메뉴 건너뛰기




Volumn 35, Issue 12, 2009, Pages 2338-2344

Application of a radial basis function artificial neural network to seismic data inversion

Author keywords

ANN; Back propagation; Inversion; Radial basis function; Seismic; Training

Indexed keywords

ACOUSTIC IMPEDANCE; BACKPROPAGATION ALGORITHMS; NETWORK ARCHITECTURE; PERSONNEL TRAINING; RADIAL BASIS FUNCTION NETWORKS; SEISMIC RESPONSE; SEISMIC WAVES;

EID: 70350189939     PISSN: 00983004     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.cageo.2009.03.006     Document Type: Article
Times cited : (41)

References (14)
  • 3
    • 84954943722 scopus 로고
    • Neural networks for non-linear dynamic systems modelling and identification
    • Chen S., and Billings S. Neural networks for non-linear dynamic systems modelling and identification. International Journal of Control 56 (1992) 319-346
    • (1992) International Journal of Control , vol.56 , pp. 319-346
    • Chen, S.1    Billings, S.2
  • 4
    • 0026116468 scopus 로고
    • Orthogonal least squares learning algorithm for radial basis function networks
    • Chen S., Cowan C.F.N., and Grant P.M. Orthogonal least squares learning algorithm for radial basis function networks. IEEE Transactions on Neural Networks 2 2 (1991) 302-309
    • (1991) IEEE Transactions on Neural Networks , vol.2 , Issue.2 , pp. 302-309
    • Chen, S.1    Cowan, C.F.N.2    Grant, P.M.3
  • 9
    • 0000014434 scopus 로고    scopus 로고
    • A generalized learning paradigm exploiting the structure of feedforward neural networks
    • Parisi R., Di Claudio E.D., Orlandi G., and Rao B.D. A generalized learning paradigm exploiting the structure of feedforward neural networks. IEEE Transactions On Neural Networks 7 6 (1996) 1450-1460
    • (1996) IEEE Transactions On Neural Networks , vol.7 , Issue.6 , pp. 1450-1460
    • Parisi, R.1    Di Claudio, E.D.2    Orlandi, G.3    Rao, B.D.4
  • 11
    • 0022471098 scopus 로고
    • Learning representations by back-propagation errors
    • Rumelhart D.E., Hinton G.E., and Williams R.J. Learning representations by back-propagation errors. Nature 393 (1986) 533-536
    • (1986) Nature , vol.393 , pp. 533-536
    • Rumelhart, D.E.1    Hinton, G.E.2    Williams, R.J.3
  • 12
    • 70350137504 scopus 로고    scopus 로고
    • Learning radial basis function neural networks with noisy input-output data set
    • Seghouane A., and Fleury G. Learning radial basis function neural networks with noisy input-output data set. Traitement du Signal 20 4 (2003) 213-221
    • (2003) Traitement du Signal , vol.20 , Issue.4 , pp. 213-221
    • Seghouane, A.1    Fleury, G.2
  • 13
    • 0035112152 scopus 로고    scopus 로고
    • Nonlinear blind source separation using a radial basis function network
    • Tan Y., Wang J., and Zurada J.M. Nonlinear blind source separation using a radial basis function network. IEEE Transactions on Neural Networks 12 1 (2001) 124-134
    • (2001) IEEE Transactions on Neural Networks , vol.12 , Issue.1 , pp. 124-134
    • Tan, Y.1    Wang, J.2    Zurada, J.M.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.