메뉴 건너뛰기




Volumn 387, Issue 1-2, 2010, Pages 141-150

Predictive models for forecasting hourly urban water demand

Author keywords

Machine learning algorithms; Monte Carlo simulations; Non linear time series; Predictive regression models; Urban water demand

Indexed keywords

MACHINE LEARNING ALGORITHMS; MONTE CARLO SIMULATION; NONLINEAR TIME SERIES; REGRESSION MODEL; URBAN WATERS;

EID: 78549256372     PISSN: 00221694     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.jhydrol.2010.04.005     Document Type: Article
Times cited : (355)

References (56)
  • 1
    • 33847082820 scopus 로고    scopus 로고
    • A short-term, pattern-based model for water-demand forecasting
    • Alvisi S., Franchini M., Marinelli A. A short-term, pattern-based model for water-demand forecasting. Journal of Hydroinformatics 2007, 9(1):39-50.
    • (2007) Journal of Hydroinformatics , vol.9 , Issue.1 , pp. 39-50
    • Alvisi, S.1    Franchini, M.2    Marinelli, A.3
  • 2
    • 78549251482 scopus 로고
    • Discovering rules from data for water demand prediction. In: Proceedings in the Workshop on Machine Learning and Expert System (IJCAI'95)
    • An, A., Shan, C.C., Cercone, N., Ziarko, W., 1995. Discovering rules from data for water demand prediction. In: Proceedings in the Workshop on Machine Learning and Expert System (IJCAI'95), pp. 187-202.
    • (1995) , pp. 187-202
    • An, A.1    Shan, C.C.2    Cercone, N.3    Ziarko, W.4
  • 6
  • 7
    • 78549249614 scopus 로고
    • Classification and Regression Trees. Statistics/Probability Series. Wadsworth & Brooks/Cole Advanced Books & Software
    • Breiman, L., Friedman, J., Olshen, R., Stone, C., 1984. Classification and Regression Trees. Statistics/Probability Series. Wadsworth & Brooks/Cole Advanced Books & Software.
    • (1984)
    • Breiman, L.1    Friedman, J.2    Olshen, R.3    Stone, C.4
  • 8
    • 78549293359 scopus 로고    scopus 로고
    • SVM and Kernel Methods Matlab Toolbox. Perception Systemes et Information. (accessed on October 2008)
    • Canu, S., Grandvalet, Y., Rakotomamonjy, A., 2003. SVM and Kernel Methods Matlab Toolbox. Perception Systemes et Information. (accessed on October 2008). http://asi.insa-rouen.fr/arakotom/toolbox/index.
    • (2003)
    • Canu, S.1    Grandvalet, Y.2    Rakotomamonjy, A.3
  • 9
    • 78549245612 scopus 로고    scopus 로고
    • Libsvm: A Library for Support Vector Machines. (accessed on October 2008)
    • Chang, C., Lin, C., 2001. Libsvm: A Library for Support Vector Machines. (accessed on October 2008). http://www.csie.ntu.edu.tw/cjlin/libsvm.
    • (2001)
    • Chang, C.1    Lin, C.2
  • 10
    • 33750911770 scopus 로고    scopus 로고
    • Hourly water demand forecast model based on bayesian least squares support vector machine
    • Chen L., Zhang T. Hourly water demand forecast model based on bayesian least squares support vector machine. Journal of Tianjin University Science and Technology 2006, 39(9):1037-1042.
    • (2006) Journal of Tianjin University Science and Technology , vol.39 , Issue.9 , pp. 1037-1042
    • Chen, L.1    Zhang, T.2
  • 11
    • 33845525281 scopus 로고    scopus 로고
    • Hourly water demand forecast model based on least squares support vector machine
    • Chen L., Zhang T. Hourly water demand forecast model based on least squares support vector machine. Journal of Tianjin University Science and Technology 2006, 38(9):1528-1530.
    • (2006) Journal of Tianjin University Science and Technology , vol.38 , Issue.9 , pp. 1528-1530
    • Chen, L.1    Zhang, T.2
  • 12
    • 1842710025 scopus 로고    scopus 로고
    • Flexible regression models and relative forecast performance
    • Dahl C., Hylleberg S. Flexible regression models and relative forecast performance. International Journal of Forecasting 2004, 20:201-217.
    • (2004) International Journal of Forecasting , vol.20 , pp. 201-217
    • Dahl, C.1    Hylleberg, S.2
  • 13
    • 78549241357 scopus 로고    scopus 로고
    • e1071: Misc Functions of the Department of Statistics (e1071), TU Wien. R Package Version 1.5-19
    • Dimitriadou, E., Hornik, K., Leisch, F., Meyer, D., Weingessel, A., 2009. e1071: Misc Functions of the Department of Statistics (e1071), TU Wien. R Package Version 1.5-19.
    • (2009)
    • Dimitriadou, E.1    Hornik, K.2    Leisch, F.3    Meyer, D.4    Weingessel, A.5
  • 16
    • 0002432565 scopus 로고
    • Multivariate adaptive regression splines (with discussion)
    • Friedman J. Multivariate adaptive regression splines (with discussion). Annals of Statistics 1991, 19(1):1-141.
    • (1991) Annals of Statistics , vol.19 , Issue.1 , pp. 1-141
    • Friedman, J.1
  • 17
    • 34047256585 scopus 로고    scopus 로고
    • Temperature and rainfall thresholds for base use urban water demand modelling
    • Gato S., Jayasuriya N., Roberts P. Temperature and rainfall thresholds for base use urban water demand modelling. Journal of Hydrology 2007, 337(3-4):364-376.
    • (2007) Journal of Hydrology , vol.337 , Issue.3-4 , pp. 364-376
    • Gato, S.1    Jayasuriya, N.2    Roberts, P.3
  • 18
    • 78549237908 scopus 로고    scopus 로고
    • Mining frequent patterns in data streams at multiple time granularities. In: Kargupta, H., Joshi, A., Sivakumar, K., Yesha, Y. (Eds.)
    • Giannella, C., Han, J., Pei, J., Yan, X., Yu, P., 2003. Mining frequent patterns in data streams at multiple time granularities. In: Kargupta, H., Joshi, A., Sivakumar, K., Yesha, Y. (Eds.).
    • (2003)
    • Giannella, C.1    Han, J.2    Pei, J.3    Yan, X.4    Yu, P.5
  • 19
    • 78549294929 scopus 로고    scopus 로고
    • Brief user's Guide: Dynamic System Estimation (DSE). R Foundation for Statistical Computing. (accessed on October 2008)
    • Gilbert, P., 2006. Brief user's Guide: Dynamic System Estimation (DSE). R Foundation for Statistical Computing. (accessed on October 2008). http://cran.r-project.org.
    • (2006)
    • Gilbert, P.1
  • 22
    • 0036640826 scopus 로고    scopus 로고
    • Short-term water demand forecasting modelling techniques-conventional versus AI
    • Jain A., Ormsbee L.E. Short-term water demand forecasting modelling techniques-conventional versus AI. Journal AWWA 2002, 94:64-72.
    • (2002) Journal AWWA , vol.94 , pp. 64-72
    • Jain, A.1    Ormsbee, L.E.2
  • 23
    • 0035494446 scopus 로고    scopus 로고
    • Short-term water demand forecast modelling at IIT Kanpur using artificial neural networks
    • Jain A., Varshney K., Joshi U. Short-term water demand forecast modelling at IIT Kanpur using artificial neural networks. IEE Transactions on Water Resources Management 2001, 15(1):299-321.
    • (2001) IEE Transactions on Water Resources Management , vol.15 , Issue.1 , pp. 299-321
    • Jain, A.1    Varshney, K.2    Joshi, U.3
  • 24
    • 78549237547 scopus 로고    scopus 로고
    • Kernel Methods Software, Algorithms and Applications - Ph.D. Dissertation. Ph.D. Thesis, Technischen Universitat Wien, Austria
    • Karatzoglou, A., 2006. Kernel Methods Software, Algorithms and Applications - Ph.D. Dissertation. Ph.D. Thesis, Technischen Universitat Wien, Austria.
    • (2006)
    • Karatzoglou, A.1
  • 25
    • 33645695410 scopus 로고    scopus 로고
    • Support Vector Machines in R. Journal of Statistical Software 15(9). (accessed on January 2009)
    • Karatzoglou, A., Meyer, D., Hornik, K., 2006. Support Vector Machines in R. Journal of Statistical Software 15(9). (accessed on January 2009). http://www.jstatsoft.org/v15/i09.
    • (2006)
    • Karatzoglou, A.1    Meyer, D.2    Hornik, K.3
  • 26
    • 33645864343 scopus 로고    scopus 로고
    • Application of support vector machine in lake water level prediction
    • Khan M., Coulibaly P. Application of support vector machine in lake water level prediction. Journal of Hydrological Engineering 2006, 11(3):199-205.
    • (2006) Journal of Hydrological Engineering , vol.11 , Issue.3 , pp. 199-205
    • Khan, M.1    Coulibaly, P.2
  • 27
    • 39149145857 scopus 로고    scopus 로고
    • Optimisation of pumping schedule based on forecasting hourly water demand in seoul
    • Kim S., Koo J., Kim H., Choi Y. Optimisation of pumping schedule based on forecasting hourly water demand in seoul. Water Science & Technology: Water Supply 2007, 7:85-93.
    • (2007) Water Science & Technology: Water Supply , vol.7 , pp. 85-93
    • Kim, S.1    Koo, J.2    Kim, H.3    Choi, Y.4
  • 28
    • 33748913014 scopus 로고    scopus 로고
    • Comparison of different efficiency criteria for hydrological model assessment
    • Krause P., Boyle D., Bäse F. Comparison of different efficiency criteria for hydrological model assessment. Advances in Geosciences 2005, 5:89-97.
    • (2005) Advances in Geosciences , vol.5 , pp. 89-97
    • Krause, P.1    Boyle, D.2    Bäse, F.3
  • 29
  • 30
    • 0345040873 scopus 로고    scopus 로고
    • Classification and regression by randomforest
    • Liaw A., Wiener M. Classification and regression by randomforest. R News 2002, 2(3):18-22. .
    • (2002) R News , vol.2 , Issue.3 , pp. 18-22
    • Liaw, A.1    Wiener, M.2
  • 31
    • 78650364804 scopus 로고    scopus 로고
    • Mining frequent itemset from data streams with a time-sensitive sliding window. In: Proceedings of the 2005 SIAM International Conference on Data Mining
    • Lin, H., Chiu, D., Wu, Y., Chen, A., 2005. Mining frequent itemset from data streams with a time-sensitive sliding window. In: Proceedings of the 2005 SIAM International Conference on Data Mining.
    • (2005)
    • Lin, H.1    Chiu, D.2    Wu, Y.3    Chen, A.4
  • 33
  • 34
    • 0022046045 scopus 로고
    • Transfer function models of daily urban water use
    • Maidment D., Miaou S., Crawford M. Transfer function models of daily urban water use. Water Resources Research 1985, 21(4):425-432.
    • (1985) Water Resources Research , vol.21 , Issue.4 , pp. 425-432
    • Maidment, D.1    Miaou, S.2    Crawford, M.3
  • 35
    • 78549266913 scopus 로고    scopus 로고
    • Application of artificial neural networks to forecasting of surface water quality variables: issues, applications and challenges
    • Maier H.R., Dandy G.C. Application of artificial neural networks to forecasting of surface water quality variables: issues, applications and challenges. Environmental Modelling and Software 2000, 15.
    • (2000) Environmental Modelling and Software , pp. 15
    • Maier, H.R.1    Dandy, G.C.2
  • 36
    • 78549267916 scopus 로고    scopus 로고
    • Earth: Multivariate Adaptive Regression Spline Models, Derived from mda:mars by Trevor Hastie and Rob Tibshirani.
    • Milborrow, S., 2009. Earth: Multivariate Adaptive Regression Spline Models, Derived from mda:mars by Trevor Hastie and Rob Tibshirani.
    • (2009)
    • Milborrow, S.1
  • 37
    • 0037202445 scopus 로고    scopus 로고
    • Comparing five modelling techniques for predicting forest characteristics
    • Moisen G., Frescino T. Comparing five modelling techniques for predicting forest characteristics. Ecological Modelling 2002, 157(2):209-225.
    • (2002) Ecological Modelling , vol.157 , Issue.2 , pp. 209-225
    • Moisen, G.1    Frescino, T.2
  • 38
    • 40949148638 scopus 로고    scopus 로고
    • Artificial neural networks and support vector machines for water demand time series forecasting. In: IEEE International Conference on Systems, Man and Cybernetics
    • Msiza, I., Nelwamondo, F., Marwala, T., 2007. Artificial neural networks and support vector machines for water demand time series forecasting. In: IEEE International Conference on Systems, Man and Cybernetics, pp. 638-643.
    • (2007) , pp. 638-643
    • Msiza, I.1    Nelwamondo, F.2    Marwala, T.3
  • 39
    • 78549244523 scopus 로고    scopus 로고
    • R Development Core Team, 2009. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria, ISBN: 3-900051-07-0.
    • R Development Core Team, 2009. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria, ISBN: 3-900051-07-0.
  • 40
    • 0003606110 scopus 로고    scopus 로고
    • United States Environmental Protection Agency (EPA), Cincinnati, OH
    • Rossman L. EPANET - User's Manual 2000, United States Environmental Protection Agency (EPA), Cincinnati, OH.
    • (2000) EPANET - User's Manual
    • Rossman, L.1
  • 42
    • 33645987256 scopus 로고    scopus 로고
    • Machines learning approach for estimation of prediction interval for the model output
    • Shrestha D., Solomatine D. Machines learning approach for estimation of prediction interval for the model output. Neural Networks 2006, 19(2):225-236.
    • (2006) Neural Networks , vol.19 , Issue.2 , pp. 225-236
    • Shrestha, D.1    Solomatine, D.2
  • 43
    • 0023822847 scopus 로고
    • A model of daily municipal water use for short-term forecasting
    • Smith J. A model of daily municipal water use for short-term forecasting. Water Resources Research 1988, 24(2):201-206.
    • (1988) Water Resources Research , vol.24 , Issue.2 , pp. 201-206
    • Smith, J.1
  • 44
  • 45
    • 78549277591 scopus 로고    scopus 로고
    • A tutorial on support vector regression. In: NeuroCOLT Technical Report TR-98-030
    • Smola, A.J., Schölkopf, B., 1998. A tutorial on support vector regression. In: NeuroCOLT Technical Report TR-98-030.
    • (1998)
    • Smola, A.J.1    Schölkopf, B.2
  • 46
    • 34548585030 scopus 로고    scopus 로고
    • Multiple predictor smoothing methods for sensitive analysis: description of techniques
    • Storlie C., Helton J. Multiple predictor smoothing methods for sensitive analysis: description of techniques. Reliability Engineering & System Safety 2008, 93:28-54.
    • (2008) Reliability Engineering & System Safety , vol.93 , pp. 28-54
    • Storlie, C.1    Helton, J.2
  • 47
    • 34548576866 scopus 로고    scopus 로고
    • Multiple predictor smoothing methods for sensitive analysis: example results
    • Storlie C., Helton J. Multiple predictor smoothing methods for sensitive analysis: example results. Reliability Engineering & System Safety 2008, 93:55-57.
    • (2008) Reliability Engineering & System Safety , vol.93 , pp. 55-57
    • Storlie, C.1    Helton, J.2
  • 52
    • 78549285717 scopus 로고    scopus 로고
    • VAR Cointegration in VARMA Models, Institute for Advanced Studies
    • Wagner, M., 1999. VAR Cointegration in VARMA Models, Institute for Advanced Studies.
    • (1999)
    • Wagner, M.1
  • 54
    • 0033019602 scopus 로고    scopus 로고
    • Short term streamflow using artificial neural networks
    • Zealand C.M., Burn D.H., Simonovic S. Short term streamflow using artificial neural networks. Journal of Hydrology 2005, 214:32-48.
    • (2005) Journal of Hydrology , vol.214 , pp. 32-48
    • Zealand, C.M.1    Burn, D.H.2    Simonovic, S.3
  • 55
    • 4344591889 scopus 로고    scopus 로고
    • Neural network forecasting for seasonal and trend time series
    • Zhang G., Qi M. Neural network forecasting for seasonal and trend time series. European Journal of Operational Research 2005, 160:501-514.
    • (2005) European Journal of Operational Research , vol.160 , pp. 501-514
    • Zhang, G.1    Qi, M.2
  • 56
    • 0036499320 scopus 로고    scopus 로고
    • Forecasting operational demand for an urban water supply zone
    • Zhou S.L., McMahon T.A., Walton A., Lewis J. Forecasting operational demand for an urban water supply zone. Journal of Hydrology 2002, 259:189-202.
    • (2002) Journal of Hydrology , vol.259 , pp. 189-202
    • Zhou, S.L.1    McMahon, T.A.2    Walton, A.3    Lewis, J.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.