메뉴 건너뛰기




Volumn 145, Issue , 2014, Pages 90-97

Online sequential extreme learning machine with kernels for nonstationary time series prediction

Author keywords

Extreme learning machine; Nonstationary; Online; Support vector machine; Time series

Indexed keywords

FORECASTING; KNOWLEDGE ACQUISITION; LEARNING SYSTEMS; SUPPORT VECTOR MACHINES;

EID: 84906938183     PISSN: 09252312     EISSN: 18728286     Source Type: Journal    
DOI: 10.1016/j.neucom.2014.05.068     Document Type: Article
Times cited : (206)

References (30)
  • 1
    • 67349227411 scopus 로고    scopus 로고
    • Chaotic time series prediction. from one to another
    • Zhao P., Xing L., Yu J. Chaotic time series prediction. from one to another. Phys. Lett. A 2009, 373:2174-2177.
    • (2009) Phys. Lett. A , vol.373 , pp. 2174-2177
    • Zhao, P.1    Xing, L.2    Yu, J.3
  • 2
    • 84876926544 scopus 로고    scopus 로고
    • Chaotic time series prediction based on a novel robust echo state network
    • Li D., Han M., Wang J. Chaotic time series prediction based on a novel robust echo state network. IEEE Trans. Neural Netw. Learn. Syst. 2012, 23:787-799.
    • (2012) IEEE Trans. Neural Netw. Learn. Syst. , vol.23 , pp. 787-799
    • Li, D.1    Han, M.2    Wang, J.3
  • 3
    • 0242351905 scopus 로고    scopus 로고
    • Financial time series forecasting using support vector machines
    • Kim K.-j. Financial time series forecasting using support vector machines. Neurocomputing 2003, 55:307-319.
    • (2003) Neurocomputing , vol.55 , pp. 307-319
    • Kim, K.-J.1
  • 4
    • 66449136989 scopus 로고    scopus 로고
    • Time series prediction using support vector machines. a survey
    • Sapankevych N., Sankar R. Time series prediction using support vector machines. a survey. IEEE Comput. Intell. Mag. 2009, 4:24-38.
    • (2009) IEEE Comput. Intell. Mag. , vol.4 , pp. 24-38
    • Sapankevych, N.1    Sankar, R.2
  • 5
    • 67349170327 scopus 로고    scopus 로고
    • Localized support vector regression for time series prediction
    • Yang H., Huang K., King I., Lyu M. Localized support vector regression for time series prediction. Neurocomputing 2009, 72:2659-2669.
    • (2009) Neurocomputing , vol.72 , pp. 2659-2669
    • Yang, H.1    Huang, K.2    King, I.3    Lyu, M.4
  • 6
    • 0037243071 scopus 로고    scopus 로고
    • Time series forecasting using a hybrid arima and neural network model
    • Zhang G.P. Time series forecasting using a hybrid arima and neural network model. Neurocomputing 2003, 50:159-175.
    • (2003) Neurocomputing , vol.50 , pp. 159-175
    • Zhang, G.P.1
  • 7
    • 61849164594 scopus 로고    scopus 로고
    • γ c plane and robustness in static reservoir for nonlinear regression estimation
    • Shi Z., Han M. γ c plane and robustness in static reservoir for nonlinear regression estimation. Neurocomputing 2009, 72:1732-1743.
    • (2009) Neurocomputing , vol.72 , pp. 1732-1743
    • Shi, Z.1    Han, M.2
  • 8
    • 84891844765 scopus 로고    scopus 로고
    • Ensemble of extreme learning machine for landslide displacement prediction based on time series analysis
    • Lian C., Zeng Z., Yao W., Tang H. Ensemble of extreme learning machine for landslide displacement prediction based on time series analysis. Neural Comput. Appl. 2014, 24:99-107.
    • (2014) Neural Comput. Appl. , vol.24 , pp. 99-107
    • Lian, C.1    Zeng, Z.2    Yao, W.3    Tang, H.4
  • 9
    • 33644989492 scopus 로고    scopus 로고
    • A Bayesian network approach to traffic flow forecasting
    • Sun S., Zhang C., Yu G. A Bayesian network approach to traffic flow forecasting. IEEE Trans. Intell. Transp. Syst. 2006, 7:124-132.
    • (2006) IEEE Trans. Intell. Transp. Syst. , vol.7 , pp. 124-132
    • Sun, S.1    Zhang, C.2    Yu, G.3
  • 11
    • 84870882061 scopus 로고    scopus 로고
    • Selection of narx models estimated using weighted least squares method via gic-based method and l 1-norm regularization methods
    • Qin P., Nishii R., Yang Z.-J. Selection of narx models estimated using weighted least squares method via gic-based method and l 1-norm regularization methods. Nonlin. Dyn. 2012, 70:1831-1846.
    • (2012) Nonlin. Dyn. , vol.70 , pp. 1831-1846
    • Qin, P.1    Nishii, R.2    Yang, Z.-J.3
  • 12
    • 0032679273 scopus 로고    scopus 로고
    • A dynamic regularized radial basis function network for nonlinear, nonstationary time series prediction
    • Yee P., Haykin S. A dynamic regularized radial basis function network for nonlinear, nonstationary time series prediction. IEEE Trans. Signal Process. 1999, 47:2503-2521.
    • (1999) IEEE Trans. Signal Process. , vol.47 , pp. 2503-2521
    • Yee, P.1    Haykin, S.2
  • 13
    • 84874020798 scopus 로고    scopus 로고
    • Low complexity adaptive forgetting factor for online sequential extreme learning machine (os-elm) for application to nonstationary system estimations
    • Lim J.-s., Lee S., Pang H.-S. Low complexity adaptive forgetting factor for online sequential extreme learning machine (os-elm) for application to nonstationary system estimations. Neural Comput. Appl. 2012, 22:569-576.
    • (2012) Neural Comput. Appl. , vol.22 , pp. 569-576
    • Lim, J.-S.1    Lee, S.2    Pang, H.-S.3
  • 14
    • 84878490532 scopus 로고    scopus 로고
    • Online sequential extreme learning machine in nonstationary environments
    • Ye Y., Squartini S., Piazza F. Online sequential extreme learning machine in nonstationary environments. Neurocomputing 2013, 116:94-101.
    • (2013) Neurocomputing , vol.116 , pp. 94-101
    • Ye, Y.1    Squartini, S.2    Piazza, F.3
  • 15
    • 0000779360 scopus 로고
    • Dynamical Systems and Turbulence, Springer Berlin Heidelberg, Warwick
    • F. Takens, Detecting strange attractors in turbulence, in: Dynamical Systems and Turbulence, Springer Berlin Heidelberg, Warwick, vol. 1980, 1981, pp. 366-381.
    • (1981) Detecting strange attractors in turbulence , vol.1980 , pp. 366-381
    • Takens, F.1
  • 16
    • 4243752881 scopus 로고
    • Learning in neural networks with local minima
    • Heskes T.M., Sliijpen E., Kappen B. Learning in neural networks with local minima. Phys. Rev. A 1992, 46:5221-5231.
    • (1992) Phys. Rev. A , vol.46 , pp. 5221-5231
    • Heskes, T.M.1    Sliijpen, E.2    Kappen, B.3
  • 17
    • 78149358747 scopus 로고    scopus 로고
    • Neural network learning without backpropagation
    • Wilamowski B., Yu H. Neural network learning without backpropagation. IEEE Trans. Neural Netw. 2010, 21:1793-1803.
    • (2010) IEEE Trans. Neural Netw. , vol.21 , pp. 1793-1803
    • Wilamowski, B.1    Yu, H.2
  • 19
    • 33745903481 scopus 로고    scopus 로고
    • Extreme learning machine. theory and applications
    • Huang G., Zhu Q., Siew C. Extreme learning machine. theory and applications. Neurocomputing 2006, 70:489-501.
    • (2006) Neurocomputing , vol.70 , pp. 489-501
    • Huang, G.1    Zhu, Q.2    Siew, C.3
  • 20
    • 80051670315 scopus 로고    scopus 로고
    • Parameter-insensitive kernel in extreme learning for non-linear support vector regression
    • Frénay B., Verleysen M. Parameter-insensitive kernel in extreme learning for non-linear support vector regression. Neurocomputing 2011, 74:2526-2531.
    • (2011) Neurocomputing , vol.74 , pp. 2526-2531
    • Frénay, B.1    Verleysen, M.2
  • 21
    • 84867839878 scopus 로고    scopus 로고
    • Universal approximation of extreme learning machine with adaptive growth of hidden nodes
    • Zhang R., Lan Y., Huang G.-B., Xu Z.-B. Universal approximation of extreme learning machine with adaptive growth of hidden nodes. IEEE Trans. Neural Netw. Learn. Syst. 2012, 23:365-371.
    • (2012) IEEE Trans. Neural Netw. Learn. Syst. , vol.23 , pp. 365-371
    • Zhang, R.1    Lan, Y.2    Huang, G.-B.3    Xu, Z.-B.4
  • 22
    • 78649492473 scopus 로고    scopus 로고
    • Optimization method based extreme learning machine for classification
    • Huang G.-B., Ding X., Zhou H. Optimization method based extreme learning machine for classification. Neurocomputing 2010, 74:155-163.
    • (2010) Neurocomputing , vol.74 , pp. 155-163
    • Huang, G.-B.1    Ding, X.2    Zhou, H.3
  • 24
    • 84867984549 scopus 로고    scopus 로고
    • Electricity price forecasting with extreme learning machine and bootstrapping
    • Chen X., Dong Z.Y., Meng K., Xu Y., Wong K.P., Ngan H. Electricity price forecasting with extreme learning machine and bootstrapping. IEEE Trans. Power Syst. 2012, 27:2055-2062.
    • (2012) IEEE Trans. Power Syst. , vol.27 , pp. 2055-2062
    • Chen, X.1    Dong, Z.Y.2    Meng, K.3    Xu, Y.4    Wong, K.P.5    Ngan, H.6
  • 26
    • 34047174077 scopus 로고    scopus 로고
    • A fast and accurate online sequential learning algorithm for feedforward networks
    • Liang N., Huang G.-B., Saratchandran P., Sundararajan N. A fast and accurate online sequential learning algorithm for feedforward networks. IEEE Trans. Neural Netw. 2006, 17:1411-1423.
    • (2006) IEEE Trans. Neural Netw. , vol.17 , pp. 1411-1423
    • Liang, N.1    Huang, G.-B.2    Saratchandran, P.3    Sundararajan, N.4
  • 29
    • 68949200808 scopus 로고    scopus 로고
    • Error minimized extreme learning machine with growth of hidden nodes and incremental learning
    • Feng G., Huang G., Lin Q., Gay R. Error minimized extreme learning machine with growth of hidden nodes and incremental learning. IEEE Trans. Neural Netw. 2009, 20:1352-1357.
    • (2009) IEEE Trans. Neural Netw. , vol.20 , pp. 1352-1357
    • Feng, G.1    Huang, G.2    Lin, Q.3    Gay, R.4
  • 30
    • 0141765796 scopus 로고    scopus 로고
    • Accurate on-line support vector regression
    • Ma J., Theiler J., Perkins S. Accurate on-line support vector regression. Neural Comput. 2003, 15:2683-2703.
    • (2003) Neural Comput. , vol.15 , pp. 2683-2703
    • Ma, J.1    Theiler, J.2    Perkins, S.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.