메뉴 건너뛰기




Volumn 17, Issue S1, 2015, Pages 17-22

Coupling circadian rhythms of metabolism and chromatin remodelling

Author keywords

Chromatin remodelling; Epigenetics; NAD+; Nutrition; Sirtuins

Indexed keywords

ACETYL COA SYNTHETASE 1; ACETYL COENZYME A SYNTHETASE; ADENOSINE TRIPHOSPHATE CITRATE SYNTHASE; HISTAMINE METHYLTRANSFERASE; HISTONE DEACETYLASE; NICOTINAMIDE ADENINE DINUCLEOTIDE; NICOTINAMIDE ADENINE DINUCLEOTIDE PHOSPHATE; NICOTINAMIDE PHOSPHORIBOSYLTRANSFERASE; S ADENOSYLHOMOCYSTEINE; S ADENOSYLMETHIONINE; SIRTUIN; SIRTUIN 1; SIRTUIN 3; SIRTUIN 6; UNCLASSIFIED DRUG; SIRT1 PROTEIN, HUMAN; SIRT6 PROTEIN, HUMAN; TRANSCRIPTION FACTOR CLOCK;

EID: 84940533162     PISSN: 14628902     EISSN: 14631326     Source Type: Journal    
DOI: 10.1111/dom.12509     Document Type: Review
Times cited : (29)

References (65)
  • 1
    • 84872334045 scopus 로고    scopus 로고
    • Metabolism and the circadian clock converge
    • Eckel-Mahan K, Sassone-Corsi P. Metabolism and the circadian clock converge. Physiol Rev 2013; 93: 107-135.
    • (2013) Physiol Rev , vol.93 , pp. 107-135
    • Eckel-Mahan, K.1    Sassone-Corsi, P.2
  • 2
    • 84925844053 scopus 로고    scopus 로고
    • Time for food: the intimate interplay between nutrition, metabolism and the circadian clock
    • Asher G, Sassone-Corsi P. Time for food: the intimate interplay between nutrition, metabolism and the circadian clock. Cell 2015; 161: 84-92.
    • (2015) Cell , vol.161 , pp. 84-92
    • Asher, G.1    Sassone-Corsi, P.2
  • 4
    • 0037006807 scopus 로고    scopus 로고
    • Circadian programs of transcriptional activation, signaling, and protein turnover revealed by microarray analysis of mammalian cells
    • Duffield GE, Best JD, Meurers BH, Bittner A, Loros JJ, Dunlap JC. Circadian programs of transcriptional activation, signaling, and protein turnover revealed by microarray analysis of mammalian cells. Curr Biol 2002; 12: 551-557.
    • (2002) Curr Biol , vol.12 , pp. 551-557
    • Duffield, G.E.1    Best, J.D.2    Meurers, B.H.3    Bittner, A.4    Loros, J.J.5    Dunlap, J.C.6
  • 5
    • 18444414586 scopus 로고    scopus 로고
    • Coordinated transcription of key pathways in the mouse by the circadian clock
    • Panda S, Antoch MP, Miller BH et al. Coordinated transcription of key pathways in the mouse by the circadian clock. Cell 2002; 109: 307-320.
    • (2002) Cell , vol.109 , pp. 307-320
    • Panda, S.1    Antoch, M.P.2    Miller, B.H.3
  • 6
    • 0037007625 scopus 로고    scopus 로고
    • Extensive and divergent circadian gene expression in liver and heart
    • Storch KF, Lipan O, Leykin I et al. Extensive and divergent circadian gene expression in liver and heart. Nature 2002; 417: 78-83.
    • (2002) Nature , vol.417 , pp. 78-83
    • Storch, K.F.1    Lipan, O.2    Leykin, I.3
  • 7
    • 0036682099 scopus 로고    scopus 로고
    • A transcription factor response element for gene expression during circadian night
    • Ueda HR, Chen W, Adachi A et al. A transcription factor response element for gene expression during circadian night. Nature 2002; 418: 534-539.
    • (2002) Nature , vol.418 , pp. 534-539
    • Ueda, H.R.1    Chen, W.2    Adachi, A.3
  • 8
    • 77958504804 scopus 로고    scopus 로고
    • Clocks not winding down: unravelling circadian networks
    • Zhang EE, Kay SA. Clocks not winding down: unravelling circadian networks. Nat Rev Mol Cell Biol 2010; 11: 764-776.
    • (2010) Nat Rev Mol Cell Biol , vol.11 , pp. 764-776
    • Zhang, E.E.1    Kay, S.A.2
  • 9
    • 75849128796 scopus 로고    scopus 로고
    • Essential roles of CKIdelta and CKIepsilon in the mammalian circadian clock
    • Lee H, Chen R, Lee Y, Yoo S, Lee C. Essential roles of CKIdelta and CKIepsilon in the mammalian circadian clock. Proc Natl Acad Sci U S A 2009; 106: 21359-21364.
    • (2009) Proc Natl Acad Sci U S A , vol.106 , pp. 21359-21364
    • Lee, H.1    Chen, R.2    Lee, Y.3    Yoo, S.4    Lee, C.5
  • 10
    • 34248566788 scopus 로고    scopus 로고
    • SCFFbxl3 controls the oscillation of the circadian clock by directing the degradation of cryptochrome proteins
    • Busino L, Bassermann F, Maiolica A et al. SCFFbxl3 controls the oscillation of the circadian clock by directing the degradation of cryptochrome proteins. Science 2007; 316: 900-904.
    • (2007) Science , vol.316 , pp. 900-904
    • Busino, L.1    Bassermann, F.2    Maiolica, A.3
  • 11
    • 84874772651 scopus 로고    scopus 로고
    • FBXL21 regulates oscillation of the circadian clock through ubiquitination and stabilization of cryptochromes
    • Hirano A, Yumimoto K, Tsunematsu R et al. FBXL21 regulates oscillation of the circadian clock through ubiquitination and stabilization of cryptochromes. Cell 2013; 152: 1106-1118.
    • (2013) Cell , vol.152 , pp. 1106-1118
    • Hirano, A.1    Yumimoto, K.2    Tsunematsu, R.3
  • 12
    • 34249097203 scopus 로고    scopus 로고
    • Circadian mutant overtime reveals F-box protein FBXL3 regulation of cryptochrome and period gene expression
    • Siepka SM, Yoo SH, Park J et al. Circadian mutant overtime reveals F-box protein FBXL3 regulation of cryptochrome and period gene expression. Cell 2007; 129: 1011-1023.
    • (2007) Cell , vol.129 , pp. 1011-1023
    • Siepka, S.M.1    Yoo, S.H.2    Park, J.3
  • 13
    • 84874768419 scopus 로고    scopus 로고
    • Competing E3 ubiquitin ligases govern circadian periodicity by degradation of CRY in nucleus and cytoplasm
    • Yoo SH, Mohawk JA, Siepka SM et al. Competing E3 ubiquitin ligases govern circadian periodicity by degradation of CRY in nucleus and cytoplasm. Cell 2013; 152: 1091-1105.
    • (2013) Cell , vol.152 , pp. 1091-1105
    • Yoo, S.H.1    Mohawk, J.A.2    Siepka, S.M.3
  • 14
    • 77958574512 scopus 로고    scopus 로고
    • Plasticity and specificity of the circadian epigenome
    • Masri S, Sassone-Corsi P. Plasticity and specificity of the circadian epigenome. Nat Neurosci 2010; 13: 1324-1329.
    • (2010) Nat Neurosci , vol.13 , pp. 1324-1329
    • Masri, S.1    Sassone-Corsi, P.2
  • 15
    • 33646145721 scopus 로고    scopus 로고
    • Circadian regulator CLOCK is a histone acetyltransferase
    • Doi M, Hirayama J, Sassone-Corsi P. Circadian regulator CLOCK is a histone acetyltransferase. Cell 2006; 125: 497-508.
    • (2006) Cell , vol.125 , pp. 497-508
    • Doi, M.1    Hirayama, J.2    Sassone-Corsi, P.3
  • 16
    • 0037426839 scopus 로고    scopus 로고
    • Rhythmic histone acetylation underlies transcription in the mammalian circadian clock
    • Etchegaray JP, Lee C, Wade PA, Reppert SM. Rhythmic histone acetylation underlies transcription in the mammalian circadian clock. Nature 2003; 421: 177-182.
    • (2003) Nature , vol.421 , pp. 177-182
    • Etchegaray, J.P.1    Lee, C.2    Wade, P.A.3    Reppert, S.M.4
  • 17
    • 77957869145 scopus 로고    scopus 로고
    • Coactivation of the CLOCK-BMAL1 complex by CBP mediates resetting of the circadian clock
    • Lee Y, Lee J, Kwon I et al. Coactivation of the CLOCK-BMAL1 complex by CBP mediates resetting of the circadian clock. J Cell Sci 2010; 123: 3547-3557.
    • (2010) J Cell Sci , vol.123 , pp. 3547-3557
    • Lee, Y.1    Lee, J.2    Kwon, I.3
  • 18
    • 1342282943 scopus 로고    scopus 로고
    • Histone acetyltransferase-dependent chromatin remodeling and the vascular clock
    • Curtis AM, Seo SB, Westgate EJ et al. Histone acetyltransferase-dependent chromatin remodeling and the vascular clock. J Biol Chem 2004; 279: 7091-7097.
    • (2004) J Biol Chem , vol.279 , pp. 7091-7097
    • Curtis, A.M.1    Seo, S.B.2    Westgate, E.J.3
  • 20
    • 79959366611 scopus 로고    scopus 로고
    • A molecular mechanism for circadian clock negative feedback
    • Duong HA, Robles MS, Knutti D, Weitz CJ. A molecular mechanism for circadian clock negative feedback. Science 2011; 332: 1436-1439.
    • (2011) Science , vol.332 , pp. 1436-1439
    • Duong, H.A.1    Robles, M.S.2    Knutti, D.3    Weitz, C.J.4
  • 21
    • 3042709817 scopus 로고    scopus 로고
    • Circadian and light-induced transcription of clock gene Per1 depends on histone acetylation and deacetylation
    • Naruse Y, Oh-hashi K, Iijima N, Naruse M, Yoshioka H, Tanaka M. Circadian and light-induced transcription of clock gene Per1 depends on histone acetylation and deacetylation. Mol Cell Biol 2004; 24: 6278-6287.
    • (2004) Mol Cell Biol , vol.24 , pp. 6278-6287
    • Naruse, Y.1    Oh-hashi, K.2    Iijima, N.3    Naruse, M.4    Yoshioka, H.5    Tanaka, M.6
  • 22
    • 79952529158 scopus 로고    scopus 로고
    • A circadian rhythm orchestrated by histone deacetylase 3 controls hepatic lipid metabolism
    • Feng D, Liu T, Sun Z et al. A circadian rhythm orchestrated by histone deacetylase 3 controls hepatic lipid metabolism. Science 2011; 331: 1315-1319.
    • (2011) Science , vol.331 , pp. 1315-1319
    • Feng, D.1    Liu, T.2    Sun, Z.3
  • 24
    • 47549088250 scopus 로고    scopus 로고
    • The NAD + -dependent deacetylase SIRT1 modulates CLOCK-mediated chromatin remodeling and circadian control
    • Nakahata Y, Kaluzova M, Grimaldi B et al. The NAD + -dependent deacetylase SIRT1 modulates CLOCK-mediated chromatin remodeling and circadian control. Cell 2008; 134: 329-340.
    • (2008) Cell , vol.134 , pp. 329-340
    • Nakahata, Y.1    Kaluzova, M.2    Grimaldi, B.3
  • 25
    • 84905389924 scopus 로고    scopus 로고
    • Partitioning circadian transcription by SIRT6 leads to segregated control of cellular metabolism
    • Masri S, Rigor P, Cervantes M et al. Partitioning circadian transcription by SIRT6 leads to segregated control of cellular metabolism. Cell 2014; 158: 659-672.
    • (2014) Cell , vol.158 , pp. 659-672
    • Masri, S.1    Rigor, P.2    Cervantes, M.3
  • 26
    • 0033695926 scopus 로고    scopus 로고
    • Light induces chromatin modification in cells of the mammalian circadian clock
    • Crosio C, Cermakian N, Allis CD, Sassone-Corsi P. Light induces chromatin modification in cells of the mammalian circadian clock. Nat Neurosci 2000; 3: 1241-1247.
    • (2000) Nat Neurosci , vol.3 , pp. 1241-1247
    • Crosio, C.1    Cermakian, N.2    Allis, C.D.3    Sassone-Corsi, P.4
  • 27
    • 33644617485 scopus 로고    scopus 로고
    • Rhythmic CLOCK-BMAL1 binding to multiple E-box motifs drives circadian Dbp transcription and chromatin transitions
    • Ripperger JA, Schibler U. Rhythmic CLOCK-BMAL1 binding to multiple E-box motifs drives circadian Dbp transcription and chromatin transitions. Nat Genet 2006; 38: 369-374.
    • (2006) Nat Genet , vol.38 , pp. 369-374
    • Ripperger, J.A.1    Schibler, U.2
  • 28
    • 78649886477 scopus 로고    scopus 로고
    • The histone methyltransferase MLL1 permits the oscillation of circadian gene expression
    • Katada S, Sassone-Corsi P. The histone methyltransferase MLL1 permits the oscillation of circadian gene expression. Nat Struct Mol Biol 2010; 17: 1414-1421.
    • (2010) Nat Struct Mol Biol , vol.17 , pp. 1414-1421
    • Katada, S.1    Sassone-Corsi, P.2
  • 29
    • 33746344698 scopus 로고    scopus 로고
    • The polycomb group protein EZH2 is required for mammalian circadian clock function
    • Etchegaray JP, Yang X, DeBruyne JP et al. The polycomb group protein EZH2 is required for mammalian circadian clock function. J Biol Chem 2006; 281: 21209-21215.
    • (2006) J Biol Chem , vol.281 , pp. 21209-21215
    • Etchegaray, J.P.1    Yang, X.2    DeBruyne, J.P.3
  • 30
    • 80053355301 scopus 로고    scopus 로고
    • Histone lysine demethylase JARID1a activates CLOCK-BMAL1 and influences the circadian clock
    • DiTacchio L, Le HD, Vollmers C et al. Histone lysine demethylase JARID1a activates CLOCK-BMAL1 and influences the circadian clock. Science 2011; 333: 1881-1885.
    • (2011) Science , vol.333 , pp. 1881-1885
    • DiTacchio, L.1    Le, H.D.2    Vollmers, C.3
  • 31
    • 84896715662 scopus 로고    scopus 로고
    • Phosphorylation of LSD1 by PKCalpha is crucial for circadian rhythmicity and phase resetting
    • Nam HJ, Boo K, Kim D et al. Phosphorylation of LSD1 by PKCalpha is crucial for circadian rhythmicity and phase resetting. Mol Cell 2014; 53: 791-805.
    • (2014) Mol Cell , vol.53 , pp. 791-805
    • Nam, H.J.1    Boo, K.2    Kim, D.3
  • 33
    • 84894590704 scopus 로고    scopus 로고
    • Reprogramming of the circadian clock by nutritional challenge
    • Eckel-Mahan KL, Patel VR, de Mateo S et al. Reprogramming of the circadian clock by nutritional challenge. Cell 2013; 155: 1464-1478.
    • (2013) Cell , vol.155 , pp. 1464-1478
    • Eckel-Mahan, K.L.1    Patel, V.R.2    de Mateo, S.3
  • 35
    • 84862008430 scopus 로고    scopus 로고
    • Time-restricted feeding without reducing caloric intake prevents metabolic diseases in mice fed a high-fat diet
    • Hatori M, Vollmers C, Zarrinpar A et al. Time-restricted feeding without reducing caloric intake prevents metabolic diseases in mice fed a high-fat diet. Cell Metab 2012; 15: 848-860.
    • (2012) Cell Metab , vol.15 , pp. 848-860
    • Hatori, M.1    Vollmers, C.2    Zarrinpar, A.3
  • 36
    • 84871917034 scopus 로고    scopus 로고
    • Human blood metabolite timetable indicates internal body time
    • Kasukawa T, Sugimoto M, Hida A et al. Human blood metabolite timetable indicates internal body time. Proc Natl Acad Sci U S A 2012; 109: 15036-15041.
    • (2012) Proc Natl Acad Sci U S A , vol.109 , pp. 15036-15041
    • Kasukawa, T.1    Sugimoto, M.2    Hida, A.3
  • 37
    • 84864309100 scopus 로고    scopus 로고
    • Clocks, metabolism, and the epigenome
    • Feng D, Lazar MA. Clocks, metabolism, and the epigenome. Mol Cell 2012; 47: 158-167.
    • (2012) Mol Cell , vol.47 , pp. 158-167
    • Feng, D.1    Lazar, M.A.2
  • 38
    • 84856090681 scopus 로고    scopus 로고
    • Connecting threads: epigenetics and metabolism
    • Katada S, Imhof A, Sassone-Corsi P. Connecting threads: epigenetics and metabolism. Cell 2012; 148: 24-28.
    • (2012) Cell , vol.148 , pp. 24-28
    • Katada, S.1    Imhof, A.2    Sassone-Corsi, P.3
  • 39
    • 84891940889 scopus 로고    scopus 로고
    • Circadian clock-dependent and -independent rhythmic proteomes implement distinct diurnal functions in mouse liver
    • Mauvoisin D, Wang J, Jouffe C et al. Circadian clock-dependent and -independent rhythmic proteomes implement distinct diurnal functions in mouse liver. Proc Natl Acad Sci U S A 2014; 111: 167-172.
    • (2014) Proc Natl Acad Sci U S A , vol.111 , pp. 167-172
    • Mauvoisin, D.1    Wang, J.2    Jouffe, C.3
  • 41
    • 84872160110 scopus 로고    scopus 로고
    • Influence of threonine metabolism on S-adenosylmethionine and histone methylation
    • Shyh-Chang N, Locasale JW, Lyssiotis CA et al. Influence of threonine metabolism on S-adenosylmethionine and histone methylation. Science 2013; 339: 222-226.
    • (2013) Science , vol.339 , pp. 222-226
    • Shyh-Chang, N.1    Locasale, J.W.2    Lyssiotis, C.A.3
  • 42
    • 84887875528 scopus 로고    scopus 로고
    • RNA-methylation dependent RNA processing controls the speed of the circadian clock
    • Fustin JM, Doi M, Yamaguchi Y et al. RNA-methylation dependent RNA processing controls the speed of the circadian clock. Cell 2013; 155: 793-806.
    • (2013) Cell , vol.155 , pp. 793-806
    • Fustin, J.M.1    Doi, M.2    Yamaguchi, Y.3
  • 43
    • 84874484700 scopus 로고    scopus 로고
    • Pharmacological modulation of circadian rhythms by synthetic activators of the deacetylase SIRT1
    • Bellet MM, Nakahata Y, Boudjelal M et al. Pharmacological modulation of circadian rhythms by synthetic activators of the deacetylase SIRT1. Proc Natl Acad Sci U S A 2013; 110: 3333-3338.
    • (2013) Proc Natl Acad Sci U S A , vol.110 , pp. 3333-3338
    • Bellet, M.M.1    Nakahata, Y.2    Boudjelal, M.3
  • 45
    • 65549103855 scopus 로고    scopus 로고
    • Circadian clock feedback cycle through NAMPT-mediated NAD+ biosynthesis
    • Ramsey KM, Yoshino J, Brace CS et al. Circadian clock feedback cycle through NAMPT-mediated NAD+ biosynthesis. Science 2009; 324: 651-654.
    • (2009) Science , vol.324 , pp. 651-654
    • Ramsey, K.M.1    Yoshino, J.2    Brace, C.S.3
  • 46
    • 0035919479 scopus 로고    scopus 로고
    • Regulation of clock and NPAS2 DNA binding by the redox state of NAD cofactors
    • Rutter J, Reick M, Wu LC, McKnight SL. Regulation of clock and NPAS2 DNA binding by the redox state of NAD cofactors. Science 2001; 293: 510-514.
    • (2001) Science , vol.293 , pp. 510-514
    • Rutter, J.1    Reick, M.2    Wu, L.C.3    McKnight, S.L.4
  • 47
    • 84901358563 scopus 로고    scopus 로고
    • Interaction of circadian clock proteins CRY1 and PER2 is modulated by zinc binding and disulfide bond formation
    • Schmalen I, Reischl S, Wallach T et al. Interaction of circadian clock proteins CRY1 and PER2 is modulated by zinc binding and disulfide bond formation. Cell 2014; 157: 1203-1215.
    • (2014) Cell , vol.157 , pp. 1203-1215
    • Schmalen, I.1    Reischl, S.2    Wallach, T.3
  • 48
    • 84875899177 scopus 로고    scopus 로고
    • SCF(FBXL3) ubiquitin ligase targets cryptochromes at their cofactor pocket
    • Xing W, Busino L, Hinds TR et al. SCF(FBXL3) ubiquitin ligase targets cryptochromes at their cofactor pocket. Nature 2013; 496: 64-68.
    • (2013) Nature , vol.496 , pp. 64-68
    • Xing, W.1    Busino, L.2    Hinds, T.R.3
  • 49
    • 84865558040 scopus 로고    scopus 로고
    • Identification of small molecule activators of cryptochrome
    • Hirota T, Lee JW, StJohn PC et al. Identification of small molecule activators of cryptochrome. Science 2012; 337: 1094-1097.
    • (2012) Science , vol.337 , pp. 1094-1097
    • Hirota, T.1    Lee, J.W.2    StJohn, P.C.3
  • 50
    • 84873351364 scopus 로고    scopus 로고
    • Glucose sensor O-GlcNAcylation coordinates with phosphorylation to regulate circadian clock
    • Kaasik K, Kivimae S, Allen JJ et al. Glucose sensor O-GlcNAcylation coordinates with phosphorylation to regulate circadian clock. Cell Metab 2013; 17: 291-302.
    • (2013) Cell Metab , vol.17 , pp. 291-302
    • Kaasik, K.1    Kivimae, S.2    Allen, J.J.3
  • 51
    • 84873362932 scopus 로고    scopus 로고
    • O-GlcNAc signaling entrains the circadian clock by inhibiting BMAL1/CLOCK ubiquitination
    • Li MD, Ruan HB, Hughes ME et al. O-GlcNAc signaling entrains the circadian clock by inhibiting BMAL1/CLOCK ubiquitination. Cell Metab 2013; 17: 303-310.
    • (2013) Cell Metab , vol.17 , pp. 303-310
    • Li, M.D.1    Ruan, H.B.2    Hughes, M.E.3
  • 52
    • 84872663835 scopus 로고    scopus 로고
    • AMPK at the crossroads of circadian clocks and metabolism
    • Jordan SD, Lamia KA. AMPK at the crossroads of circadian clocks and metabolism. Mol Cell Endocrinol 2013; 366: 163-169.
    • (2013) Mol Cell Endocrinol , vol.366 , pp. 163-169
    • Jordan, S.D.1    Lamia, K.A.2
  • 53
    • 70350128135 scopus 로고    scopus 로고
    • AMPK regulates the circadian clock by cryptochrome phosphorylation and degradation
    • Lamia KA, Sachdeva UM, DiTacchio L et al. AMPK regulates the circadian clock by cryptochrome phosphorylation and degradation. Science 2009; 326: 437-440.
    • (2009) Science , vol.326 , pp. 437-440
    • Lamia, K.A.1    Sachdeva, U.M.2    DiTacchio, L.3
  • 54
    • 84893442805 scopus 로고    scopus 로고
    • Declining NAD(+) induces a pseudohypoxic state disrupting nuclear-mitochondrial communication during aging
    • Gomes AP, Price NL, Ling AJ et al. Declining NAD(+) induces a pseudohypoxic state disrupting nuclear-mitochondrial communication during aging. Cell 2013; 155: 1624-1638.
    • (2013) Cell , vol.155 , pp. 1624-1638
    • Gomes, A.P.1    Price, N.L.2    Ling, A.J.3
  • 55
    • 34548627517 scopus 로고    scopus 로고
    • Nutrient-sensitive mitochondrial NAD+ levels dictate cell survival
    • Yang H, Yang T, Baur JA et al. Nutrient-sensitive mitochondrial NAD+ levels dictate cell survival. Cell 2007; 130: 1095-1107.
    • (2007) Cell , vol.130 , pp. 1095-1107
    • Yang, H.1    Yang, T.2    Baur, J.A.3
  • 56
    • 84872276165 scopus 로고    scopus 로고
    • Calorie restriction and SIRT3 trigger global reprogramming of the mitochondrial protein acetylome
    • Hebert AS, Dittenhafer-Reed KE, Yu W et al. Calorie restriction and SIRT3 trigger global reprogramming of the mitochondrial protein acetylome. Mol Cell 2013; 49: 186-199.
    • (2013) Mol Cell , vol.49 , pp. 186-199
    • Hebert, A.S.1    Dittenhafer-Reed, K.E.2    Yu, W.3
  • 57
    • 84884248040 scopus 로고    scopus 로고
    • Circadian clock NAD+ cycle drives mitochondrial oxidative metabolism in mice
    • Peek CB, Affinati AH, Ramsey KM et al. Circadian clock NAD+ cycle drives mitochondrial oxidative metabolism in mice. Science 2013; 342: 1243417.
    • (2013) Science , vol.342 , pp. 1243417
    • Peek, C.B.1    Affinati, A.H.2    Ramsey, K.M.3
  • 58
    • 84874479803 scopus 로고    scopus 로고
    • Circadian acetylome reveals regulation of mitochondrial metabolic pathways
    • Masri S, Patel VR, Eckel-Mahan KL et al. Circadian acetylome reveals regulation of mitochondrial metabolic pathways. Proc Natl Acad Sci U S A 2013; 110: 3339-3344.
    • (2013) Proc Natl Acad Sci U S A , vol.110 , pp. 3339-3344
    • Masri, S.1    Patel, V.R.2    Eckel-Mahan, K.L.3
  • 59
    • 47749140333 scopus 로고    scopus 로고
    • SIRT1 regulates circadian clock gene expression through PER2 deacetylation
    • Asher G, Gatfiekd D, Stratmann M et al. SIRT1 regulates circadian clock gene expression through PER2 deacetylation. Cell 2008; 134: 317-328.
    • (2008) Cell , vol.134 , pp. 317-328
    • Asher, G.1    Gatfiekd, D.2    Stratmann, M.3
  • 60
    • 37249053976 scopus 로고    scopus 로고
    • CLOCK-mediated acetylation of BMAL1 controls circadian function
    • Hirayama J, Sahar S, Grimaldi B et al. CLOCK-mediated acetylation of BMAL1 controls circadian function. Nature 2007; 450: 1086-1090.
    • (2007) Nature , vol.450 , pp. 1086-1090
    • Hirayama, J.1    Sahar, S.2    Grimaldi, B.3
  • 62
    • 84896842340 scopus 로고    scopus 로고
    • Circadian control of fatty acid elongation by SIRT1 protein-mediated deacetylation of acetyl-coenzyme A synthetase 1
    • Sahar S, Masubuchi S, Eckel-Mahan KL et al. Circadian control of fatty acid elongation by SIRT1 protein-mediated deacetylation of acetyl-coenzyme A synthetase 1. J Biol Chem 2014; 289: 6091-6097.
    • (2014) J Biol Chem , vol.289 , pp. 6091-6097
    • Sahar, S.1    Masubuchi, S.2    Eckel-Mahan, K.L.3
  • 63
    • 84875881601 scopus 로고    scopus 로고
    • SIRT6 regulates TNF-alpha secretion through hydrolysis of long-chain fatty acyl lysine
    • Jiang H, Khan S, Wang Y et al. SIRT6 regulates TNF-alpha secretion through hydrolysis of long-chain fatty acyl lysine. Nature 2013; 496: 110-113.
    • (2013) Nature , vol.496 , pp. 110-113
    • Jiang, H.1    Khan, S.2    Wang, Y.3
  • 64
    • 84886686038 scopus 로고    scopus 로고
    • Activation of the protein deacetylase SIRT6 by long-chain fatty acids and widespread deacylation by mammalian sirtuins
    • Feldman JL, Baeza J, Denu JM. Activation of the protein deacetylase SIRT6 by long-chain fatty acids and widespread deacylation by mammalian sirtuins. J Biol Chem 2013; 288: 31350-31356.
    • (2013) J Biol Chem , vol.288 , pp. 31350-31356
    • Feldman, J.L.1    Baeza, J.2    Denu, J.M.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.