메뉴 건너뛰기




Volumn 15, Issue 2, 2013, Pages 486-502

Improving reliability of river flow forecasting using neural networks, wavelets and self-organising maps

Author keywords

Bootstrap; Cluster analysis; Decomposition; Forecasting; Mahanadi river basin; River flow

Indexed keywords


EID: 84876400204     PISSN: 14647141     EISSN: None     Source Type: Journal    
DOI: 10.2166/hydro.2012.130     Document Type: Article
Times cited : (31)

References (55)
  • 1
    • 33645204046 scopus 로고    scopus 로고
    • Neural network rainfall-runoff forecasting based on continuous resampling
    • Abrahart, R. J. 2003 Neural network rainfall-runoff forecasting based on continuous resampling. Journal of Hydroinformatics 5 (1), 51-61.
    • (2003) Journal of Hydroinformatics , vol.5 , Issue.1 , pp. 51-61
    • Abrahart, R.J.1
  • 2
    • 0034254196 scopus 로고    scopus 로고
    • Comparing neural network and autoregressive moving average techniques for the provision of continuous river flow forecasts in two contrasting catchments
    • Abrahart, R. J. & See, L. 2000 Comparing neural network and autoregressive moving average techniques for the provision of continuous river flow forecasts in two contrasting catchments. Hydrological Processes 14 (11-12), 2157-2172.
    • (2000) Hydrological Processes , vol.14 , Issue.11-12 , pp. 2157-2172
    • Abrahart, R.J.1    See, L.2
  • 3
    • 67650321039 scopus 로고    scopus 로고
    • River flow forecasting using wavelet and cross-wavelet transform models
    • Adamowski, J. F. 2008a River flow forecasting using wavelet and cross-wavelet transform models. Hydrological Processes 22 (25), 4877-4891.
    • (2008) Hydrological Processes , vol.22 , Issue.25 , pp. 4877-4891
    • Adamowski, J.F.1
  • 4
    • 41949086697 scopus 로고    scopus 로고
    • Development of a short-term river flood forecasting method for snowmelt driven floods based on wavelet and cross-wavelet analysis
    • Adamowski, J. F. 2008b Development of a short-term river flood forecasting method for snowmelt driven floods based on wavelet and cross-wavelet analysis. Journal of Hydrology 353 (3-4), 247-266.
    • (2008) Journal of Hydrology , vol.353 , Issue.3-4 , pp. 247-266
    • Adamowski, J.F.1
  • 5
    • 80052027629 scopus 로고    scopus 로고
    • A wavelet neural network conjunction model for groundwater level forecasting
    • Adamowski, J. & Chan, H. F. 2011 A wavelet neural network conjunction model for groundwater level forecasting. Journal of Hydrology 407, 28-40.
    • (2011) Journal of Hydrology , vol.407 , pp. 28-40
    • Adamowski, J.1    Chan, H.F.2
  • 6
    • 84856246099 scopus 로고    scopus 로고
    • Comparison of multiple linear and nonlinear regression, autoregressive integrated moving average, artificial neural network, and wavelet artificial neural network methods for urban water demand forecasting in Montreal, Canada
    • Adamowski, J., Chan, H. F., Prasher, S. O., Ozga-Zielinski, B. & Sliusarieva, A. 2012 Comparison of multiple linear and nonlinear regression, autoregressive integrated moving average, artificial neural network, and wavelet artificial neural network methods for urban water demand forecasting in Montreal, Canada. Water Resources Research 48 (1), W01528.
    • (2012) Water Resources Research , vol.48 , Issue.1
    • Adamowski, J.1    Chan, H.F.2    Prasher, S.O.3    Ozga-Zielinski, B.4    Sliusarieva, A.5
  • 7
    • 33846458992 scopus 로고    scopus 로고
    • Forecasting surface water level fluctuations of Lake Van by artificial neural networks
    • Altunkaynak, A. 2007 Forecasting surface water level fluctuations of Lake Van by artificial neural networks. Water Resources Management 21 (2), 399-408.
    • (2007) Water Resources Management , vol.21 , Issue.2 , pp. 399-408
    • Altunkaynak, A.1
  • 8
    • 0034174280 scopus 로고    scopus 로고
    • Artificial neural networks in hydrology. I. Preliminary concepts
    • ASCE
    • ASCE 2000a Artificial neural networks in hydrology. I. Preliminary Concepts. Journal of Hydrological Engineering 5 (2), 115-123.
    • (2000) Journal of Hydrological Engineering , vol.5 , Issue.2 , pp. 115-123
  • 9
    • 0034174396 scopus 로고    scopus 로고
    • Artificial neural networks in hydrology. II. Hydrologic applications
    • ASCE
    • ASCE 2000b Artificial neural networks in hydrology. II. Hydrologic applications. Journal of Hydrological Engineering 5 (2), 124-137.
    • (2000) Journal of Hydrological Engineering , vol.5 , Issue.2 , pp. 124-137
  • 10
    • 35348971404 scopus 로고    scopus 로고
    • Comparison of self-organizing maps classification approach with cluster and principal components analysis for large environmental data sets
    • Astel, A., Tsakovski, S., Barbieri, P. & Simeonov, V. 2007 Comparison of self-organizing maps classification approach with cluster and principal components analysis for large environmental data sets. Water Research 41 (19), 4566-4578.
    • (2007) Water Research , vol.41 , Issue.19 , pp. 4566-4578
    • Astel, A.1    Tsakovski, S.2    Barbieri, P.3    Simeonov, V.4
  • 12
    • 68949135430 scopus 로고    scopus 로고
    • Tools for the assessment of hydrological ensemble forecasts obtained by neural networks
    • Boucher, M. A., Perreault, L. & Anctil, F. 2009 Tools for the assessment of hydrological ensemble forecasts obtained by neural networks. Journal of Hydroinformatics 11 (3-4), 297-307.
    • (2009) Journal of Hydroinformatics , vol.11 , Issue.3-4 , pp. 297-307
    • Boucher, M.A.1    Perreault, L.2    Anctil, F.3
  • 14
    • 33947502845 scopus 로고    scopus 로고
    • Enforced self-organizing map neural networks for river flood forecasting
    • Chang, F.-J., Chang, L.-C. & Wang, Y.-S. 2007 Enforced self-organizing map neural networks for river flood forecasting. Hydrological Processes 21, 741-749.
    • (2007) Hydrological Processes , vol.21 , pp. 741-749
    • Chang, F.-J.1    Chang, L.-C.2    Wang, Y.-S.3
  • 15
    • 34249885607 scopus 로고    scopus 로고
    • Knowledge-based modularization and global optimization of artificial neural network models in hydrological forecasting
    • Corzo, G. & Solomatine, D. P. 2007a Knowledge-based modularization and global optimization of artificial neural network models in hydrological forecasting. Neural Networks 20, 528-536.
    • (2007) Neural Networks , vol.20 , pp. 528-536
    • Corzo, G.1    Solomatine, D.P.2
  • 16
    • 34249775808 scopus 로고    scopus 로고
    • Baseflow separation techniques for modular artificial neural networks modelling in flow forecasting
    • Corzo, G. A. & Solomatine, D. P. 2007b Baseflow separation techniques for modular artificial neural networks modelling in flow forecasting. Hydrological Sciences Journal 52, 491-507.
    • (2007) Hydrological Sciences Journal , vol.52 , pp. 491-507
    • Corzo, G.A.1    Solomatine, D.P.2
  • 17
    • 62949110142 scopus 로고    scopus 로고
    • Flow forecast by SWAT model and ANN in Pracana basin, Portugal
    • Demirel, M. C, Venancio, A. & Kahya, E. 2009 Flow forecast by SWAT model and ANN in Pracana basin, Portugal. Journal of Hydrology 40, 467-473.
    • (2009) Journal of Hydrology , vol.40 , pp. 467-473
    • Demirel, M.C.1    Venancio, A.2    Kahya, E.3
  • 18
    • 0002344794 scopus 로고
    • Bootstrap methods: Another look at the jackknife
    • Efron, B. 1979 Bootstrap methods: another look at the jackknife. Annals of Statistics 7, 1-26.
    • (1979) Annals of Statistics , vol.7 , pp. 1-26
    • Efron, B.1
  • 20
    • 35448991280 scopus 로고    scopus 로고
    • Hydrologic data exploration and river flow forecasting of a humid tropical river basin using Artificial Neural Networks
    • Gopakumar, R, Takara, K & James, E. J. 2007 Hydrologic data exploration and river flow forecasting of a humid tropical river basin using Artificial Neural Networks. Water Resources Management 21, 1915-1940.
    • (2007) Water Resources Management , vol.21 , pp. 1915-1940
    • Gopakumar, R.1    Takara, K.2    James, E.J.3
  • 23
    • 33846419128 scopus 로고    scopus 로고
    • Uncertainties in real-time flood forecasting with neural networks
    • Han, D., Kwong, T & Li, S. 2007 Uncertainties in real-time flood forecasting with neural networks. Hydrological Processes 21 (2), 223-228.
    • (2007) Hydrological Processes , vol.21 , Issue.2 , pp. 223-228
    • Han, D.1    Kwong, T.2    Li, S.3
  • 26
    • 84876398672 scopus 로고    scopus 로고
    • River flow forecasting: A hybrid model of self organizing maps and least square support vector machine
    • Ismail, S., Samsudin, R & Shabri, A. 2010 River flow forecasting: a hybrid model of self organizing maps and least square support vector machine. Hydrology and Earth Systems Science D 7, 8179-8212.
    • (2010) Hydrology and Earth Systems Science D , vol.7 , pp. 8179-8212
    • Ismail, S.1    Samsudin, R.2    Shabri, A.3
  • 27
    • 2442639370 scopus 로고    scopus 로고
    • Development of effective and efficient rainfall-runoff models using integration of deterministic, real-coded genetic algorithms and artificial neural network techniques
    • Jain, A. & Srinivasulu, S. 2004 Development of effective and efficient rainfall-runoff models using integration of deterministic, real-coded genetic algorithms and artificial neural network techniques. Water Resources Research 40 (4), W04302.
    • (2004) Water Resources Research , vol.40 , Issue.4
    • Jain, A.1    Srinivasulu, S.2
  • 28
    • 28844473522 scopus 로고    scopus 로고
    • Integrated approach to model decomposed flow hydrograph using artificial neural network and conceptual techniques
    • Jain, A. & Srinivasulu, S. 2006 Integrated approach to model decomposed flow hydrograph using artificial neural network and conceptual techniques. Journal of Hydrology 317, 291-306.
    • (2006) Journal of Hydrology , vol.317 , pp. 291-306
    • Jain, A.1    Srinivasulu, S.2
  • 29
    • 52649120830 scopus 로고    scopus 로고
    • Fitting of hydrologic models: A close look at the Nash-Sutcliffe index
    • Jain, S. K & Sudheer, K P. 2008 Fitting of hydrologic models: a close look at the Nash-Sutcliffe index. Journal of Hydrological Engineering 13 (10), 981-986.
    • (2008) Journal of Hydrological Engineering , vol.13 , Issue.10 , pp. 981-986
    • Jain, S.K.1    Sudheer, K.P.2
  • 30
    • 30444441291 scopus 로고    scopus 로고
    • Rainfall-runoff models using artificial neural networks for ensemble streamflow prediction
    • Jeong, D. & Kim, Y O. 2005 Rainfall-runoff models using artificial neural networks for ensemble streamflow prediction. Hydrological Processes 19 (19), 3819-3835.
    • (2005) Hydrological Processes , vol.19 , Issue.19 , pp. 3819-3835
    • Jeong, D.1    Kim, Y.O.2
  • 31
    • 33750682003 scopus 로고    scopus 로고
    • Bootstrapped artificial neural networks for synthetic flow generation with a small data sample
    • Jia, Y & Culver, T B. 2006 Bootstrapped artificial neural networks for synthetic flow generation with a small data sample. Journal of Hydrology 331, 580-590.
    • (2006) Journal of Hydrology , vol.331 , pp. 580-590
    • Jia, Y.1    Culver, T.B.2
  • 32
    • 40749144865 scopus 로고    scopus 로고
    • Review of the self organizing map (SOM) approach in water resources: Analysis, modelling and application
    • Kalteh, A. M., Hjorth, P. & Berndtsson, R. 2008 Review of the self organizing map (SOM) approach in water resources: analysis, modelling and application. Environmental Modelling Software 23, 835-845.
    • (2008) Environmental Modelling Software , vol.23 , pp. 835-845
    • Kalteh, A.M.1    Hjorth, P.2    Berndtsson, R.3
  • 33
    • 69349098138 scopus 로고    scopus 로고
    • Estimation of river flow by artificial neural networks and identification of input vectors susceptible to producing unreliable flow estimates
    • Kentel, E. 2009 Estimation of river flow by artificial neural networks and identification of input vectors susceptible to producing unreliable flow estimates. Journal of Hydrology 375, 481-488.
    • (2009) Journal of Hydrology , vol.375 , pp. 481-488
    • Kentel, E.1
  • 34
    • 68049112473 scopus 로고    scopus 로고
    • Neural networks and wavelet conjunction model for intermittent streamflow forecasting
    • Kisi, O. 2009 Neural networks and wavelet conjunction model for intermittent streamflow forecasting. Journal of Hydrological Engineering 14 (8), 773-782.
    • (2009) Journal of Hydrological Engineering , vol.14 , Issue.8 , pp. 773-782
    • Kisi, O.1
  • 36
    • 33748438581 scopus 로고    scopus 로고
    • Performing cluster analysis and discrimination analysis of hydrological factors in one step
    • Lin, G. F. & Wang, C. M. 2006 Performing cluster analysis and discrimination analysis of hydrological factors in one step. Advances in Water Resources 29 (11), 1573-1585.
    • (2006) Advances in Water Resources , vol.29 , Issue.11 , pp. 1573-1585
    • Lin, G.F.1    Wang, C.M.2
  • 37
    • 69349084510 scopus 로고    scopus 로고
    • A hybrid neural network model for typhoon-rainfall forecasting
    • Lin, G.-F. & Wu, M.-C. 2009 A hybrid neural network model for typhoon-rainfall forecasting. Journal of Hydrology 375, 450-458.
    • (2009) Journal of Hydrology , vol.375 , pp. 450-458
    • Lin, G.-F.1    Wu, M.-C.2
  • 38
    • 0033957764 scopus 로고    scopus 로고
    • Neural networks for the prediction and forecasting of water resources variables: A review of modelling issues and applications
    • Maier, H. R & Dandy, G C. 2000 Neural networks for the prediction and forecasting of water resources variables: a review of modelling issues and applications. Environmental Modelling Software 15, 101-124.
    • (2000) Environmental Modelling Software , vol.15 , pp. 101-124
    • Maier, H.R.1    Dandy, G.C.2
  • 39
    • 0024700097 scopus 로고
    • A theory for multi resolution signal decomposition: The wavelet representation
    • Mallat, S. G 1989 A theory for multi resolution signal decomposition: the wavelet representation. IEEE Transaction on Pattern Analysis and Machine Intelligences 11 (7), 674-693.
    • (1989) IEEE Transaction on Pattern Analysis and Machine Intelligences , vol.11 , Issue.7 , pp. 674-693
    • Mallat, S.G.1
  • 40
    • 0030159380 scopus 로고    scopus 로고
    • Artificial neural networks as rainfall-runoff models
    • Minns, A. W. & Hall, M. J. 1996 Artificial neural networks as rainfall-runoff models. Journal of Hydrological Sciences 41 (3), 399-417.
    • (1996) Journal of Hydrological Sciences , vol.41 , Issue.3 , pp. 399-417
    • Minns, A.W.1    Hall, M.J.2
  • 41
    • 0003691877 scopus 로고    scopus 로고
    • Rainfall-runoff modelling Neural
    • (R. J. Hart, P. E. Kneale & L. M. See, eds). Balkema Publishers, Leiden, The Netherlands
    • Minns, A. W. & Hall, M. J. 2004 Rainfall-runoff modelling. In: Neural Networks for Hydrological Modelling (R. J. Hart, P. E. Kneale & L. M. See, eds). Balkema Publishers, Leiden, The Netherlands.
    • (2004) Networks for Hydrological Modelling
    • Minns, A.W.1    Hall, M.J.2
  • 42
    • 3142538909 scopus 로고    scopus 로고
    • Improved streamflow forecasting using self-organizing radial basis function artificial neural networks
    • Moradkhani, H, Hsu, K., Gupta, H. V. & Sorooshian, S. 2004 Improved streamflow forecasting using self-organizing radial basis function artificial neural networks. Journal of Hydrology 295, 246-262.
    • (2004) Journal of Hydrology , vol.295 , pp. 246-262
    • Moradkhani, H.1    Hsu, K.2    Gupta, H.V.3    Sorooshian, S.4
  • 44
    • 0025570550 scopus 로고
    • Identification of homogeneous regions for the purposes of regionalization
    • Nathan, R. J. & McMahon, T. A. 1990 Identification of homogeneous regions for the purposes of regionalization. Journal of Hydrology 121, 217-238.
    • (1990) Journal of Hydrology , vol.121 , pp. 217-238
    • Nathan, R.J.1    McMahon, T.A.2
  • 46
    • 69949188486 scopus 로고    scopus 로고
    • Prediction of daily precipitation using wavelet-neural networks
    • Partal, T. & Cigizoglu, H. K. 2009 Prediction of daily precipitation using wavelet-neural networks. Hydrological Sciences Journal 54 (2), 234-246.
    • (2009) Hydrological Sciences Journal , vol.54 , Issue.2 , pp. 234-246
    • Partal, T.1    Cigizoglu, H.K.2
  • 47
    • 68349123741 scopus 로고    scopus 로고
    • Bootstrap based artificial neural network (BANN) analysis for hierarchical prediction of monthly runoff in Upper Damodar Valley Catchment
    • Sharma, S. K. & Tiwari, K. N. 2009 Bootstrap based artificial neural network (BANN) analysis for hierarchical prediction of monthly runoff in Upper Damodar Valley Catchment. Journal of Hydrology 374 (3-4), 209-222.
    • (2009) Journal of Hydrology , vol.374 , Issue.3-4 , pp. 209-222
    • Sharma, S.K.1    Tiwari, K.N.2
  • 48
    • 39449089195 scopus 로고    scopus 로고
    • Data-driven modelling: Some past experiences and new approaches
    • Solomatine, D. P. & Ostfeld, A. 2008 Data-driven modelling: some past experiences and new approaches. Journal of Hydroinformatics 10 (1), 3-22.
    • (2008) Journal of Hydroinformatics , vol.10 , Issue.1 , pp. 3-22
    • Solomatine, D.P.1    Ostfeld, A.2
  • 49
    • 0037197571 scopus 로고    scopus 로고
    • A data-driven algorithm for constructing artificial neural network rainfall-runoff models
    • Sudheer, K. P., Gosain, A. K. & Ramasastri, K. S. 2002 A data-driven algorithm for constructing artificial neural network rainfall-runoff models. Hydrological Processes 16, 1325-1330.
    • (2002) Hydrological Processes , vol.16 , pp. 1325-1330
    • Sudheer, K.P.1    Gosain, A.K.2    Ramasastri, K.S.3
  • 50
    • 75149131606 scopus 로고    scopus 로고
    • Uncertainty assessment and ensemble flood forecasting using bootstrap based artificial neural networks (BANNs)
    • Tiwari, M. K. & Chatterjee, C. 2010a Uncertainty assessment and ensemble flood forecasting using bootstrap based artificial neural networks (BANNs). Journal of Hydrology 382, 20-33.
    • (2010) Journal of Hydrology , vol.382 , pp. 20-33
    • Tiwari, M.K.1    Chatterjee, C.2
  • 51
    • 79959790257 scopus 로고    scopus 로고
    • A new wavelet-bootstrap-ANN hybrid model for daily discharge forecasting
    • Tiwari, M. K. & Chatterjee, C. 2010b A new wavelet-bootstrap-ANN hybrid model for daily discharge forecasting. Journal of Hydroinformatics 13 (3), 500-519.
    • (2010) Journal of Hydroinformatics , vol.13 , Issue.3 , pp. 500-519
    • Tiwari, M.K.1    Chatterjee, C.2
  • 52
    • 78149408167 scopus 로고    scopus 로고
    • Development of an accurate and reliable hourly flood forecasting model using wavelet-bootstrap-ANN hybrid approach
    • Tiwari, M. K. & Chatterjee, C. 2010c Development of an accurate and reliable hourly flood forecasting model using wavelet-bootstrap-ANN hybrid approach. Journal of Hydrology 394, 458-470.
    • (2010) Journal of Hydrology , vol.394 , pp. 458-470
    • Tiwari, M.K.1    Chatterjee, C.2
  • 54
    • 0030162090 scopus 로고    scopus 로고
    • Automatic calibration of conceptual rainfall-runoff models: Sensitivity to calibration data
    • Yapo, P. O., Gupta, H. V. & Sorooshian, S. 1996 Automatic calibration of conceptual rainfall-runoff models: sensitivity to calibration data. Journal of Hydrology 181, 23-48.
    • (1996) Journal of Hydrology , vol.181 , pp. 23-48
    • Yapo, P.O.1    Gupta, H.V.2    Sorooshian, S.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.