-
1
-
-
84872334045
-
Metabolism and the circadian clock converge
-
Eckel-Mahan K, Sassone-Corsi P. Metabolism and the circadian clock converge. Physiol Rev 2013; 93: 107-135.
-
(2013)
Physiol Rev
, vol.93
, pp. 107-135
-
-
Eckel-Mahan, K.1
Sassone-Corsi, P.2
-
2
-
-
84925844053
-
Time for food: the intimate interplay between nutrition, metabolism and the circadian clock
-
Asher G, Sassone-Corsi P. Time for food: the intimate interplay between nutrition, metabolism and the circadian clock. Cell 2015; 161: 84-92.
-
(2015)
Cell
, vol.161
, pp. 84-92
-
-
Asher, G.1
Sassone-Corsi, P.2
-
4
-
-
0037006807
-
Circadian programs of transcriptional activation, signaling, and protein turnover revealed by microarray analysis of mammalian cells
-
Duffield GE, Best JD, Meurers BH, Bittner A, Loros JJ, Dunlap JC. Circadian programs of transcriptional activation, signaling, and protein turnover revealed by microarray analysis of mammalian cells. Curr Biol 2002; 12: 551-557.
-
(2002)
Curr Biol
, vol.12
, pp. 551-557
-
-
Duffield, G.E.1
Best, J.D.2
Meurers, B.H.3
Bittner, A.4
Loros, J.J.5
Dunlap, J.C.6
-
5
-
-
18444414586
-
Coordinated transcription of key pathways in the mouse by the circadian clock
-
Panda S, Antoch MP, Miller BH et al. Coordinated transcription of key pathways in the mouse by the circadian clock. Cell 2002; 109: 307-320.
-
(2002)
Cell
, vol.109
, pp. 307-320
-
-
Panda, S.1
Antoch, M.P.2
Miller, B.H.3
-
6
-
-
0037007625
-
Extensive and divergent circadian gene expression in liver and heart
-
Storch KF, Lipan O, Leykin I et al. Extensive and divergent circadian gene expression in liver and heart. Nature 2002; 417: 78-83.
-
(2002)
Nature
, vol.417
, pp. 78-83
-
-
Storch, K.F.1
Lipan, O.2
Leykin, I.3
-
7
-
-
0036682099
-
A transcription factor response element for gene expression during circadian night
-
Ueda HR, Chen W, Adachi A et al. A transcription factor response element for gene expression during circadian night. Nature 2002; 418: 534-539.
-
(2002)
Nature
, vol.418
, pp. 534-539
-
-
Ueda, H.R.1
Chen, W.2
Adachi, A.3
-
8
-
-
77958504804
-
Clocks not winding down: unravelling circadian networks
-
Zhang EE, Kay SA. Clocks not winding down: unravelling circadian networks. Nat Rev Mol Cell Biol 2010; 11: 764-776.
-
(2010)
Nat Rev Mol Cell Biol
, vol.11
, pp. 764-776
-
-
Zhang, E.E.1
Kay, S.A.2
-
9
-
-
75849128796
-
Essential roles of CKIdelta and CKIepsilon in the mammalian circadian clock
-
Lee H, Chen R, Lee Y, Yoo S, Lee C. Essential roles of CKIdelta and CKIepsilon in the mammalian circadian clock. Proc Natl Acad Sci U S A 2009; 106: 21359-21364.
-
(2009)
Proc Natl Acad Sci U S A
, vol.106
, pp. 21359-21364
-
-
Lee, H.1
Chen, R.2
Lee, Y.3
Yoo, S.4
Lee, C.5
-
10
-
-
34248566788
-
SCFFbxl3 controls the oscillation of the circadian clock by directing the degradation of cryptochrome proteins
-
Busino L, Bassermann F, Maiolica A et al. SCFFbxl3 controls the oscillation of the circadian clock by directing the degradation of cryptochrome proteins. Science 2007; 316: 900-904.
-
(2007)
Science
, vol.316
, pp. 900-904
-
-
Busino, L.1
Bassermann, F.2
Maiolica, A.3
-
11
-
-
84874772651
-
FBXL21 regulates oscillation of the circadian clock through ubiquitination and stabilization of cryptochromes
-
Hirano A, Yumimoto K, Tsunematsu R et al. FBXL21 regulates oscillation of the circadian clock through ubiquitination and stabilization of cryptochromes. Cell 2013; 152: 1106-1118.
-
(2013)
Cell
, vol.152
, pp. 1106-1118
-
-
Hirano, A.1
Yumimoto, K.2
Tsunematsu, R.3
-
12
-
-
34249097203
-
Circadian mutant overtime reveals F-box protein FBXL3 regulation of cryptochrome and period gene expression
-
Siepka SM, Yoo SH, Park J et al. Circadian mutant overtime reveals F-box protein FBXL3 regulation of cryptochrome and period gene expression. Cell 2007; 129: 1011-1023.
-
(2007)
Cell
, vol.129
, pp. 1011-1023
-
-
Siepka, S.M.1
Yoo, S.H.2
Park, J.3
-
13
-
-
84874768419
-
Competing E3 ubiquitin ligases govern circadian periodicity by degradation of CRY in nucleus and cytoplasm
-
Yoo SH, Mohawk JA, Siepka SM et al. Competing E3 ubiquitin ligases govern circadian periodicity by degradation of CRY in nucleus and cytoplasm. Cell 2013; 152: 1091-1105.
-
(2013)
Cell
, vol.152
, pp. 1091-1105
-
-
Yoo, S.H.1
Mohawk, J.A.2
Siepka, S.M.3
-
14
-
-
77958574512
-
Plasticity and specificity of the circadian epigenome
-
Masri S, Sassone-Corsi P. Plasticity and specificity of the circadian epigenome. Nat Neurosci 2010; 13: 1324-1329.
-
(2010)
Nat Neurosci
, vol.13
, pp. 1324-1329
-
-
Masri, S.1
Sassone-Corsi, P.2
-
15
-
-
33646145721
-
Circadian regulator CLOCK is a histone acetyltransferase
-
Doi M, Hirayama J, Sassone-Corsi P. Circadian regulator CLOCK is a histone acetyltransferase. Cell 2006; 125: 497-508.
-
(2006)
Cell
, vol.125
, pp. 497-508
-
-
Doi, M.1
Hirayama, J.2
Sassone-Corsi, P.3
-
16
-
-
0037426839
-
Rhythmic histone acetylation underlies transcription in the mammalian circadian clock
-
Etchegaray JP, Lee C, Wade PA, Reppert SM. Rhythmic histone acetylation underlies transcription in the mammalian circadian clock. Nature 2003; 421: 177-182.
-
(2003)
Nature
, vol.421
, pp. 177-182
-
-
Etchegaray, J.P.1
Lee, C.2
Wade, P.A.3
Reppert, S.M.4
-
17
-
-
77957869145
-
Coactivation of the CLOCK-BMAL1 complex by CBP mediates resetting of the circadian clock
-
Lee Y, Lee J, Kwon I et al. Coactivation of the CLOCK-BMAL1 complex by CBP mediates resetting of the circadian clock. J Cell Sci 2010; 123: 3547-3557.
-
(2010)
J Cell Sci
, vol.123
, pp. 3547-3557
-
-
Lee, Y.1
Lee, J.2
Kwon, I.3
-
18
-
-
1342282943
-
Histone acetyltransferase-dependent chromatin remodeling and the vascular clock
-
Curtis AM, Seo SB, Westgate EJ et al. Histone acetyltransferase-dependent chromatin remodeling and the vascular clock. J Biol Chem 2004; 279: 7091-7097.
-
(2004)
J Biol Chem
, vol.279
, pp. 7091-7097
-
-
Curtis, A.M.1
Seo, S.B.2
Westgate, E.J.3
-
19
-
-
0033825665
-
Transactivation mechanisms of mouse clock transcription factors, mClock and mArnt3
-
Takahata S, Ozaki T, Mimura J, Kikuchi Y, Sogawa K, Fujii-Kuriyama Y. Transactivation mechanisms of mouse clock transcription factors, mClock and mArnt3. Genes Cells 2000; 5: 739-747.
-
(2000)
Genes Cells
, vol.5
, pp. 739-747
-
-
Takahata, S.1
Ozaki, T.2
Mimura, J.3
Kikuchi, Y.4
Sogawa, K.5
Fujii-Kuriyama, Y.6
-
20
-
-
79959366611
-
A molecular mechanism for circadian clock negative feedback
-
Duong HA, Robles MS, Knutti D, Weitz CJ. A molecular mechanism for circadian clock negative feedback. Science 2011; 332: 1436-1439.
-
(2011)
Science
, vol.332
, pp. 1436-1439
-
-
Duong, H.A.1
Robles, M.S.2
Knutti, D.3
Weitz, C.J.4
-
21
-
-
3042709817
-
Circadian and light-induced transcription of clock gene Per1 depends on histone acetylation and deacetylation
-
Naruse Y, Oh-hashi K, Iijima N, Naruse M, Yoshioka H, Tanaka M. Circadian and light-induced transcription of clock gene Per1 depends on histone acetylation and deacetylation. Mol Cell Biol 2004; 24: 6278-6287.
-
(2004)
Mol Cell Biol
, vol.24
, pp. 6278-6287
-
-
Naruse, Y.1
Oh-hashi, K.2
Iijima, N.3
Naruse, M.4
Yoshioka, H.5
Tanaka, M.6
-
22
-
-
79952529158
-
A circadian rhythm orchestrated by histone deacetylase 3 controls hepatic lipid metabolism
-
Feng D, Liu T, Sun Z et al. A circadian rhythm orchestrated by histone deacetylase 3 controls hepatic lipid metabolism. Science 2011; 331: 1315-1319.
-
(2011)
Science
, vol.331
, pp. 1315-1319
-
-
Feng, D.1
Liu, T.2
Sun, Z.3
-
23
-
-
84867412467
-
Circadian epigenomic remodeling and hepatic lipogenesis: lessons from HDAC3
-
Sun Z, Feng D, Everett LJ, Bugge A, Lazar MA. Circadian epigenomic remodeling and hepatic lipogenesis: lessons from HDAC3. Cold Spring Harb Symp Quant Biol 2011; 76: 49-55.
-
(2011)
Cold Spring Harb Symp Quant Biol
, vol.76
, pp. 49-55
-
-
Sun, Z.1
Feng, D.2
Everett, L.J.3
Bugge, A.4
Lazar, M.A.5
-
24
-
-
47549088250
-
The NAD + -dependent deacetylase SIRT1 modulates CLOCK-mediated chromatin remodeling and circadian control
-
Nakahata Y, Kaluzova M, Grimaldi B et al. The NAD + -dependent deacetylase SIRT1 modulates CLOCK-mediated chromatin remodeling and circadian control. Cell 2008; 134: 329-340.
-
(2008)
Cell
, vol.134
, pp. 329-340
-
-
Nakahata, Y.1
Kaluzova, M.2
Grimaldi, B.3
-
25
-
-
84905389924
-
Partitioning circadian transcription by SIRT6 leads to segregated control of cellular metabolism
-
Masri S, Rigor P, Cervantes M et al. Partitioning circadian transcription by SIRT6 leads to segregated control of cellular metabolism. Cell 2014; 158: 659-672.
-
(2014)
Cell
, vol.158
, pp. 659-672
-
-
Masri, S.1
Rigor, P.2
Cervantes, M.3
-
26
-
-
0033695926
-
Light induces chromatin modification in cells of the mammalian circadian clock
-
Crosio C, Cermakian N, Allis CD, Sassone-Corsi P. Light induces chromatin modification in cells of the mammalian circadian clock. Nat Neurosci 2000; 3: 1241-1247.
-
(2000)
Nat Neurosci
, vol.3
, pp. 1241-1247
-
-
Crosio, C.1
Cermakian, N.2
Allis, C.D.3
Sassone-Corsi, P.4
-
27
-
-
33644617485
-
Rhythmic CLOCK-BMAL1 binding to multiple E-box motifs drives circadian Dbp transcription and chromatin transitions
-
Ripperger JA, Schibler U. Rhythmic CLOCK-BMAL1 binding to multiple E-box motifs drives circadian Dbp transcription and chromatin transitions. Nat Genet 2006; 38: 369-374.
-
(2006)
Nat Genet
, vol.38
, pp. 369-374
-
-
Ripperger, J.A.1
Schibler, U.2
-
28
-
-
78649886477
-
The histone methyltransferase MLL1 permits the oscillation of circadian gene expression
-
Katada S, Sassone-Corsi P. The histone methyltransferase MLL1 permits the oscillation of circadian gene expression. Nat Struct Mol Biol 2010; 17: 1414-1421.
-
(2010)
Nat Struct Mol Biol
, vol.17
, pp. 1414-1421
-
-
Katada, S.1
Sassone-Corsi, P.2
-
29
-
-
33746344698
-
The polycomb group protein EZH2 is required for mammalian circadian clock function
-
Etchegaray JP, Yang X, DeBruyne JP et al. The polycomb group protein EZH2 is required for mammalian circadian clock function. J Biol Chem 2006; 281: 21209-21215.
-
(2006)
J Biol Chem
, vol.281
, pp. 21209-21215
-
-
Etchegaray, J.P.1
Yang, X.2
DeBruyne, J.P.3
-
30
-
-
80053355301
-
Histone lysine demethylase JARID1a activates CLOCK-BMAL1 and influences the circadian clock
-
DiTacchio L, Le HD, Vollmers C et al. Histone lysine demethylase JARID1a activates CLOCK-BMAL1 and influences the circadian clock. Science 2011; 333: 1881-1885.
-
(2011)
Science
, vol.333
, pp. 1881-1885
-
-
DiTacchio, L.1
Le, H.D.2
Vollmers, C.3
-
31
-
-
84896715662
-
Phosphorylation of LSD1 by PKCalpha is crucial for circadian rhythmicity and phase resetting
-
Nam HJ, Boo K, Kim D et al. Phosphorylation of LSD1 by PKCalpha is crucial for circadian rhythmicity and phase resetting. Mol Cell 2014; 53: 791-805.
-
(2014)
Mol Cell
, vol.53
, pp. 791-805
-
-
Nam, H.J.1
Boo, K.2
Kim, D.3
-
32
-
-
84857124907
-
The human circadian metabolome
-
Dallmann R, Viola AU, Tarokh L, Cajochen C, Brown SA. The human circadian metabolome. Proc Natl Acad Sci U S A 2012; 109: 2625-2629.
-
(2012)
Proc Natl Acad Sci U S A
, vol.109
, pp. 2625-2629
-
-
Dallmann, R.1
Viola, A.U.2
Tarokh, L.3
Cajochen, C.4
Brown, S.A.5
-
33
-
-
84894590704
-
Reprogramming of the circadian clock by nutritional challenge
-
Eckel-Mahan KL, Patel VR, de Mateo S et al. Reprogramming of the circadian clock by nutritional challenge. Cell 2013; 155: 1464-1478.
-
(2013)
Cell
, vol.155
, pp. 1464-1478
-
-
Eckel-Mahan, K.L.1
Patel, V.R.2
de Mateo, S.3
-
34
-
-
84859459231
-
Coordination of the transcriptome and metabolome by the circadian clock
-
Eckel-Mahan KL, Patel VR, Mohney RP, Vignola KS, Baldi P, Sassone-Corsi P. Coordination of the transcriptome and metabolome by the circadian clock. Proc Natl Acad Sci U S A 2012; 109: 5541-5546.
-
(2012)
Proc Natl Acad Sci U S A
, vol.109
, pp. 5541-5546
-
-
Eckel-Mahan, K.L.1
Patel, V.R.2
Mohney, R.P.3
Vignola, K.S.4
Baldi, P.5
Sassone-Corsi, P.6
-
35
-
-
84862008430
-
Time-restricted feeding without reducing caloric intake prevents metabolic diseases in mice fed a high-fat diet
-
Hatori M, Vollmers C, Zarrinpar A et al. Time-restricted feeding without reducing caloric intake prevents metabolic diseases in mice fed a high-fat diet. Cell Metab 2012; 15: 848-860.
-
(2012)
Cell Metab
, vol.15
, pp. 848-860
-
-
Hatori, M.1
Vollmers, C.2
Zarrinpar, A.3
-
36
-
-
84871917034
-
Human blood metabolite timetable indicates internal body time
-
Kasukawa T, Sugimoto M, Hida A et al. Human blood metabolite timetable indicates internal body time. Proc Natl Acad Sci U S A 2012; 109: 15036-15041.
-
(2012)
Proc Natl Acad Sci U S A
, vol.109
, pp. 15036-15041
-
-
Kasukawa, T.1
Sugimoto, M.2
Hida, A.3
-
37
-
-
84864309100
-
Clocks, metabolism, and the epigenome
-
Feng D, Lazar MA. Clocks, metabolism, and the epigenome. Mol Cell 2012; 47: 158-167.
-
(2012)
Mol Cell
, vol.47
, pp. 158-167
-
-
Feng, D.1
Lazar, M.A.2
-
38
-
-
84856090681
-
Connecting threads: epigenetics and metabolism
-
Katada S, Imhof A, Sassone-Corsi P. Connecting threads: epigenetics and metabolism. Cell 2012; 148: 24-28.
-
(2012)
Cell
, vol.148
, pp. 24-28
-
-
Katada, S.1
Imhof, A.2
Sassone-Corsi, P.3
-
39
-
-
84891940889
-
Circadian clock-dependent and -independent rhythmic proteomes implement distinct diurnal functions in mouse liver
-
Mauvoisin D, Wang J, Jouffe C et al. Circadian clock-dependent and -independent rhythmic proteomes implement distinct diurnal functions in mouse liver. Proc Natl Acad Sci U S A 2014; 111: 167-172.
-
(2014)
Proc Natl Acad Sci U S A
, vol.111
, pp. 167-172
-
-
Mauvoisin, D.1
Wang, J.2
Jouffe, C.3
-
40
-
-
66249105703
-
ATP-citrate lyase links cellular metabolism to histone acetylation
-
Wellen KE, Hatzivassiliou G, Sachdeva UM, Bui TV, Cross JR, Thompson CB. ATP-citrate lyase links cellular metabolism to histone acetylation. Science 2009; 324: 1076-1080.
-
(2009)
Science
, vol.324
, pp. 1076-1080
-
-
Wellen, K.E.1
Hatzivassiliou, G.2
Sachdeva, U.M.3
Bui, T.V.4
Cross, J.R.5
Thompson, C.B.6
-
41
-
-
84872160110
-
Influence of threonine metabolism on S-adenosylmethionine and histone methylation
-
Shyh-Chang N, Locasale JW, Lyssiotis CA et al. Influence of threonine metabolism on S-adenosylmethionine and histone methylation. Science 2013; 339: 222-226.
-
(2013)
Science
, vol.339
, pp. 222-226
-
-
Shyh-Chang, N.1
Locasale, J.W.2
Lyssiotis, C.A.3
-
42
-
-
84887875528
-
RNA-methylation dependent RNA processing controls the speed of the circadian clock
-
Fustin JM, Doi M, Yamaguchi Y et al. RNA-methylation dependent RNA processing controls the speed of the circadian clock. Cell 2013; 155: 793-806.
-
(2013)
Cell
, vol.155
, pp. 793-806
-
-
Fustin, J.M.1
Doi, M.2
Yamaguchi, Y.3
-
43
-
-
84874484700
-
Pharmacological modulation of circadian rhythms by synthetic activators of the deacetylase SIRT1
-
Bellet MM, Nakahata Y, Boudjelal M et al. Pharmacological modulation of circadian rhythms by synthetic activators of the deacetylase SIRT1. Proc Natl Acad Sci U S A 2013; 110: 3333-3338.
-
(2013)
Proc Natl Acad Sci U S A
, vol.110
, pp. 3333-3338
-
-
Bellet, M.M.1
Nakahata, Y.2
Boudjelal, M.3
-
44
-
-
65549118773
-
Circadian control of the NAD+ salvage pathway by CLOCK-SIRT1
-
Nakahata Y, Sahar S, Astarita G, Kaluzova M, Sassone-Corsi P. Circadian control of the NAD+ salvage pathway by CLOCK-SIRT1. Science 2009; 324: 654-657.
-
(2009)
Science
, vol.324
, pp. 654-657
-
-
Nakahata, Y.1
Sahar, S.2
Astarita, G.3
Kaluzova, M.4
Sassone-Corsi, P.5
-
45
-
-
65549103855
-
Circadian clock feedback cycle through NAMPT-mediated NAD+ biosynthesis
-
Ramsey KM, Yoshino J, Brace CS et al. Circadian clock feedback cycle through NAMPT-mediated NAD+ biosynthesis. Science 2009; 324: 651-654.
-
(2009)
Science
, vol.324
, pp. 651-654
-
-
Ramsey, K.M.1
Yoshino, J.2
Brace, C.S.3
-
46
-
-
0035919479
-
Regulation of clock and NPAS2 DNA binding by the redox state of NAD cofactors
-
Rutter J, Reick M, Wu LC, McKnight SL. Regulation of clock and NPAS2 DNA binding by the redox state of NAD cofactors. Science 2001; 293: 510-514.
-
(2001)
Science
, vol.293
, pp. 510-514
-
-
Rutter, J.1
Reick, M.2
Wu, L.C.3
McKnight, S.L.4
-
47
-
-
84901358563
-
Interaction of circadian clock proteins CRY1 and PER2 is modulated by zinc binding and disulfide bond formation
-
Schmalen I, Reischl S, Wallach T et al. Interaction of circadian clock proteins CRY1 and PER2 is modulated by zinc binding and disulfide bond formation. Cell 2014; 157: 1203-1215.
-
(2014)
Cell
, vol.157
, pp. 1203-1215
-
-
Schmalen, I.1
Reischl, S.2
Wallach, T.3
-
48
-
-
84875899177
-
SCF(FBXL3) ubiquitin ligase targets cryptochromes at their cofactor pocket
-
Xing W, Busino L, Hinds TR et al. SCF(FBXL3) ubiquitin ligase targets cryptochromes at their cofactor pocket. Nature 2013; 496: 64-68.
-
(2013)
Nature
, vol.496
, pp. 64-68
-
-
Xing, W.1
Busino, L.2
Hinds, T.R.3
-
49
-
-
84865558040
-
Identification of small molecule activators of cryptochrome
-
Hirota T, Lee JW, StJohn PC et al. Identification of small molecule activators of cryptochrome. Science 2012; 337: 1094-1097.
-
(2012)
Science
, vol.337
, pp. 1094-1097
-
-
Hirota, T.1
Lee, J.W.2
StJohn, P.C.3
-
50
-
-
84873351364
-
Glucose sensor O-GlcNAcylation coordinates with phosphorylation to regulate circadian clock
-
Kaasik K, Kivimae S, Allen JJ et al. Glucose sensor O-GlcNAcylation coordinates with phosphorylation to regulate circadian clock. Cell Metab 2013; 17: 291-302.
-
(2013)
Cell Metab
, vol.17
, pp. 291-302
-
-
Kaasik, K.1
Kivimae, S.2
Allen, J.J.3
-
51
-
-
84873362932
-
O-GlcNAc signaling entrains the circadian clock by inhibiting BMAL1/CLOCK ubiquitination
-
Li MD, Ruan HB, Hughes ME et al. O-GlcNAc signaling entrains the circadian clock by inhibiting BMAL1/CLOCK ubiquitination. Cell Metab 2013; 17: 303-310.
-
(2013)
Cell Metab
, vol.17
, pp. 303-310
-
-
Li, M.D.1
Ruan, H.B.2
Hughes, M.E.3
-
52
-
-
84872663835
-
AMPK at the crossroads of circadian clocks and metabolism
-
Jordan SD, Lamia KA. AMPK at the crossroads of circadian clocks and metabolism. Mol Cell Endocrinol 2013; 366: 163-169.
-
(2013)
Mol Cell Endocrinol
, vol.366
, pp. 163-169
-
-
Jordan, S.D.1
Lamia, K.A.2
-
53
-
-
70350128135
-
AMPK regulates the circadian clock by cryptochrome phosphorylation and degradation
-
Lamia KA, Sachdeva UM, DiTacchio L et al. AMPK regulates the circadian clock by cryptochrome phosphorylation and degradation. Science 2009; 326: 437-440.
-
(2009)
Science
, vol.326
, pp. 437-440
-
-
Lamia, K.A.1
Sachdeva, U.M.2
DiTacchio, L.3
-
54
-
-
84893442805
-
Declining NAD(+) induces a pseudohypoxic state disrupting nuclear-mitochondrial communication during aging
-
Gomes AP, Price NL, Ling AJ et al. Declining NAD(+) induces a pseudohypoxic state disrupting nuclear-mitochondrial communication during aging. Cell 2013; 155: 1624-1638.
-
(2013)
Cell
, vol.155
, pp. 1624-1638
-
-
Gomes, A.P.1
Price, N.L.2
Ling, A.J.3
-
55
-
-
34548627517
-
Nutrient-sensitive mitochondrial NAD+ levels dictate cell survival
-
Yang H, Yang T, Baur JA et al. Nutrient-sensitive mitochondrial NAD+ levels dictate cell survival. Cell 2007; 130: 1095-1107.
-
(2007)
Cell
, vol.130
, pp. 1095-1107
-
-
Yang, H.1
Yang, T.2
Baur, J.A.3
-
56
-
-
84872276165
-
Calorie restriction and SIRT3 trigger global reprogramming of the mitochondrial protein acetylome
-
Hebert AS, Dittenhafer-Reed KE, Yu W et al. Calorie restriction and SIRT3 trigger global reprogramming of the mitochondrial protein acetylome. Mol Cell 2013; 49: 186-199.
-
(2013)
Mol Cell
, vol.49
, pp. 186-199
-
-
Hebert, A.S.1
Dittenhafer-Reed, K.E.2
Yu, W.3
-
57
-
-
84884248040
-
Circadian clock NAD+ cycle drives mitochondrial oxidative metabolism in mice
-
Peek CB, Affinati AH, Ramsey KM et al. Circadian clock NAD+ cycle drives mitochondrial oxidative metabolism in mice. Science 2013; 342: 1243417.
-
(2013)
Science
, vol.342
, pp. 1243417
-
-
Peek, C.B.1
Affinati, A.H.2
Ramsey, K.M.3
-
58
-
-
84874479803
-
Circadian acetylome reveals regulation of mitochondrial metabolic pathways
-
Masri S, Patel VR, Eckel-Mahan KL et al. Circadian acetylome reveals regulation of mitochondrial metabolic pathways. Proc Natl Acad Sci U S A 2013; 110: 3339-3344.
-
(2013)
Proc Natl Acad Sci U S A
, vol.110
, pp. 3339-3344
-
-
Masri, S.1
Patel, V.R.2
Eckel-Mahan, K.L.3
-
59
-
-
47749140333
-
SIRT1 regulates circadian clock gene expression through PER2 deacetylation
-
Asher G, Gatfiekd D, Stratmann M et al. SIRT1 regulates circadian clock gene expression through PER2 deacetylation. Cell 2008; 134: 317-328.
-
(2008)
Cell
, vol.134
, pp. 317-328
-
-
Asher, G.1
Gatfiekd, D.2
Stratmann, M.3
-
60
-
-
37249053976
-
CLOCK-mediated acetylation of BMAL1 controls circadian function
-
Hirayama J, Sahar S, Grimaldi B et al. CLOCK-mediated acetylation of BMAL1 controls circadian function. Nature 2007; 450: 1086-1090.
-
(2007)
Nature
, vol.450
, pp. 1086-1090
-
-
Hirayama, J.1
Sahar, S.2
Grimaldi, B.3
-
62
-
-
84896842340
-
Circadian control of fatty acid elongation by SIRT1 protein-mediated deacetylation of acetyl-coenzyme A synthetase 1
-
Sahar S, Masubuchi S, Eckel-Mahan KL et al. Circadian control of fatty acid elongation by SIRT1 protein-mediated deacetylation of acetyl-coenzyme A synthetase 1. J Biol Chem 2014; 289: 6091-6097.
-
(2014)
J Biol Chem
, vol.289
, pp. 6091-6097
-
-
Sahar, S.1
Masubuchi, S.2
Eckel-Mahan, K.L.3
-
63
-
-
84875881601
-
SIRT6 regulates TNF-alpha secretion through hydrolysis of long-chain fatty acyl lysine
-
Jiang H, Khan S, Wang Y et al. SIRT6 regulates TNF-alpha secretion through hydrolysis of long-chain fatty acyl lysine. Nature 2013; 496: 110-113.
-
(2013)
Nature
, vol.496
, pp. 110-113
-
-
Jiang, H.1
Khan, S.2
Wang, Y.3
-
64
-
-
84886686038
-
Activation of the protein deacetylase SIRT6 by long-chain fatty acids and widespread deacylation by mammalian sirtuins
-
Feldman JL, Baeza J, Denu JM. Activation of the protein deacetylase SIRT6 by long-chain fatty acids and widespread deacylation by mammalian sirtuins. J Biol Chem 2013; 288: 31350-31356.
-
(2013)
J Biol Chem
, vol.288
, pp. 31350-31356
-
-
Feldman, J.L.1
Baeza, J.2
Denu, J.M.3
-
65
-
-
84885433507
-
Cycles in spatial and temporal chromosomal organization driven by the circadian clock
-
Aguilar-Arnal L, Hakim O, Patel VR, Baldi P, Hager GL, Sassone-Corsi P. Cycles in spatial and temporal chromosomal organization driven by the circadian clock. Nat Struct Mol Biol 2013; 20: 1206-1213.
-
(2013)
Nat Struct Mol Biol
, vol.20
, pp. 1206-1213
-
-
Aguilar-Arnal, L.1
Hakim, O.2
Patel, V.R.3
Baldi, P.4
Hager, G.L.5
Sassone-Corsi, P.6
|