메뉴 건너뛰기




Volumn 6, Issue AUG, 2015, Pages

Lipid raft-mediated regulation of hyaluronan-CD44 interactions in inflammation and cancer

Author keywords

A disintegrin and metalloproteinase; Cholesterol; Ectodomain shedding; Extracellular matrix remodeling; Membrane dynamics; Membrane raft; Oligosaccharides; Transmembrane signaling

Indexed keywords

CHOLESTEROL; EPIDERMAL GROWTH FACTOR RECEPTOR; GLYCOSAMINOGLYCAN; HERMES ANTIGEN; HYALURONIC ACID; HYALURONIDASE;

EID: 84941277992     PISSN: None     EISSN: 16643224     Source Type: Journal    
DOI: 10.3389/fimmu.2015.00420     Document Type: Review
Times cited : (61)

References (126)
  • 1
    • 0030820092 scopus 로고    scopus 로고
    • Hyaluronan: its nature, distribution, functions and turnover
    • Fraser JRE, Laurent TC, Laurent UBG. Hyaluronan: its nature, distribution, functions and turnover. J Intern Med (1997) 242:27-33. doi: 10.1046/j.1365-2796.1997.00170.x.
    • (1997) J Intern Med , vol.242 , pp. 27-33
    • Fraser, J.R.E.1    Laurent, T.C.2    Laurent, U.B.G.3
  • 2
    • 0001413280 scopus 로고
    • The polysaccharide of the vitreous humor
    • Meyer K, Palmer JW. The polysaccharide of the vitreous humor. J Biol Chem (1934) 107:629-34.
    • (1934) J Biol Chem , vol.107 , pp. 629-634
    • Meyer, K.1    Palmer, J.W.2
  • 3
    • 67649951066 scopus 로고
    • Sodium hyaluronate and joint function
    • Balazs EA, Delinger JL. Sodium hyaluronate and joint function. J Equine Vet Sci (1985) 5:217-28. doi:10.1016/S0737-0806(85)80102-7.
    • (1985) J Equine Vet Sci , vol.5 , pp. 217-228
    • Balazs, E.A.1    Delinger, J.L.2
  • 4
    • 3042697038 scopus 로고    scopus 로고
    • Hyaluronan: from extracellular glue to pericellular cue
    • Toole BP. Hyaluronan: from extracellular glue to pericellular cue. Nat Rev Cancer (2004) 4:528-39. doi:10.1038/nrc1391.
    • (2004) Nat Rev Cancer , vol.4 , pp. 528-539
    • Toole, B.P.1
  • 5
    • 84877914770 scopus 로고    scopus 로고
    • The hyaluronan receptor for endocytosis (HARE) activates NF-κB-mediated gene expression in response to 40-400-kDa, but not smaller or larger, hyaluronans
    • Pandey MS, Baggenstoss BA, Washburn J, Harris EN, Weigel PH. The hyaluronan receptor for endocytosis (HARE) activates NF-κB-mediated gene expression in response to 40-400-kDa, but not smaller or larger, hyaluronans. J Biol Chem (2013) 288:14068-79. doi:10.1074/jbc. M112.442889.
    • (2013) J Biol Chem , vol.288 , pp. 14068-14079
    • Pandey, M.S.1    Baggenstoss, B.A.2    Washburn, J.3    Harris, E.N.4    Weigel, P.H.5
  • 6
    • 84880508209 scopus 로고    scopus 로고
    • High-molecular-mass hyaluronan mediates the cancer resistance of the naked mole rat
    • Tian X, Azpurua J, Hine C, Vaidya A, Myakishev-Rempel M, Ablaeva J, et al. High-molecular-mass hyaluronan mediates the cancer resistance of the naked mole rat. Nature (2013) 499:346-9. doi:10.1038/nature12234.
    • (2013) Nature , vol.499 , pp. 346-349
    • Tian, X.1    Azpurua, J.2    Hine, C.3    Vaidya, A.4    Myakishev-Rempel, M.5    Ablaeva, J.6
  • 7
    • 0026028982 scopus 로고
    • Secondary and tertiary structures of hyaluronan in aqueous solution, investigated by rotary shadowing-electron microscopy and computer simulation. Hyaluronan is a very efficient network-forming polymer
    • Scott JE, Cummings C, Brass A, Chen Y. Secondary and tertiary structures of hyaluronan in aqueous solution, investigated by rotary shadowing-electron microscopy and computer simulation. Hyaluronan is a very efficient network-forming polymer. Biochem J (1991) 274:699-705.
    • (1991) Biochem J , vol.274 , pp. 699-705
    • Scott, J.E.1    Cummings, C.2    Brass, A.3    Chen, Y.4
  • 8
    • 0024203683 scopus 로고
    • The distributions and diffusivities of small ions in chondroitin sulphate, hyaluronate and some proteoglycan solutions
    • Maroudas A, Weinberg PD, Parker KH, Winlove CP. The distributions and diffusivities of small ions in chondroitin sulphate, hyaluronate and some proteoglycan solutions. Biophys Chem (1988) 32:257-70. doi:10.1016/0301-4622(88)87012-1.
    • (1988) Biophys Chem , vol.32 , pp. 257-270
    • Maroudas, A.1    Weinberg, P.D.2    Parker, K.H.3    Winlove, C.P.4
  • 9
    • 0030956931 scopus 로고    scopus 로고
    • Hyaluronan synthases
    • Weigel PH, Hascall VC, Tammi M. Hyaluronan synthases. J Biol Chem (1997) 272:13997-4000. doi:10.1074/jbc.272.22.13997.
    • (1997) J Biol Chem , vol.272 , pp. 13997-14000
    • Weigel, P.H.1    Hascall, V.C.2    Tammi, M.3
  • 10
    • 0033609860 scopus 로고    scopus 로고
    • Three isoforms of mammalian hyaluronan synthases have distinct enzymatic properties
    • Itano N, Sawai T, Yoshida M, Lenas P, Yamada Y, Imagawa M, et al. Three isoforms of mammalian hyaluronan synthases have distinct enzymatic properties. J Biol Chem (1999) 274:25085-92. doi:10.1074/jbc.274.35.25085.
    • (1999) J Biol Chem , vol.274 , pp. 25085-25092
    • Itano, N.1    Sawai, T.2    Yoshida, M.3    Lenas, P.4    Yamada, Y.5    Imagawa, M.6
  • 11
    • 0242544016 scopus 로고    scopus 로고
    • Epidermal growth factor activates hyaluronan synthase 2 in epidermal keratinocytes and increases pericellular and intracellular hyaluronan
    • Pienimäki JP, Rilla K, Fülöp C, Sironen RK, Karvinen S, Pasonen S, et al. Epidermal growth factor activates hyaluronan synthase 2 in epidermal keratinocytes and increases pericellular and intracellular hyaluronan. J Biol Chem (2001) 276:20428-35. doi:10.1074/jbc. M007601200.
    • (2001) J Biol Chem , vol.276 , pp. 20428-20435
    • Pienimäki, J.P.1    Rilla, K.2    Fülöp, C.3    Sironen, R.K.4    Karvinen, S.5    Pasonen, S.6
  • 12
    • 34249809117 scopus 로고    scopus 로고
    • Growth factor regulation of hyaluronan synthesis and degradation in human dermal fibroblasts: importance of hyaluronan for the mitogenic response of PDGF-BB
    • Li L, Asteriou T, Bernert B, Heldin CH, Heldin P. Growth factor regulation of hyaluronan synthesis and degradation in human dermal fibroblasts: importance of hyaluronan for the mitogenic response of PDGF-BB. Biochem J (2007) 404:327-36. doi:10.1042/BJ20061757.
    • (2007) Biochem J , vol.404 , pp. 327-336
    • Li, L.1    Asteriou, T.2    Bernert, B.3    Heldin, C.H.4    Heldin, P.5
  • 13
    • 78751670809 scopus 로고    scopus 로고
    • Hyaluronan as an immune regulator in human diseases
    • Jiang D, Liang J, Noble PW. Hyaluronan as an immune regulator in human diseases. Physiol Rev (2011) 91:221-64. doi:10.1152/physrev.00052.2009.
    • (2011) Physiol Rev , vol.91 , pp. 221-264
    • Jiang, D.1    Liang, J.2    Noble, P.W.3
  • 14
    • 4744355223 scopus 로고    scopus 로고
    • Hyaluronan catabolism: a new metabolic pathway
    • Stern R. Hyaluronan catabolism: a new metabolic pathway. Eur J Cell Biol (2004) 83:317-25. doi:10.1078/0171-9335-00392.
    • (2004) Eur J Cell Biol , vol.83 , pp. 317-325
    • Stern, R.1
  • 15
    • 0344668719 scopus 로고    scopus 로고
    • Devising a pathway for hyaluronan catabolism: are we there yet?
    • Stern R. Devising a pathway for hyaluronan catabolism: are we there yet? Glycobiology (2003) 13:105R-15R. doi:10.1093/glycob/cwg112.
    • (2003) Glycobiology , vol.13 , pp. 105R-115R
    • Stern, R.1
  • 16
    • 33645372800 scopus 로고    scopus 로고
    • Hyaluronidases: their genomics, structures, and mechanisms of action
    • Stern R, Jedrzejas MJ. Hyaluronidases: their genomics, structures, and mechanisms of action. Chem Rev (2006) 106:818-39. doi:10.1021/cr050247k.
    • (2006) Chem Rev , vol.106 , pp. 818-839
    • Stern, R.1    Jedrzejas, M.J.2
  • 17
    • 0031561112 scopus 로고    scopus 로고
    • Purification, cloning, and expression of human plasma hyaluronidase
    • Frost GI, Csóka TB, Wong T, Stern R. Purification, cloning, and expression of human plasma hyaluronidase. Biochem Biophys Res Commun (1997) 236:10-5. doi:10.1006/bbrc.1997.6773.
    • (1997) Biochem Biophys Res Commun , vol.236 , pp. 10-15
    • Frost, G.I.1    Csóka, T.B.2    Wong, T.3    Stern, R.4
  • 18
    • 0032575479 scopus 로고    scopus 로고
    • HYAL2, a human gene expressed in many cells, encodes a lysosomal hyaluronidase with a novel type of specificity
    • Lepperdinger G, Strobl B, Kreil G. HYAL2, a human gene expressed in many cells, encodes a lysosomal hyaluronidase with a novel type of specificity. J Biol Chem (1998) 273:22466-70. doi:10.1074/jbc.273.35.22466.
    • (1998) J Biol Chem , vol.273 , pp. 22466-22470
    • Lepperdinger, G.1    Strobl, B.2    Kreil, G.3
  • 19
    • 44449089083 scopus 로고    scopus 로고
    • Extracellular superoxide dismutase inhibits inflammation by preventing oxidative fragmentation of hyaluronan
    • Gao F, Koenitzer JR, Tobolewski JM, Jiang D, Liang J, Noble PW, et al. Extracellular superoxide dismutase inhibits inflammation by preventing oxidative fragmentation of hyaluronan. J Biol Chem (2008) 283:6058-66. doi:10.1074/jbc. M709273200.
    • (2008) J Biol Chem , vol.283 , pp. 6058-6066
    • Gao, F.1    Koenitzer, J.R.2    Tobolewski, J.M.3    Jiang, D.4    Liang, J.5    Noble, P.W.6
  • 20
    • 60549092844 scopus 로고    scopus 로고
    • Rheostatic signaling by CD44 and hyaluronan
    • Puré E, Assoian RK. Rheostatic signaling by CD44 and hyaluronan. Cell Signal (2009) 21:651-5. doi:10.1016/j.cellsig.2009.01.024.
    • (2009) Cell Signal , vol.21 , pp. 651-655
    • Puré, E.1    Assoian, R.K.2
  • 21
    • 70450224883 scopus 로고    scopus 로고
    • Engagement of CD44 by hyaluronan suppresses TLR4 signaling and the septic response to LPS
    • Muto J, Yamasaki K, Taylor KR, Gallo RL. Engagement of CD44 by hyaluronan suppresses TLR4 signaling and the septic response to LPS. Mol Immunol (2009) 47:449-56. doi:10.1016/j.molimm.2009.08.026.
    • (2009) Mol Immunol , vol.47 , pp. 449-456
    • Muto, J.1    Yamasaki, K.2    Taylor, K.R.3    Gallo, R.L.4
  • 22
    • 0018344829 scopus 로고
    • Hyaluronidase-sensitive halos around adherent cells. Their role in blocking lymphocyte-mediated cytolysis
    • McBride WH, Bard JB. Hyaluronidase-sensitive halos around adherent cells. Their role in blocking lymphocyte-mediated cytolysis. J Exp Med (1979) 149:507-15. doi:10.1084/jem.149.2.507.
    • (1979) J Exp Med , vol.149 , pp. 507-515
    • McBride, W.H.1    Bard, J.B.2
  • 23
    • 0020578890 scopus 로고
    • Hyaluronate in vasculogenesis
    • Feinberg RN, Beebe DC. Hyaluronate in vasculogenesis. Science (1983) 220:1177-9. doi:10.1126/science.6857242.
    • (1983) Science , vol.220 , pp. 1177-1179
    • Feinberg, R.N.1    Beebe, D.C.2
  • 24
    • 0041355233 scopus 로고    scopus 로고
    • Hyaluronan oligosaccharides induce CD44 cleavage and promote cell migration in CD44-expressing tumor cells
    • Sugahara KN, Murai T, Nishinakamura H, Kawashima H, Saya H, Miyasaka M. Hyaluronan oligosaccharides induce CD44 cleavage and promote cell migration in CD44-expressing tumor cells. J Biol Chem (2003) 278:32259-65. doi:10.1074/jbc. M300347200.
    • (2003) J Biol Chem , vol.278 , pp. 32259-32265
    • Sugahara, K.N.1    Murai, T.2    Nishinakamura, H.3    Kawashima, H.4    Saya, H.5    Miyasaka, M.6
  • 25
    • 73349093389 scopus 로고    scopus 로고
    • Inhibition of functional hyaluronan-CD44 interactions in CD133-positive primary human ovarian carcinoma cells by small hyaluronan oligosaccharides
    • Slomiany MG, Dai L, Tolliver LB, Grass GD, Zeng Y, Toole BP. Inhibition of functional hyaluronan-CD44 interactions in CD133-positive primary human ovarian carcinoma cells by small hyaluronan oligosaccharides. Clin Cancer Res (2009) 15:7593-601. doi:10.1158/1078-0432.CCR-09-2317.
    • (2009) Clin Cancer Res , vol.15 , pp. 7593-7601
    • Slomiany, M.G.1    Dai, L.2    Tolliver, L.B.3    Grass, G.D.4    Zeng, Y.5    Toole, B.P.6
  • 26
    • 67449119423 scopus 로고    scopus 로고
    • Abrogating drug resistance in malignant peripheral nerve sheath tumors by disrupting hyaluronan-CD44 interactions with small hyaluronan oligosaccharides
    • Slomiany MG, Dai L, Bomar PA, Knackstedt TJ, Kranc DA, Tolliver L, et al. Abrogating drug resistance in malignant peripheral nerve sheath tumors by disrupting hyaluronan-CD44 interactions with small hyaluronan oligosaccharides. Cancer Res (2009) 69:4992-8. doi:10.1158/0008-5472.CAN-09-0143.
    • (2009) Cancer Res , vol.69 , pp. 4992-4998
    • Slomiany, M.G.1    Dai, L.2    Bomar, P.A.3    Knackstedt, T.J.4    Kranc, D.A.5    Tolliver, L.6
  • 27
    • 60549091044 scopus 로고    scopus 로고
    • Hyaluronan, CD44, and emmprin regulate lactate efflux and membrane localization of monocarboxylate transporters in human breast carcinoma cells
    • Slomiany MG, Grass GD, Robertson AD, Yang XY, Maria BL, Beeson C, et al. Hyaluronan, CD44, and emmprin regulate lactate efflux and membrane localization of monocarboxylate transporters in human breast carcinoma cells. Cancer Res (2009) 69:1293-301. doi:10.1158/0008-5472.CAN-08-2491.
    • (2009) Cancer Res , vol.69 , pp. 1293-1301
    • Slomiany, M.G.1    Grass, G.D.2    Robertson, A.D.3    Yang, X.Y.4    Maria, B.L.5    Beeson, C.6
  • 28
    • 41549125075 scopus 로고    scopus 로고
    • Targeting hyaluronan interactions in malignant gliomas and their drug-resistant multipotent progenitors
    • Gilg AG, Tye SL, Tolliver LB, Wheeler WG, Visconti RP, Duncan JD, et al. Targeting hyaluronan interactions in malignant gliomas and their drug-resistant multipotent progenitors. Clin Cancer Res (2008) 14:1804-13. doi:10.1158/1078-0432.CCR-07-1228.
    • (2008) Clin Cancer Res , vol.14 , pp. 1804-1813
    • Gilg, A.G.1    Tye, S.L.2    Tolliver, L.B.3    Wheeler, W.G.4    Visconti, R.P.5    Duncan, J.D.6
  • 29
    • 33845951437 scopus 로고    scopus 로고
    • Hyaluronan constitutively regulates activation of multiple receptor tyrosine kinases in epithelial and carcinoma cells
    • Misra S, Toole BP, Ghatak S. Hyaluronan constitutively regulates activation of multiple receptor tyrosine kinases in epithelial and carcinoma cells. J Biol Chem (2006) 281:34936-41. doi:10.1074/jbc. C600138200.
    • (2006) J Biol Chem , vol.281 , pp. 34936-34941
    • Misra, S.1    Toole, B.P.2    Ghatak, S.3
  • 30
    • 15744372318 scopus 로고    scopus 로고
    • Hyaluronan constitutively regulates ErbB2 phosphorylation and signaling complex formation in carcinoma cells
    • Ghatak S, Misra S, Toole BP. Hyaluronan constitutively regulates ErbB2 phosphorylation and signaling complex formation in carcinoma cells. J Biol Chem (2005) 280:8875-83. doi:10.1074/jbc. M410882200.
    • (2005) J Biol Chem , vol.280 , pp. 8875-8883
    • Ghatak, S.1    Misra, S.2    Toole, B.P.3
  • 31
    • 0037063999 scopus 로고    scopus 로고
    • Hyaluronan oligosaccharides inhibit anchorage-independent growth of tumor cells by suppressing the phosphoinositide 3-kinase/Akt cell survival pathway
    • Ghatak S, Misra S, Toole BP. Hyaluronan oligosaccharides inhibit anchorage-independent growth of tumor cells by suppressing the phosphoinositide 3-kinase/Akt cell survival pathway. J Biol Chem (2002) 277:38013-20. doi:10.1074/jbc. M202404200.
    • (2002) J Biol Chem , vol.277 , pp. 38013-38020
    • Ghatak, S.1    Misra, S.2    Toole, B.P.3
  • 32
    • 84871121656 scopus 로고    scopus 로고
    • The high and low molecular weight forms of hyaluronan have distinct effects on CD44 clustering
    • Yang C, Cao M, Liu H, He Y, Xu J, Du Y, et al. The high and low molecular weight forms of hyaluronan have distinct effects on CD44 clustering. J Biol Chem (2012) 287:43094-107. doi:10.1074/jbc. M112.349209.
    • (2012) J Biol Chem , vol.287 , pp. 43094-43107
    • Yang, C.1    Cao, M.2    Liu, H.3    He, Y.4    Xu, J.5    Du, Y.6
  • 33
    • 70450267418 scopus 로고    scopus 로고
    • Two novel functions of hyaluronidase-2 (Hyal2) are formation of the glycocalyx and control of CD44-ERM interactions
    • Duterme C, Mertens-Strijthagen J, Tammi M, Flamion B. Two novel functions of hyaluronidase-2 (Hyal2) are formation of the glycocalyx and control of CD44-ERM interactions. J Biol Chem (2009) 284:33495-508. doi:10.1074/jbc. M109.044362.
    • (2009) J Biol Chem , vol.284 , pp. 33495-33508
    • Duterme, C.1    Mertens-Strijthagen, J.2    Tammi, M.3    Flamion, B.4
  • 34
  • 35
    • 21244464416 scopus 로고    scopus 로고
    • Hyaluronan fragments induce endothelial cell differentiation in a CD44-and CXCL1/GRO1-dependent manner
    • Takahashi Y, Li L, Kamiryo M, Asteriou T, Moustakas A, Yamashita H, et al. Hyaluronan fragments induce endothelial cell differentiation in a CD44-and CXCL1/GRO1-dependent manner. J Biol Chem (2005) 280:24195-204. doi:10.1074/jbc. M411913200.
    • (2005) J Biol Chem , vol.280 , pp. 24195-24204
    • Takahashi, Y.1    Li, L.2    Kamiryo, M.3    Asteriou, T.4    Moustakas, A.5    Yamashita, H.6
  • 36
    • 84895806437 scopus 로고    scopus 로고
    • Specific sizes of hyaluronan oligosaccharides stimulate fibroblast migration and excisional wound repair
    • Tolg C, Telmer P, Turley E. Specific sizes of hyaluronan oligosaccharides stimulate fibroblast migration and excisional wound repair. PLoS One (2014) 9:e88479. doi:10.1371/journal.pone.0088479.
    • (2014) PLoS One , vol.9
    • Tolg, C.1    Telmer, P.2    Turley, E.3
  • 37
    • 0037174957 scopus 로고    scopus 로고
    • Angiogenic oligosaccharides of hyaluronan induce multiple signaling pathways affecting vascular endothelial cell mitogenic and wound healing responses
    • Slevin M, Kumar S, Gaffney J. Angiogenic oligosaccharides of hyaluronan induce multiple signaling pathways affecting vascular endothelial cell mitogenic and wound healing responses. J Biol Chem (2002) 277:41046-59. doi:10.1074/jbc. M109443200.
    • (2002) J Biol Chem , vol.277 , pp. 41046-41059
    • Slevin, M.1    Kumar, S.2    Gaffney, J.3
  • 39
    • 1642503211 scopus 로고    scopus 로고
    • Hyaluronan-oligosaccharide-induced transcription of metalloproteases
    • Fieber C, Baumann P, Vallon R, Termeer C, Simon JC, Hofmann M, et al. Hyaluronan-oligosaccharide-induced transcription of metalloproteases. J Cell Sci (2004) 117:359-67. doi:10.1242/jcs.00831.
    • (2004) J Cell Sci , vol.117 , pp. 359-367
    • Fieber, C.1    Baumann, P.2    Vallon, R.3    Termeer, C.4    Simon, J.C.5    Hofmann, M.6
  • 40
    • 0034663808 scopus 로고    scopus 로고
    • Oligosaccharides of hyaluronan are potent activators of dendritic cells
    • Termeer CC, Hennies J, Voith U, Ahrens T, Weiss JM, Prehm P, et al. Oligosaccharides of hyaluronan are potent activators of dendritic cells. J Immunol (2000) 165:1863-70. doi:10.4049/jimmunol.165.4.1863.
    • (2000) J Immunol , vol.165 , pp. 1863-1870
    • Termeer, C.C.1    Hennies, J.2    Voith, U.3    Ahrens, T.4    Weiss, J.M.5    Prehm, P.6
  • 41
    • 57649131056 scopus 로고    scopus 로고
    • Differential activation of ERK and Rac mediates the proliferative and anti-proliferative effects of hyaluronan and CD44
    • Kothapalli D, Flowers J, Xu T, Puré E, Assoian RK. Differential activation of ERK and Rac mediates the proliferative and anti-proliferative effects of hyaluronan and CD44. J Biol Chem (2008) 283:31823-9. doi:10.1074/jbc. M802934200.
    • (2008) J Biol Chem , vol.283 , pp. 31823-31829
    • Kothapalli, D.1    Flowers, J.2    Xu, T.3    Puré, E.4    Assoian, R.K.5
  • 42
    • 80053207343 scopus 로고    scopus 로고
    • Fragmented hyaluronan is an autocrine chemokinetic motility factor supported by the HAS2-HYAL2/CD44 system on the plasma membrane
    • Saito T, Kawana H, Azuma K, Toyoda A, Fujita H, Kitagawa M, et al. Fragmented hyaluronan is an autocrine chemokinetic motility factor supported by the HAS2-HYAL2/CD44 system on the plasma membrane. Int J Oncol (2011) 39:1311-20. doi:10.3892/ijo.2011.1114.
    • (2011) Int J Oncol , vol.39 , pp. 1311-1320
    • Saito, T.1    Kawana, H.2    Azuma, K.3    Toyoda, A.4    Fujita, H.5    Kitagawa, M.6
  • 43
    • 84907588570 scopus 로고    scopus 로고
    • Hyaluronan breakdown contributes to immune defense against group A Streptococcus
    • Schommer NN, Muto J, Nizet V, Gallo RL. Hyaluronan breakdown contributes to immune defense against group A Streptococcus. J Biol Chem (2014) 289:26914-21. doi:10.1074/jbc. M114.575621.
    • (2014) J Biol Chem , vol.289 , pp. 26914-26921
    • Schommer, N.N.1    Muto, J.2    Nizet, V.3    Gallo, R.L.4
  • 44
    • 84885149402 scopus 로고    scopus 로고
    • Human milk hyaluronan enhances innate defense of the intestinal epithelium
    • Hill DR, Rho HK, Kessler SP, Amin R, Homer CR, McDonald C, et al. Human milk hyaluronan enhances innate defense of the intestinal epithelium. J Biol Chem (2013) 288:29090-104. doi:10.1074/jbc. M113.468629.
    • (2013) J Biol Chem , vol.288 , pp. 29090-29104
    • Hill, D.R.1    Rho, H.K.2    Kessler, S.P.3    Amin, R.4    Homer, C.R.5    McDonald, C.6
  • 45
    • 84865703946 scopus 로고    scopus 로고
    • Specific-sized hyaluronan fragments promote expression of human β-defensin 2 in intestinal epithelium
    • Hill DR, Kessler SP, Rho HK, Cowman MK, de la Motte CA. Specific-sized hyaluronan fragments promote expression of human β-defensin 2 in intestinal epithelium. J Biol Chem (2012) 287:30610-24. doi:10.1074/jbc. M112.356238.
    • (2012) J Biol Chem , vol.287 , pp. 30610-30624
    • Hill, D.R.1    Kessler, S.P.2    Rho, H.K.3    Cowman, M.K.4    de la Motte, C.A.5
  • 46
    • 0029808003 scopus 로고    scopus 로고
    • Hyaluronan (HA) fragments induce chemokine gene expression in alveolar macrophages. The role of HA size and CD44
    • McKee CM, Penno MB, Cowman M, Burdick MD, Strieter RM, Bao C, et al. Hyaluronan (HA) fragments induce chemokine gene expression in alveolar macrophages. The role of HA size and CD44. J Clin Invest (1996) 98:2403-13. doi:10.1172/JCI119054.
    • (1996) J Clin Invest , vol.98 , pp. 2403-2413
    • McKee, C.M.1    Penno, M.B.2    Cowman, M.3    Burdick, M.D.4    Strieter, R.M.5    Bao, C.6
  • 47
    • 84894208979 scopus 로고    scopus 로고
    • Low molecular weight hyaluronan activates cytosolic phospholipase A2a and eicosanoid production in monocytes and macrophages
    • Sokolowska M, Chen LY, Eberlein M, Martinez-Anton A, Liu Y, Alsaaty S, et al. Low molecular weight hyaluronan activates cytosolic phospholipase A2a and eicosanoid production in monocytes and macrophages. J Biol Chem (2014) 289:4470-88. doi:10.1074/jbc. M113.515106.
    • (2014) J Biol Chem , vol.289 , pp. 4470-4488
    • Sokolowska, M.1    Chen, L.Y.2    Eberlein, M.3    Martinez-Anton, A.4    Liu, Y.5    Alsaaty, S.6
  • 48
    • 18244390226 scopus 로고    scopus 로고
    • Threat matrix: low-molecular-weight hyaluronan (HA) as a danger signal
    • Powell JD, Horton MR. Threat matrix: low-molecular-weight hyaluronan (HA) as a danger signal. Immunol Res (2005) 31:207-18. doi:10.1385/IR:31:3:207.
    • (2005) Immunol Res , vol.31 , pp. 207-218
    • Powell, J.D.1    Horton, M.R.2
  • 49
    • 0030966842 scopus 로고    scopus 로고
    • CD44: structure, function, and association with the malignant process
    • Naor D, Sionov RV, Ish-Shalom D. CD44: structure, function, and association with the malignant process. Adv Cancer Res (1997) 71:241-319. doi:10.1016/S0065-230X(08)60101-3.
    • (1997) Adv Cancer Res , vol.71 , pp. 241-319
    • Naor, D.1    Sionov, R.V.2    Ish-Shalom, D.3
  • 50
    • 0038639722 scopus 로고    scopus 로고
    • CD44 in rheumatoid arthritis
    • Naor D, Nedvetzki S. CD44 in rheumatoid arthritis. Arthritis Res Ther (2003) 5:105-15. doi:10.1186/ar735.
    • (2003) Arthritis Res Ther , vol.5 , pp. 105-115
    • Naor, D.1    Nedvetzki, S.2
  • 51
    • 44749091840 scopus 로고    scopus 로고
    • Involvement of CD44, a molecule with a thousand faces, in cancer dissemination
    • Naor D, Wallach-Dayan SB, Zahalka MA, Sionov RV. Involvement of CD44, a molecule with a thousand faces, in cancer dissemination. Semin Cancer Biol (2008) 18:260-7. doi:10.1016/j.semcancer.2008.03.015.
    • (2008) Semin Cancer Biol , vol.18 , pp. 260-267
    • Naor, D.1    Wallach-Dayan, S.B.2    Zahalka, M.A.3    Sionov, R.V.4
  • 52
    • 79956136816 scopus 로고    scopus 로고
    • CD44 in hematological neoplasias
    • Hertweck MK, Erdfelder F, Kreuzer KA. CD44 in hematological neoplasias. Ann Hematol (2011) 90:493-508. doi:10.1007/s00277-011-1161-z.
    • (2011) Ann Hematol , vol.90 , pp. 493-508
    • Hertweck, M.K.1    Erdfelder, F.2    Kreuzer, K.A.3
  • 53
    • 0026645557 scopus 로고
    • Molecular cloning of a novel hyaluronan receptor that mediates tumor cell motility
    • Hardwick C, Hoare K, Owens R, Hohn HP, Hook M, Moore D, et al. Molecular cloning of a novel hyaluronan receptor that mediates tumor cell motility. J Cell Biol (1992) 117:1343-50. doi:10.1083/jcb.117.6.1343.
    • (1992) J Cell Biol , vol.117 , pp. 1343-1350
    • Hardwick, C.1    Hoare, K.2    Owens, R.3    Hohn, H.P.4    Hook, M.5    Moore, D.6
  • 54
    • 0033593793 scopus 로고    scopus 로고
    • LYVE-1, a new homologue of the CD44 glycoprotein, is a lymph-specific receptor for hyaluronan
    • Banerji S, Ni J, Wang SX, Clasper S, Su J, Tammi R, et al. LYVE-1, a new homologue of the CD44 glycoprotein, is a lymph-specific receptor for hyaluronan. J Cell Biol (1999) 144:789-801. doi:10.1083/jcb.144.4.789.
    • (1999) J Cell Biol , vol.144 , pp. 789-801
    • Banerji, S.1    Ni, J.2    Wang, S.X.3    Clasper, S.4    Su, J.5    Tammi, R.6
  • 55
    • 0036679228 scopus 로고    scopus 로고
    • Molecular cloning and functional expression of the rat 175-kDa hyaluronan receptor for endocytosis
    • Zhou B, Weigel JA, Saxena A, Weigel PH. Molecular cloning and functional expression of the rat 175-kDa hyaluronan receptor for endocytosis. Mol Biol Cell (2002) 13:2853-68. doi:10.1091/mbc.02-03-0048.
    • (2002) Mol Biol Cell , vol.13 , pp. 2853-2868
    • Zhou, B.1    Weigel, J.A.2    Saxena, A.3    Weigel, P.H.4
  • 56
    • 0015514472 scopus 로고
    • The fluid mosaic model of the structure of cell membranes
    • Singer SJ, Nicolson GL. The fluid mosaic model of the structure of cell membranes. Science (1972) 175:720-31. doi:10.1126/science.175.4023.720.
    • (1972) Science , vol.175 , pp. 720-731
    • Singer, S.J.1    Nicolson, G.L.2
  • 57
    • 0023788823 scopus 로고
    • Lipid sorting in epithelial cells
    • Simons K, van Meer G. Lipid sorting in epithelial cells. Biochemistry (1988) 27:6197-202. doi:10.1021/bi00417a001.
    • (1988) Biochemistry , vol.27 , pp. 6197-6202
    • Simons, K.1    van Meer, G.2
  • 58
    • 0030949124 scopus 로고    scopus 로고
    • Functional rafts in cell membranes
    • Simons K, Ikonen E. Functional rafts in cell membranes. Nature (1997) 387:569-72. doi:10.1038/42408.
    • (1997) Nature , vol.387 , pp. 569-572
    • Simons, K.1    Ikonen, E.2
  • 59
    • 0026512314 scopus 로고
    • Sorting of GPI-anchored proteins to glycolipid-enriched membrane subdomains during transport to the apical cell surface
    • Brown DA, Rose JK. Sorting of GPI-anchored proteins to glycolipid-enriched membrane subdomains during transport to the apical cell surface. Cell (1992) 68:533-44. doi:10.1016/0092-8674(92)90189-J.
    • (1992) Cell , vol.68 , pp. 533-544
    • Brown, D.A.1    Rose, J.K.2
  • 60
    • 74849118341 scopus 로고    scopus 로고
    • Lipid rafts as a membrane-organizing principle
    • Lingwood D, Simons K. Lipid rafts as a membrane-organizing principle. Science (2010) 327:46-50. doi:10.1126/science.1174621.
    • (2010) Science , vol.327 , pp. 46-50
    • Lingwood, D.1    Simons, K.2
  • 61
    • 0032875098 scopus 로고    scopus 로고
    • Fatty acylation of proteins: new insights into membrane targeting of myristoylated and palmitoylated proteins
    • Resh MD. Fatty acylation of proteins: new insights into membrane targeting of myristoylated and palmitoylated proteins. Biochim Biophys Acta (1999) 1451:1-16. doi:10.1016/S0167-4889(99)00075-0.
    • (1999) Biochim Biophys Acta , vol.1451 , pp. 1-16
    • Resh, M.D.1
  • 62
    • 0034304851 scopus 로고    scopus 로고
    • Lipid rafts and signal transduction
    • Simons K, Toomre D. Lipid rafts and signal transduction. Nat Rev Mol Cell Biol (2000) 1:31-9. doi:10.1038/35036205.
    • (2000) Nat Rev Mol Cell Biol , vol.1 , pp. 31-39
    • Simons, K.1    Toomre, D.2
  • 63
    • 84865324247 scopus 로고    scopus 로고
    • Transient GPI-anchored protein homodimers are units for raft organization and function
    • Suzuki KG, Kasai RS, Hirosawa KM, Nemoto YL, Ishibashi M, Miwa Y, et al. Transient GPI-anchored protein homodimers are units for raft organization and function. Nat Chem Biol (2012) 8:774-83. doi:10.1038/nchembio.1028.
    • (2012) Nat Chem Biol , vol.8 , pp. 774-783
    • Suzuki, K.G.1    Kasai, R.S.2    Hirosawa, K.M.3    Nemoto, Y.L.4    Ishibashi, M.5    Miwa, Y.6
  • 64
    • 84928404203 scopus 로고    scopus 로고
    • GPI-anchored proteins do not reside in ordered domains in the live cell plasma membrane
    • Sevcsik E, Brameshuber M, Fölser M, Weghuber J, Honigmann A, Schütz GJ. GPI-anchored proteins do not reside in ordered domains in the live cell plasma membrane. Nat Commun (2015) 6:6969. doi:10.1038/ncomms7969.
    • (2015) Nat Commun , vol.6 , pp. 6969
    • Sevcsik, E.1    Brameshuber, M.2    Fölser, M.3    Weghuber, J.4    Honigmann, A.5    Schütz, G.J.6
  • 65
    • 0034625373 scopus 로고    scopus 로고
    • Structure and function of sphingolipid-and cholesterol-rich membrane rafts
    • Brown DA, London E. Structure and function of sphingolipid-and cholesterol-rich membrane rafts. J Biol Chem (2000) 275:17221-4. doi:10.1074/jbc. R000005200.
    • (2000) J Biol Chem , vol.275 , pp. 17221-17224
    • Brown, D.A.1    London, E.2
  • 66
    • 80051937076 scopus 로고    scopus 로고
    • Intracellular lipid flux and membrane microdomains as organizing principles in inflammatory cell signaling
    • Fessler MB, Parks JS. Intracellular lipid flux and membrane microdomains as organizing principles in inflammatory cell signaling. J Immunol (2011) 187:1529-35. doi:10.4049/jimmunol.1100253.
    • (2011) J Immunol , vol.187 , pp. 1529-1535
    • Fessler, M.B.1    Parks, J.S.2
  • 67
    • 0036166283 scopus 로고    scopus 로고
    • Dynamic association of human insulin receptor with lipid rafts in cells lacking caveolae
    • Vainio S, Heino S, Månsson JE, Fredman P, Kuismanen E, Vaarala O, et al. Dynamic association of human insulin receptor with lipid rafts in cells lacking caveolae. EMBO Rep (2002) 3:95-100. doi:10.1093/embo-reports/kvf010.
    • (2002) EMBO Rep , vol.3 , pp. 95-100
    • Vainio, S.1    Heino, S.2    Månsson, J.E.3    Fredman, P.4    Kuismanen, E.5    Vaarala, O.6
  • 69
    • 34248195469 scopus 로고    scopus 로고
    • Lipid rafts and membrane traffic
    • Hanzal-Bayer MF, Hancock JF. Lipid rafts and membrane traffic. FEBS Lett (2007) 581:2098-104. doi:10.1016/j.febslet.2007.03.019.
    • (2007) FEBS Lett , vol.581 , pp. 2098-2104
    • Hanzal-Bayer, M.F.1    Hancock, J.F.2
  • 70
    • 84859949610 scopus 로고    scopus 로고
    • The extracellular matrix: a dynamic niche in cancer progression
    • Lu P, Weaver VM, Werb Z. The extracellular matrix: a dynamic niche in cancer progression. J Cell Biol (2012) 196:395-406. doi:10.1083/jcb.201102147.
    • (2012) J Cell Biol , vol.196 , pp. 395-406
    • Lu, P.1    Weaver, V.M.2    Werb, Z.3
  • 71
    • 79952284127 scopus 로고    scopus 로고
    • Hallmarks of cancer: the next generation
    • Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell (2011) 144:646-74. doi:10.1016/j.cell.2011.02.013.
    • (2011) Cell , vol.144 , pp. 646-674
    • Hanahan, D.1    Weinberg, R.A.2
  • 72
    • 0038049137 scopus 로고    scopus 로고
    • Tumour-cell invasion and migration: diversity and escape mechanisms
    • Friedl P, Wolf K. Tumour-cell invasion and migration: diversity and escape mechanisms. Nat Rev Cancer (2003) 3:362-74. doi:10.1038/nrc1075.
    • (2003) Nat Rev Cancer , vol.3 , pp. 362-374
    • Friedl, P.1    Wolf, K.2
  • 75
    • 0031973883 scopus 로고    scopus 로고
    • Tumor cell-associated hyaluronan as an unfavorable prognostic factor in colorectal cancer
    • Ropponen K, Tammi M, Parkkinen J, Eskelinen M, Tammi R, Lipponen P, et al. Tumor cell-associated hyaluronan as an unfavorable prognostic factor in colorectal cancer. Cancer Res (1998) 58:342-7.
    • (1998) Cancer Res , vol.58 , pp. 342-347
    • Ropponen, K.1    Tammi, M.2    Parkkinen, J.3    Eskelinen, M.4    Tammi, R.5    Lipponen, P.6
  • 76
    • 0033052479 scopus 로고    scopus 로고
    • Hyaluronan expression in gastric cancer cells is associated with local and nodal spread and reduced survival rate
    • Setälä LP, Tammi MI, Tammi RH, Eskelinen MJ, Lipponen PK, Ågren UM, et al. Hyaluronan expression in gastric cancer cells is associated with local and nodal spread and reduced survival rate. Br J Cancer (1999) 79:1133-8. doi:10.1038/sj.bjc.6690180.
    • (1999) Br J Cancer , vol.79 , pp. 1133-1138
    • Setälä, L.P.1    Tammi, M.I.2    Tammi, R.H.3    Eskelinen, M.J.4    Lipponen, P.K.5    Ågren, U.M.6
  • 77
    • 0033889231 scopus 로고    scopus 로고
    • Hyaluronan in peritumoral stroma and malignant cells associates with breast cancer spreading and predicts survival
    • Auvinen P, Tammi R, Parkkinen J, Tammi M, Ågren U, Johansson R, et al. Hyaluronan in peritumoral stroma and malignant cells associates with breast cancer spreading and predicts survival. Am J Pathol (2000) 156:529-36. doi:10.1016/S0002-9440(10)64757-8.
    • (2000) Am J Pathol , vol.156 , pp. 529-536
    • Auvinen, P.1    Tammi, R.2    Parkkinen, J.3    Tammi, M.4    Ågren, U.5    Johansson, R.6
  • 78
    • 0024307992 scopus 로고
    • Determination of synovial fluid hyaluronate concentration and polymerisation by high performance liquid chromatography
    • Saari H, Konttinen YT. Determination of synovial fluid hyaluronate concentration and polymerisation by high performance liquid chromatography. Ann Rheum Dis (1989) 48:565-70. doi:10.1136/ard.48.7.565.
    • (1989) Ann Rheum Dis , vol.48 , pp. 565-570
    • Saari, H.1    Konttinen, Y.T.2
  • 79
    • 1842417144 scopus 로고    scopus 로고
    • Tumor-associated hyaluronic acid: a new sensitive and specific urine marker for bladder cancer
    • Lokeshwar VB, Obek C, Soloway MS, Block NL. Tumor-associated hyaluronic acid: a new sensitive and specific urine marker for bladder cancer. Cancer Res (1997) 57:773-7.
    • (1997) Cancer Res , vol.57 , pp. 773-777
    • Lokeshwar, V.B.1    Obek, C.2    Soloway, M.S.3    Block, N.L.4
  • 80
    • 0035853711 scopus 로고    scopus 로고
    • Stromal and epithelial expression of tumor markers hyaluronic acid and HYAL1 hyaluronidase in prostate cancer
    • Lokeshwar VB, Rubinowicz D, Schroeder GL, Forgacs E, Minna JD, Block NL, et al. Stromal and epithelial expression of tumor markers hyaluronic acid and HYAL1 hyaluronidase in prostate cancer. J Biol Chem (2001) 276:11922-32. doi:10.1074/jbc. M008432200.
    • (2001) J Biol Chem , vol.276 , pp. 11922-11932
    • Lokeshwar, V.B.1    Rubinowicz, D.2    Schroeder, G.L.3    Forgacs, E.4    Minna, J.D.5    Block, N.L.6
  • 81
    • 33645575688 scopus 로고    scopus 로고
    • Epidermal growth factor-regulated activation of Rac GTPase enhances CD44 cleavage by metalloproteinase disintegrin ADAM10
    • Murai T, Miyauchi T, Yanagida T, Sako Y. Epidermal growth factor-regulated activation of Rac GTPase enhances CD44 cleavage by metalloproteinase disintegrin ADAM10. Biochem J (2006) 395:65-71. doi:10.1042/BJ20050582.
    • (2006) Biochem J , vol.395 , pp. 65-71
    • Murai, T.1    Miyauchi, T.2    Yanagida, T.3    Sako, Y.4
  • 82
    • 64249147843 scopus 로고    scopus 로고
    • Transforming growth factor-β induces CD44 cleavage that promotes migration of MDA-MB-435s cells through the up-regulation of membrane type 1-matrix metalloproteinase
    • Kuo YC, Su CH, Liu CY, Chen TH, Chen CP, Wang HS. Transforming growth factor-β induces CD44 cleavage that promotes migration of MDA-MB-435s cells through the up-regulation of membrane type 1-matrix metalloproteinase. Int J Cancer (2009) 124:2568-76. doi:10.1002/ijc.24263.
    • (2009) Int J Cancer , vol.124 , pp. 2568-2576
    • Kuo, Y.C.1    Su, C.H.2    Liu, C.Y.3    Chen, T.H.4    Chen, C.P.5    Wang, H.S.6
  • 83
    • 0035947766 scopus 로고    scopus 로고
    • Membrane-type 1 matrix metalloproteinase cleaves CD44 and promotes cell migration
    • Kajita M, Itoh Y, Chiba T, Mori H, Okada A, Kinoh H, et al. Membrane-type 1 matrix metalloproteinase cleaves CD44 and promotes cell migration. J Cell Biol (2001) 153:893-904. doi:10.1083/jcb.153.5.893.
    • (2001) J Cell Biol , vol.153 , pp. 893-904
    • Kajita, M.1    Itoh, Y.2    Chiba, T.3    Mori, H.4    Okada, A.5    Kinoh, H.6
  • 84
    • 13444273084 scopus 로고    scopus 로고
    • CD44 binding through the hemopexin-like domain is critical for its shedding by membrane-type 1 matrix metalloproteinase
    • Suenaga N, Mori H, Itoh Y, Seiki M. CD44 binding through the hemopexin-like domain is critical for its shedding by membrane-type 1 matrix metalloproteinase. Oncogene (2005) 24:859-68. doi:10.1038/sj.onc.1208258.
    • (2005) Oncogene , vol.24 , pp. 859-868
    • Suenaga, N.1    Mori, H.2    Itoh, Y.3    Seiki, M.4
  • 86
    • 1042278148 scopus 로고    scopus 로고
    • Engagement of CD44 promotes Rac activation and CD44 cleavage during tumor cell migration
    • Murai T, Miyazaki Y, Nishinakamura H, Sugahara KN, Miyauchi T, Sako Y, et al. Engagement of CD44 promotes Rac activation and CD44 cleavage during tumor cell migration. J Biol Chem (2004) 279:4541-50. doi:10.1074/jbc. M307356200.
    • (2004) J Biol Chem , vol.279 , pp. 4541-4550
    • Murai, T.1    Miyazaki, Y.2    Nishinakamura, H.3    Sugahara, K.N.4    Miyauchi, T.5    Sako, Y.6
  • 87
    • 84855580100 scopus 로고    scopus 로고
    • The role of lipid rafts in cancer cell adhesion and migration
    • Murai T. The role of lipid rafts in cancer cell adhesion and migration. Int J Cell Biol (2012) 2012:763283. doi:10.1155/2012/763283.
    • (2012) Int J Cell Biol , vol.2012
    • Murai, T.1
  • 88
    • 84914693422 scopus 로고    scopus 로고
    • Cholesterol lowering: role in cancer prevention and treatment
    • Murai T. Cholesterol lowering: role in cancer prevention and treatment. Biol Chem (2015) 396:1-11. doi:10.1515/hsz-2014-0194.
    • (2015) Biol Chem , vol.396 , pp. 1-11
    • Murai, T.1
  • 89
    • 0027491845 scopus 로고
    • CD44 and its interaction with extracellular matrix
    • Lesley J, Hyman R, Kincade PW. CD44 and its interaction with extracellular matrix. Adv Immunol (1993) 54:271-335. doi:10.1016/S0065-2776(08)60537-4.
    • (1993) Adv Immunol , vol.54 , pp. 271-335
    • Lesley, J.1    Hyman, R.2    Kincade, P.W.3
  • 90
    • 0032532271 scopus 로고    scopus 로고
    • Effects of cholesterol depletion by cyclodextrin on the sphingolipid microdomains of the plasma membrane
    • Ilangumaran S, Hoessli DC. Effects of cholesterol depletion by cyclodextrin on the sphingolipid microdomains of the plasma membrane. Biochem J (1998) 335:433-40.
    • (1998) Biochem J , vol.335 , pp. 433-440
    • Ilangumaran, S.1    Hoessli, D.C.2
  • 91
    • 0033598190 scopus 로고    scopus 로고
    • Analysis of CD44-containing lipid rafts: recruitment of annexin II and stabilization by the actin cytoskeleton
    • Oliferenko S, Paiha K, Harder T, Gerke V, Schwärzler C, Schwarz H, et al. Analysis of CD44-containing lipid rafts: recruitment of annexin II and stabilization by the actin cytoskeleton. J Cell Biol (1999) 146:843-54. doi:10.1083/jcb.146.4.843.
    • (1999) J Cell Biol , vol.146 , pp. 843-854
    • Oliferenko, S.1    Paiha, K.2    Harder, T.3    Gerke, V.4    Schwärzler, C.5    Schwarz, H.6
  • 93
    • 3042692979 scopus 로고    scopus 로고
    • CD44 interaction with Na+-H+ exchanger (NHE1) creates acidic microenvironments leading to hyaluronidase-2 and cathepsin B activation and breast tumor cell invasion
    • Bourguignon LY, Singleton PA, Diedrich F, Stern R, Gilad E. CD44 interaction with Na+-H+ exchanger (NHE1) creates acidic microenvironments leading to hyaluronidase-2 and cathepsin B activation and breast tumor cell invasion. J Biol Chem (2004) 279:26991-7007. doi:10.1074/jbc. M311838200.
    • (2004) J Biol Chem , vol.279 , pp. 26991-27007
    • Bourguignon, L.Y.1    Singleton, P.A.2    Diedrich, F.3    Stern, R.4    Gilad, E.5
  • 94
    • 84883709636 scopus 로고    scopus 로고
    • CD147, CD44, and the epidermal growth factor receptor (EGFR) signaling pathway cooperate to regulate breast epithelial cell invasiveness
    • Grass GD, Tolliver LB, Bratoeva M, Toole BP. CD147, CD44, and the epidermal growth factor receptor (EGFR) signaling pathway cooperate to regulate breast epithelial cell invasiveness. J Biol Chem (2013) 288:26089-104. doi:10.1074/jbc. M113.497685.
    • (2013) J Biol Chem , vol.288 , pp. 26089-26104
    • Grass, G.D.1    Tolliver, L.B.2    Bratoeva, M.3    Toole, B.P.4
  • 95
    • 84896721663 scopus 로고    scopus 로고
    • A novel mechanism of regulating breast cancer cell migration via palmitoylation-dependent alterations in the lipid raft affiliation of CD44
    • Babina IS, McSherry EA, Donatello S, Hill AD, Hopkins AM. A novel mechanism of regulating breast cancer cell migration via palmitoylation-dependent alterations in the lipid raft affiliation of CD44. Breast Cancer Res (2014) 16:R19. doi:10.1186/bcr3614.
    • (2014) Breast Cancer Res , vol.16 , pp. R19
    • Babina, I.S.1    McSherry, E.A.2    Donatello, S.3    Hill, A.D.4    Hopkins, A.M.5
  • 96
    • 51349126833 scopus 로고    scopus 로고
    • CD44 engagement promotes matrix-derived survival through the CD44-SRC-integrin axis in lipid rafts
    • Lee JL, Wang MJ, Sudhir PR, Chen JY. CD44 engagement promotes matrix-derived survival through the CD44-SRC-integrin axis in lipid rafts. Mol Cell Biol (2008) 28:5710-23. doi:10.1128/MCB.00186-08.
    • (2008) Mol Cell Biol , vol.28 , pp. 5710-5723
    • Lee, J.L.1    Wang, M.J.2    Sudhir, P.R.3    Chen, J.Y.4
  • 97
    • 78751479184 scopus 로고    scopus 로고
    • Low cholesterol triggers membrane microdomain-dependent CD44 shedding and suppresses tumor cell migration
    • Murai T, Maruyama Y, Mio K, Nishiyama H, Suga M, Sato C. Low cholesterol triggers membrane microdomain-dependent CD44 shedding and suppresses tumor cell migration. J Biol Chem (2011) 286:1999-2007. doi:10.1074/jbc. M110.184010.
    • (2011) J Biol Chem , vol.286 , pp. 1999-2007
    • Murai, T.1    Maruyama, Y.2    Mio, K.3    Nishiyama, H.4    Suga, M.5    Sato, C.6
  • 98
    • 79959572624 scopus 로고    scopus 로고
    • Cell-surface receptor for complement component C1q (gC1qR) is a key regulator for lamellipodia formation and cancer metastasis
    • Kim KB, Yi JS, Nguyen N, Lee JH, Kwon YC, Ahn BY, et al. Cell-surface receptor for complement component C1q (gC1qR) is a key regulator for lamellipodia formation and cancer metastasis. J Biol Chem (2011) 286:23093-101. doi:10.1074/jbc. M111.233304.
    • (2011) J Biol Chem , vol.286 , pp. 23093-23101
    • Kim, K.B.1    Yi, J.S.2    Nguyen, N.3    Lee, J.H.4    Kwon, Y.C.5    Ahn, B.Y.6
  • 99
    • 84887443235 scopus 로고    scopus 로고
    • Cooperativity of CD44 and CD49d in leukemia cell homing, migration, and survival offers a means for therapeutic attack
    • Singh V, Erb U, Zöller M. Cooperativity of CD44 and CD49d in leukemia cell homing, migration, and survival offers a means for therapeutic attack. J Immunol (2013) 191:5304-16. doi:10.4049/jimmunol.1301543.
    • (2013) J Immunol , vol.191 , pp. 5304-5316
    • Singh, V.1    Erb, U.2    Zöller, M.3
  • 100
    • 84878262982 scopus 로고    scopus 로고
    • Transforming growth factor-β1 (TGF-β1)-stimulated fibroblast to myofibroblast differentiation is mediated by hyaluronan (HA)-facilitated epidermal growth factor receptor (EGFR) and CD44 co-localization in lipid rafts
    • Midgley AC, Rogers M, Hallett MB, Clayton A, Bowen T, Phillips AO, et al. Transforming growth factor-β1 (TGF-β1)-stimulated fibroblast to myofibroblast differentiation is mediated by hyaluronan (HA)-facilitated epidermal growth factor receptor (EGFR) and CD44 co-localization in lipid rafts. J Biol Chem (2013) 288:14824-38. doi:10.1074/jbc. M113.451336.
    • (2013) J Biol Chem , vol.288 , pp. 14824-14838
    • Midgley, A.C.1    Rogers, M.2    Hallett, M.B.3    Clayton, A.4    Bowen, T.5    Phillips, A.O.6
  • 102
    • 33744928654 scopus 로고    scopus 로고
    • Hyaluronan synthesis induces microvillus-like cell surface protrusions
    • Kultti A, Rilla K, Tiihonen R, Spicer AP, Tammi RH, Tammi MI. Hyaluronan synthesis induces microvillus-like cell surface protrusions. J Biol Chem (2006) 281:15821-8. doi:10.1074/jbc. M512840200.
    • (2006) J Biol Chem , vol.281 , pp. 15821-15828
    • Kultti, A.1    Rilla, K.2    Tiihonen, R.3    Spicer, A.P.4    Tammi, R.H.5    Tammi, M.I.6
  • 103
    • 0037096172 scopus 로고    scopus 로고
    • Mediators of innate immune recognition of bacteria concentrate in lipid rafts and facilitate lipopolysaccharide-induced cell activation
    • Triantafilou M, Miyake K, Golenbock DT, Triantafilou K. Mediators of innate immune recognition of bacteria concentrate in lipid rafts and facilitate lipopolysaccharide-induced cell activation. J Cell Sci (2002) 115:2603-11.
    • (2002) J Cell Sci , vol.115 , pp. 2603-2611
    • Triantafilou, M.1    Miyake, K.2    Golenbock, D.T.3    Triantafilou, K.4
  • 104
    • 84904907508 scopus 로고    scopus 로고
    • CD147: regulator of hyaluronan signaling in invasiveness and chemoresistance
    • Grass GD, Dai L, Qin Z, Parsons C, Toole BP. CD147: regulator of hyaluronan signaling in invasiveness and chemoresistance. Adv Cancer Res (2014) 123:351-73. doi:10.1016/B978-0-12-800092-2.00013-7.
    • (2014) Adv Cancer Res , vol.123 , pp. 351-373
    • Grass, G.D.1    Dai, L.2    Qin, Z.3    Parsons, C.4    Toole, B.P.5
  • 105
    • 0027982876 scopus 로고
    • Traffic signals for lymphocyte recirculation and leukocyte emigration: the multistep paradigm
    • Springer TA. Traffic signals for lymphocyte recirculation and leukocyte emigration: the multistep paradigm. Cell (1994) 76:301-14. doi:10.1016/0092-8674(94)90337-9.
    • (1994) Cell , vol.76 , pp. 301-314
    • Springer, T.A.1
  • 106
    • 0029966274 scopus 로고    scopus 로고
    • CD44 and its ligand hyaluronate mediate rolling under physiologic flow: a novel lymphocyte-endothelial cell primary adhesion pathway
    • DeGrendele HC, Estess P, Picker LJ, Siegelman MH. CD44 and its ligand hyaluronate mediate rolling under physiologic flow: a novel lymphocyte-endothelial cell primary adhesion pathway. J Exp Med (1996) 183:1119-30. doi:10.1084/jem.183.3.1119.
    • (1996) J Exp Med , vol.183 , pp. 1119-1130
    • DeGrendele, H.C.1    Estess, P.2    Picker, L.J.3    Siegelman, M.H.4
  • 107
    • 0029799440 scopus 로고    scopus 로고
    • CD44 and hyaluronan-dependent rolling interactions of lymphocytes on tonsillar stroma
    • Clark RA, Alon R, Springer TA. CD44 and hyaluronan-dependent rolling interactions of lymphocytes on tonsillar stroma. J Cell Biol (1996) 134:1075-87. doi:10.1083/jcb.134.4.1075.
    • (1996) J Cell Biol , vol.134 , pp. 1075-1087
    • Clark, R.A.1    Alon, R.2    Springer, T.A.3
  • 108
    • 0030690228 scopus 로고    scopus 로고
    • Requirement for CD44 in activated T cell extravasation into an inflammatory site
    • DeGrendele HC, Estess P, Siegelman MH. Requirement for CD44 in activated T cell extravasation into an inflammatory site. Science (1997) 278:672-5. doi:10.1126/science.278.5338.672.
    • (1997) Science , vol.278 , pp. 672-675
    • DeGrendele, H.C.1    Estess, P.2    Siegelman, M.H.3
  • 109
    • 30444458396 scopus 로고    scopus 로고
    • Suppressor activity and potency among regulatory T cells is discriminated by functionally active CD44
    • Firan M, Dhillon S, Estess P, Siegelman MH. Suppressor activity and potency among regulatory T cells is discriminated by functionally active CD44. Blood (2006) 107:619-27. doi:10.1182/blood-2005-06-2277.
    • (2006) Blood , vol.107 , pp. 619-627
    • Firan, M.1    Dhillon, S.2    Estess, P.3    Siegelman, M.H.4
  • 110
    • 0028270665 scopus 로고
    • Hyaluronan binding function of CD44 is transiently activated on T cells during an in vivo immune response
    • Lesley J, Howes N, Perschl A, Hyman R. Hyaluronan binding function of CD44 is transiently activated on T cells during an in vivo immune response. J Exp Med (1994) 180:383-7. doi:10.1084/jem.180.1.383.
    • (1994) J Exp Med , vol.180 , pp. 383-387
    • Lesley, J.1    Howes, N.2    Perschl, A.3    Hyman, R.4
  • 111
    • 0033939218 scopus 로고    scopus 로고
    • Induction of interactions between CD44 and hyaluronic acid by a short exposure of human T cells to diverse pro-inflammatory mediators
    • Ariel A, Lider O, Brill A, Cahalon L, Savion N, Varon D, et al. Induction of interactions between CD44 and hyaluronic acid by a short exposure of human T cells to diverse pro-inflammatory mediators. Immunology (2000) 100:345-51. doi:10.1046/j.1365-2567.2000.00059.x.
    • (2000) Immunology , vol.100 , pp. 345-351
    • Ariel, A.1    Lider, O.2    Brill, A.3    Cahalon, L.4    Savion, N.5    Varon, D.6
  • 112
    • 79953045956 scopus 로고    scopus 로고
    • Hyaluronan binding identifies the most proliferative activated and memory T cells
    • Maeshima N, Poon GF, Dosanjh M, Felberg J, Lee SSM, Cross JL, et al. Hyaluronan binding identifies the most proliferative activated and memory T cells. Eur J Immunol (2011) 41:1108-19. doi:10.1002/eji.201040870.
    • (2011) Eur J Immunol , vol.41 , pp. 1108-1119
    • Maeshima, N.1    Poon, G.F.2    Dosanjh, M.3    Felberg, J.4    Lee, S.S.M.5    Cross, J.L.6
  • 113
    • 0029095821 scopus 로고
    • Glycosylation of CD44 negatively regulates its recognition of hyaluronan
    • Katoh S, Zheng Z, Oritani K, Shimozato T, Kincade PW. Glycosylation of CD44 negatively regulates its recognition of hyaluronan. J Exp Med (1995) 182:419-29. doi:10.1084/jem.182.2.419.
    • (1995) J Exp Med , vol.182 , pp. 419-429
    • Katoh, S.1    Zheng, Z.2    Oritani, K.3    Shimozato, T.4    Kincade, P.W.5
  • 114
    • 0032529429 scopus 로고    scopus 로고
    • Site-specific de-N-glycosylation of CD44 can activate hyaluronan binding, and CD44 activation states show distinct threshold densities for hyaluronan binding
    • English NM, Lesley JF, Hyman R. Site-specific de-N-glycosylation of CD44 can activate hyaluronan binding, and CD44 activation states show distinct threshold densities for hyaluronan binding. Cancer Res (1998) 58:3736-42.
    • (1998) Cancer Res , vol.58 , pp. 3736-3742
    • English, N.M.1    Lesley, J.F.2    Hyman, R.3
  • 115
    • 0032567715 scopus 로고    scopus 로고
    • Glycosylation provides both stimulatory and inhibitory effects on cell surface and soluble CD44 binding to hyaluronan
    • Skelton TP, Zeng C, Nocks A, Stamenkovic I. Glycosylation provides both stimulatory and inhibitory effects on cell surface and soluble CD44 binding to hyaluronan. J Cell Biol (1998) 140:431-46. doi:10.1083/jcb.140.2.431.
    • (1998) J Cell Biol , vol.140 , pp. 431-446
    • Skelton, T.P.1    Zeng, C.2    Nocks, A.3    Stamenkovic, I.4
  • 116
    • 0032587164 scopus 로고    scopus 로고
    • TNF-α and IL-4 regulation of hyaluronan binding to monocyte CD44 involves posttranslational modification of CD44
    • Levesque MC, Haynes BF. TNF-α and IL-4 regulation of hyaluronan binding to monocyte CD44 involves posttranslational modification of CD44. Cell Immunol (1999) 193:209-18. doi:10.1006/cimm.1999.1456.
    • (1999) Cell Immunol , vol.193 , pp. 209-218
    • Levesque, M.C.1    Haynes, B.F.2
  • 117
    • 79957591965 scopus 로고    scopus 로고
    • Differential use of chondroitin sulfate to regulate hyaluronan binding by receptor CD44 in inflammatory and interleukin 4-activated macrophages
    • Ruffell B, Poon GF, Lee SS, Brown KL, Tjew SL, Cooper J, et al. Differential use of chondroitin sulfate to regulate hyaluronan binding by receptor CD44 in inflammatory and interleukin 4-activated macrophages. J Biol Chem (2011) 286:19179-90. doi:10.1074/jbc. M110.200790.
    • (2011) J Biol Chem , vol.286 , pp. 19179-19190
    • Ruffell, B.1    Poon, G.F.2    Lee, S.S.3    Brown, K.L.4    Tjew, S.L.5    Cooper, J.6
  • 118
    • 0032582805 scopus 로고    scopus 로고
    • TNF-α induction of CD44-mediated leukocyte adhesion by sulfation
    • Maiti A, Maki G, Johnson P. TNF-α induction of CD44-mediated leukocyte adhesion by sulfation. Science (1998) 282:941-3. doi:10.1126/science.282.5390.941.
    • (1998) Science , vol.282 , pp. 941-943
    • Maiti, A.1    Maki, G.2    Johnson, P.3
  • 119
    • 0035498619 scopus 로고    scopus 로고
    • Role of sulfation in CD44-mediated hyaluronan binding induced by inflammatory mediators in human CD14+ peripheral blood monocytes
    • Brown KL, Maiti A, Johnson P. Role of sulfation in CD44-mediated hyaluronan binding induced by inflammatory mediators in human CD14+ peripheral blood monocytes. J Immunol (2001) 167:5367-74. doi:10.4049/jimmunol.167.9.5367.
    • (2001) J Immunol , vol.167 , pp. 5367-5374
    • Brown, K.L.1    Maiti, A.2    Johnson, P.3
  • 120
    • 84883444580 scopus 로고    scopus 로고
    • Membrane cholesterol modulates the hyaluronan-binding ability of CD44 in T lymphocytes and controls rolling under shear flow
    • Murai T, Sato C, Sato M, Nishiyama H, Suga M, Mio K, et al. Membrane cholesterol modulates the hyaluronan-binding ability of CD44 in T lymphocytes and controls rolling under shear flow. J Cell Sci (2013) 126:3284-94. doi:10.1242/jcs.120014.
    • (2013) J Cell Sci , vol.126 , pp. 3284-3294
    • Murai, T.1    Sato, C.2    Sato, M.3    Nishiyama, H.4    Suga, M.5    Mio, K.6
  • 121
    • 10744221425 scopus 로고    scopus 로고
    • Structure of the regulatory hyaluronan binding domain in the inflammatory leukocyte homing receptor CD44
    • Teriete P, Banerji S, Noble M, Blundell CD, Wright AJ, Pickford AR, et al. Structure of the regulatory hyaluronan binding domain in the inflammatory leukocyte homing receptor CD44. Mol Cell (2004) 13:483-96. doi:10.1016/S1097-2765(04)00080-2.
    • (2004) Mol Cell , vol.13 , pp. 483-496
    • Teriete, P.1    Banerji, S.2    Noble, M.3    Blundell, C.D.4    Wright, A.J.5    Pickford, A.R.6
  • 122
    • 33847672223 scopus 로고    scopus 로고
    • Structures of the Cd44-hyaluronan complex provide insight into a fundamental carbohydrate-protein interaction
    • Banerji S, Wright AJ, Noble M, Mahoney DJ, Campbell ID, Day AJ, et al. Structures of the Cd44-hyaluronan complex provide insight into a fundamental carbohydrate-protein interaction. Nat Struct Mol Biol (2007) 14:234-9. doi:10.1038/nsmb1201.
    • (2007) Nat Struct Mol Biol , vol.14 , pp. 234-239
    • Banerji, S.1    Wright, A.J.2    Noble, M.3    Mahoney, D.J.4    Campbell, I.D.5    Day, A.J.6
  • 123
    • 84883623049 scopus 로고    scopus 로고
    • CD44 receptor unfolding enhances binding by freeing basic amino acids to contact carbohydrate ligand
    • Favreau AJ, Faller CE, Guvench O. CD44 receptor unfolding enhances binding by freeing basic amino acids to contact carbohydrate ligand. Biophys J (2013) 105:1217-26. doi:10.1016/j.bpj.2013.07.041.
    • (2013) Biophys J , vol.105 , pp. 1217-1226
    • Favreau, A.J.1    Faller, C.E.2    Guvench, O.3
  • 125
    • 84875141357 scopus 로고    scopus 로고
    • Targeting gemcitabine containing liposomes to CD44 expressing pancreatic adenocarcinoma cells causes an increase in the antitumoral activity
    • Dalla Pozza E, Lerda C, Costanzo C, Donadelli M, Dando I, Zoratti E, et al. Targeting gemcitabine containing liposomes to CD44 expressing pancreatic adenocarcinoma cells causes an increase in the antitumoral activity. Biochim Biophys Acta (2013) 1828:1396-404. doi:10.1016/j.bbamem.2013.01.020.
    • (2013) Biochim Biophys Acta , vol.1828 , pp. 1396-1404
    • Dalla Pozza, E.1    Lerda, C.2    Costanzo, C.3    Donadelli, M.4    Dando, I.5    Zoratti, E.6
  • 126
    • 79961097211 scopus 로고    scopus 로고
    • Characterization of CD44-mediated cancer cell uptake and intracellular distribution of hyaluronan-grafted liposomes
    • Qhattal HS, Liu X. Characterization of CD44-mediated cancer cell uptake and intracellular distribution of hyaluronan-grafted liposomes. Mol Pharm (2011) 8:1233-46. doi:10.1021/mp2000428.
    • (2011) Mol Pharm , vol.8 , pp. 1233-1246
    • Qhattal, H.S.1    Liu, X.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.