D.C.3    Hountalas, D.T.4
  • 12
    • 50549104877 scopus 로고    scopus 로고
    • Multi-zone combustion modeling for the prediction of diesel engine cycles and engine performance parameters
    • Z. Şahin, O. Durgun, Multi-zone combustion modeling for the prediction of diesel engine cycles and engine performance parameters, Applied Thermal Engineering 28 (2008) 2245-2256.
    • (2008) Applied Thermal Engineering , vol.28 , pp. 2245-2256
    • Şahin, Z.1    Durgun, O.2
  • 14
    • 56049111920 scopus 로고    scopus 로고
    • A reduced chemical kinetic model for IC engine combustion simulations with primary reference fuels
    • Y. Ra, R.D. Reitz, A reduced chemical kinetic model for IC engine combustion simulations with primary reference fuels, Combustion and Flame 155 (2008) 713-738.
    • (2008) Combustion and Flame , vol.155 , pp. 713-738
    • Ra, Y.1    Reitz, R.D.2
  • 15
    • 0242269356 scopus 로고    scopus 로고
    • Artificial intelligence for the modeling and control of combustion processes: A review
    • S.A. Kalogirou, Artificial intelligence for the modeling and control of combustion processes: a review, Progress in Energy and Combustion Science 29 (2003) 515-566.
    • (2003) Progress in Energy and Combustion Science , vol.29 , pp. 515-566
    • Kalogirou, S.A.1
  • 16
    • 14644428981 scopus 로고    scopus 로고
    • Performance maps of a diesel engine
    • V. Çelik, E. Arcaklioǧlu, Performance maps of a diesel engine, Applied Energy 81 (2005) 247-259.
    • (2005) Applied Energy , vol.81 , pp. 247-259
    • Çelik, V.1    Arcaklioǧlu, E.2
  • 17
    • 56049096202 scopus 로고    scopus 로고
    • Diesel engine performance and exhaust emission analysis using waste cooking biodiesel fuel with an artificial neural network
    • B. Ghobadian, H. Rahimi, A.M. Nikbakht, G. Najafi, T.F. Yusaf, Diesel engine performance and exhaust emission analysis using waste cooking biodiesel fuel with an artificial neural network, Renewable Energy 34 (2009) 976-982.
    • (2009) Renewable Energy , vol.34 , pp. 976-982
    • Ghobadian, B.1    Rahimi, H.2    Nikbakht, A.M.3    Najafi, G.4    Yusaf, T.F.5
  • 18
    • 78651467913 scopus 로고    scopus 로고
    • Prediction of diesel engine performance using biofuels with artificial neural network
    • H. Oguz, I. Saritas, H.E. Baydan, Prediction of diesel engine performance using biofuels with artificial neural network, Expert Systems with Applications 37 (2010) 6579-6586.
    • (2010) Expert Systems with Applications , vol.37 , pp. 6579-6586
    • Oguz, H.1    Saritas, I.2    Baydan, H.E.3
  • 19
    • 79952446940 scopus 로고    scopus 로고
    • Artificial Neural Network based prediction of performance and emission characteristics of a variable compression ratio CI engine using WCO as a biodiesel at different injection timings
    • P. Shivakumar, B.R. Srinivasa Pai, Shrinivasa Rao, Artificial Neural Network based prediction of performance and emission characteristics of a variable compression ratio CI engine using WCO as a biodiesel at different injection timings, Applied Energy 88 (2011) 2344-2354.
    • (2011) Applied Energy , vol.88 , pp. 2344-2354
    • Shivakumar, P.1    Srinivasa Pai, B.R.2    Rao, S.3
  • 21
    • 84855272041 scopus 로고    scopus 로고
    • Artificial neural networks modelling of engine-out responses for a light-duty diesel engine fuelled with biodiesel blends
    • H. Mohamed Ismail, H.K. Ng, C.W. Queck, S. Gan, Artificial neural networks modelling of engine-out responses for a light-duty diesel engine fuelled with biodiesel blends, Applied Energy 92 (2012) 769-777.
    • (2012) Applied Energy , vol.92 , pp. 769-777
    • Mohamed Ismail, H.1    Ng, H.K.2    Queck, C.W.3    Gan, S.4
  • 22
    • 15944420505 scopus 로고    scopus 로고
    • Application of neural networks in forecasting engine systems reliability
    • DOI 10.1016/S1568-4946(02)00059-5, PII S1568494602000595
    • K. Xu, M. Xie, L.C. Tang, S.L. Ho, Application of neural networks in forecasting engine systems reliability, Applied Soft Computing 2 (2003) 255-268. (Pubitemid 40442502)
    • (2003) Applied Soft Computing Journal , vol.2 , Issue.4 , pp. 255-268
    • Xu, K.1    Xie, M.2    Tang, L.C.3    Ho, S.L.4
  • 23
    • 84860343718 scopus 로고    scopus 로고
    • Radial basis function neural networks in prediction and modeling of diesel engine emissions operated for biodiesel blends under varying operating conditions
    • R. Manjunatha, P.B. Narayana, K.H. Reddy, K.V.K. Reddy, Radial basis function neural networks in prediction and modeling of diesel engine emissions operated for biodiesel blends under varying operating conditions, Indian Journal of Science and Technology 5 (2012) 2307-2312.
    • (2012) Indian Journal of Science and Technology , vol.5 , pp. 2307-2312
    • Manjunatha, R.1    Narayana, P.B.2    Reddy, K.H.3    Reddy, K.V.K.4
  • 24
    • 84856452836 scopus 로고    scopus 로고
    • Automotive engine power performance tuning under numerical and nominal data
    • P.K. Wong, L.M. Tam, L. Ke, Automotive engine power performance tuning under numerical and nominal data, Control Engineering Practice 20 (2012) 300-314.
    • (2012) Control Engineering Practice , vol.20 , pp. 300-314
    • Wong, P.K.1    Tam, L.M.2    Ke, L.3
  • 27
    • 0001224048 scopus 로고    scopus 로고
    • Sparse Bayesian Learning and the Relevance Vector Machine
    • DOI 10.1162/15324430152748236
    • M.E. Tipping, Sparse bayesian learning and the relevance vector machine, Journal of Machine Learning Research 1 (2001) 211-244. (Pubitemid 33687203)
    • (2001) Journal of Machine Learning Research , vol.1 , Issue.3 , pp. 211-244
    • Tipping, M.E.1
  • 30
    • 33745903481 scopus 로고    scopus 로고
    • Extreme learning machine: Theory and applications
    • G.B. Huang, Q.Y. Zhu, C.K. Siew, Extreme learning machine: theory and applications, Neurocomputing 70 (2006) 489-501.
    • (2006) Neurocomputing , vol.70 , pp. 489-501
    • Huang, G.B.1    Zhu, Q.Y.2    Siew, C.K.3
  • 31
    • 31744447275 scopus 로고    scopus 로고
    • Prediction of automotive engine power and torque using least squares support vector machines and Bayesian inference
    • C.M. Vong, P.K. Wong, Y.P. Li, Prediction of automotive engine power and torque using least squares support vector machines and Bayesian inference, Engineering Applications of Artificial Intelligence 19 (2006) 277-287.
    • (2006) Engineering Applications of Artificial Intelligence , vol.19 , pp. 277-287
    • Vong, C.M.1    Wong, P.K.2    Li, Y.P.3
  • 32
    • 34047266673 scopus 로고    scopus 로고
    • Text classification: A least square support vector machine approach
    • DOI 10.1016/j.asoc.2006.04.002, PII S156849460600038X
    • V. Mitra, C.-J. Wang, S. Banerjee, Text classification: a least square support vector machine approach, Applied Soft Computing 7 (2007) 908-914. (Pubitemid 46551923)
    • (2007) Applied Soft Computing Journal , vol.7 , Issue.3 , pp. 908-914
    • Mitra, V.1    Wang, C.-J.2    Banerjee, S.3
  • 33
    • 80455150418 scopus 로고    scopus 로고
    • Rate-dependent hysteresis modeling and control of a piezostage using online support vector machine and relevance vector machine
    • P.K. Wong, Q. Xu, C.M. Vong, H.C. Wong, Rate-dependent hysteresis modeling and control of a piezostage using online support vector machine and relevance vector machine, IEEE Transactions on Industrial Electronics 59 (2012) 1988-2001.
    • (2012) IEEE Transactions on Industrial Electronics , vol.59 , pp. 1988-2001
    • Wong, P.K.1    Xu, Q.2    Vong, C.M.3    Wong, H.C.4
  • 34
    • 34548698657 scopus 로고    scopus 로고
    • Integrating relevance vector machines and genetic algorithms for optimization of seed-separating process
    • DOI 10.1016/j.engappai.2007.01.002, PII S0952197607000048
    • J. Yuan, K. Wang, T. Yu, M. Fang, Integrating relevance vector machines and genetic algorithms for optimization of seed-separating process, Engineering Applications of Artificial Intelligence 20 (2007) 970-979. (Pubitemid 47419310)
    • (2007) Engineering Applications of Artificial Intelligence , vol.20 , Issue.7 , pp. 970-979
    • Yuan, J.1    Wang, K.2    Yu, T.3    Fang, M.4
  • 35
    • 77949658813 scopus 로고    scopus 로고
    • Application of relevance vector machine and logistic regression for machine degradation assessment
    • W. Caesarendra, A. Widodo, B.S. Yang, Application of relevance vector machine and logistic regression for machine degradation assessment, Mechanical Systems and Signal Processing 24 (2010) 1161-1171.
    • (2010) Mechanical Systems and Signal Processing , vol.24 , pp. 1161-1171
    • Caesarendra, W.1    Widodo, A.2    Yang, B.S.3
  • 37
    • 49249135950 scopus 로고    scopus 로고
    • Power utility nontechnical loss analysis with extreme learning machine method
    • A.H. Nizar, Z.Y. Dong, Y. Wang, Power utility nontechnical loss analysis with extreme learning machine method, IEEE Transactions on Power Systems 23 (2008) 946-955.
    • (2008) IEEE Transactions on Power Systems , vol.23 , pp. 946-955
    • Nizar, A.H.1    Dong, Z.Y.2    Wang, Y.3
  • 40
    • 84864758579 scopus 로고    scopus 로고
    • Enhanced combination modeling method for combustion efficiency in coal-fired boilers
    • G. Li, P. Niu, C. Liu, W. Zhang, Enhanced combination modeling method for combustion efficiency in coal-fired boilers, Applied Soft Computing 12 (2012) 3132-3140.
    • (2012) Applied Soft Computing , vol.12 , pp. 3132-3140
    • Li, G.1    Niu, P.2    Liu, C.3    Zhang, W.4
  • 41
    • 34249753618 scopus 로고
    • Support-vector networks
    • C. Cortes, V. Vapnik, Support-vector networks, Machine Learning 20 (1995) 273-297.
    • (1995) Machine Learning , vol.20 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 44
    • 0034731526 scopus 로고    scopus 로고
    • Neural network modelling for very small spectral data sets: Reduction of the spectra and hierarchical approach
    • DOI 10.1016/S0169-7439(00)00108-8, PII S0169743900001088
    • V. Tchistiakov, C. Ruckebusch, L. Duponchel, J.P. Huvenne, P. Legrand, Neural network modelling for very small spectral data sets: reduction of the spectra and hierarchical approach, Chemometrics and Intelligent Laboratory Systems 54 (2000) 93-106. (Pubitemid 32054735)
    • (2000) Chemometrics and Intelligent Laboratory Systems , vol.54 , Issue.2 , pp. 93-106
    • Tchistiakov, V.1    Ruckebusch, C.2    Duponchel, L.3    Huvenne, J.-P.4    Legrand, P.5
  • 45
    • 66349127610 scopus 로고    scopus 로고
    • Data preprocessing and modelling of electronically-controlled automotive engine power performance using kernel principal components analysis and least squares support vector machines
    • P.K. Wong, C.M. Vong, L.M. Tam, K. Li, Data preprocessing and modelling of electronically-controlled automotive engine power performance using kernel principal components analysis and least squares support vector machines, International Journal of Vehicle Systems Modelling and Testing 3 (2008) 312-330.
    • (2008) International Journal of Vehicle Systems Modelling and Testing , vol.3 , pp. 312-330
    • Wong, P.K.1    Vong, C.M.2    Tam, L.M.3    Li, K.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.