-
1
-
-
31544452808
-
The path forward for biofuels and biomaterials
-
1:CAS:528:DC%2BD28XmvVylsw%3D%3D
-
Ragauskas AJ, Williams CK, Davison BH, Britovsek G, Cairney J, Eckert CA, et al. The path forward for biofuels and biomaterials. Science. 2006;311:484-9.
-
(2006)
Science.
, vol.311
, pp. 484-489
-
-
Ragauskas, A.J.1
Williams, C.K.2
Davison, B.H.3
Britovsek, G.4
Cairney, J.5
Eckert, C.A.6
-
2
-
-
84865120266
-
Opportunities and challenges for a sustainable energy future
-
1:CAS:528:DC%2BC38Xht1WktL7J
-
Chu S, Majumdar A. Opportunities and challenges for a sustainable energy future. Nature. 2012;488:294-303.
-
(2012)
Nature.
, vol.488
, pp. 294-303
-
-
Chu, S.1
Majumdar, A.2
-
3
-
-
42149108145
-
Biodiesel production-current state of the art and challenges
-
1:CAS:528:DC%2BD1cXks1GnsrY%3D
-
Vasudevan PT, Briggs M. Biodiesel production-current state of the art and challenges. J Ind Microbiol Biotechnol. 2008;35:421-30.
-
(2008)
J Ind Microbiol Biotechnol.
, vol.35
, pp. 421-430
-
-
Vasudevan, P.T.1
Briggs, M.2
-
4
-
-
84864026173
-
Catalytic deoxygenation of fatty acids and their derivatives to hydrocarbon fuels via decarboxylation/decarbonylation
-
1:CAS:528:DC%2BC38XksVyqtbg%3D
-
Santillan-Jimenez E, Crocker M. Catalytic deoxygenation of fatty acids and their derivatives to hydrocarbon fuels via decarboxylation/decarbonylation. J Chem Technol Biotechnol. 2012;87:1041-50.
-
(2012)
J Chem Technol Biotechnol.
, vol.87
, pp. 1041-1050
-
-
Santillan-Jimenez, E.1
Crocker, M.2
-
5
-
-
84887119586
-
Hydroprocessing challenges in biofuels production
-
1:CAS:528:DC%2BC3sXisVGks7s%3D
-
Furimsky E. Hydroprocessing challenges in biofuels production. Catal Today. 2013;217:13-56.
-
(2013)
Catal Today.
, vol.217
, pp. 13-56
-
-
Furimsky, E.1
-
6
-
-
0034903123
-
The biogenesis and functions of lipid bodies in animals, plants and microorganisms
-
1:CAS:528:DC%2BD3MXmtlGgsLw%3D
-
Murphy DJ. The biogenesis and functions of lipid bodies in animals, plants and microorganisms. Prog Lipid Res. 2001;40:325-438.
-
(2001)
Prog Lipid Res.
, vol.40
, pp. 325-438
-
-
Murphy, D.J.1
-
7
-
-
43549102657
-
Microalgal triacylglycerols as feedstocks for biofuel production: Perspectives and advances
-
1:CAS:528:DC%2BD1cXmvFKgsrs%3D
-
Hu Q, Sommerfeld M, Jarvis E, Ghirardi M, Posewitz M, Seibert M, et al. Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. Plant J. 2008;54:621-39.
-
(2008)
Plant J.
, vol.54
, pp. 621-639
-
-
Hu, Q.1
Sommerfeld, M.2
Jarvis, E.3
Ghirardi, M.4
Posewitz, M.5
Seibert, M.6
-
8
-
-
78751634234
-
Lipids from heterotrophic microbes: Advances in metabolism research
-
1:CAS:528:DC%2BC3MXpvVyhug%3D%3D
-
Kosa M, Ragauskas AJ. Lipids from heterotrophic microbes: advances in metabolism research. Trends Biotechnol. 2011;29:53-61.
-
(2011)
Trends Biotechnol.
, vol.29
, pp. 53-61
-
-
Kosa, M.1
Ragauskas, A.J.2
-
9
-
-
0001865344
-
Advance in lignocellulosics hydrolysis and in the utilization of the hydrolysis
-
1:CAS:528:DyaL1MXhtlemsrY%3D
-
Parisi F. Advance in lignocellulosics hydrolysis and in the utilization of the hydrolysis. Adv Biochem Eng Biotechnol. 1989;38:53-87.
-
(1989)
Adv Biochem Eng Biotechnol.
, vol.38
, pp. 53-87
-
-
Parisi, F.1
-
10
-
-
11444264189
-
Biofibers from agricultural byproducts for industrial applications
-
1:CAS:528:DC%2BD2MXktVOg
-
Reddy N, Yang Y. Biofibers from agricultural byproducts for industrial applications. Trends Biotechnol. 2005;23:22-7.
-
(2005)
Trends Biotechnol.
, vol.23
, pp. 22-27
-
-
Reddy, N.1
Yang, Y.2
-
11
-
-
33746173718
-
Can biofuels finally take center stage?
-
1:CAS:528:DC%2BD28XmvFagurg%3D
-
Schubert C. Can biofuels finally take center stage? Nat Biotechnol. 2006;24:777-84.
-
(2006)
Nat Biotechnol.
, vol.24
, pp. 777-784
-
-
Schubert, C.1
-
12
-
-
77955558633
-
Trends and challenges in the microbial production of lignocellulosic bioalcohol fuels
-
1:CAS:528:DC%2BC3cXotVWmsbk%3D
-
Weber C, Farwick A, Benisch F, Brat D, Dietz H, Subtil T, et al. Trends and challenges in the microbial production of lignocellulosic bioalcohol fuels. Appl Microbiol Biotechnol. 2010;87:1303-15.
-
(2010)
Appl Microbiol Biotechnol.
, vol.87
, pp. 1303-1315
-
-
Weber, C.1
Farwick, A.2
Benisch, F.3
Brat, D.4
Dietz, H.5
Subtil, T.6
-
13
-
-
0345722732
-
The generation of fermentation inhibitors during dilute acid hydrolysis of softwood
-
1:CAS:528:DyaK1MXhvV2gsw%3D%3D
-
Larsson S, Palmqvist E, Hahn-Hagerdal B, Tengborg C, Stenberg K, Zacchi G, et al. The generation of fermentation inhibitors during dilute acid hydrolysis of softwood. Enzyme Microb Technol. 1999;24:151-9.
-
(1999)
Enzyme Microb Technol.
, vol.24
, pp. 151-159
-
-
Larsson, S.1
Palmqvist, E.2
Hahn-Hagerdal, B.3
Tengborg, C.4
Stenberg, K.5
Zacchi, G.6
-
14
-
-
34548783309
-
Pretreatment of lignocellulosic materials for efficient bioethanol production
-
1:CAS:528:DC%2BD1cXhtVKqtrY%3D
-
Galbe M, Zacchi G. Pretreatment of lignocellulosic materials for efficient bioethanol production. Adv Biochem Eng Biotechnol. 2007;108:41-65.
-
(2007)
Adv Biochem Eng Biotechnol.
, vol.108
, pp. 41-65
-
-
Galbe, M.1
Zacchi, G.2
-
15
-
-
12544249147
-
Inhibition of ethanol-producing yeast and bacteria by degradation products produced during pre-treatment of biomass
-
1:CAS:528:DC%2BD2cXpsFKrtr0%3D
-
Klinke HB, Thomsen AB, Ahring BK. Inhibition of ethanol-producing yeast and bacteria by degradation products produced during pre-treatment of biomass. Appl Microbiol Biotechnol. 2004;66:10-26.
-
(2004)
Appl Microbiol Biotechnol.
, vol.66
, pp. 10-26
-
-
Klinke, H.B.1
Thomsen, A.B.2
Ahring, B.K.3
-
17
-
-
0031273204
-
Characterization and fermentation of dilute-acid hydrolyzates from wood
-
1:CAS:528:DyaK2sXms1SrtL4%3D
-
Taherzadeh MJ, Eklund R, Gustafsson L, Niklasson C, Liden G. Characterization and fermentation of dilute-acid hydrolyzates from wood. Ind Eng Chem Res. 1997;36:4659-65.
-
(1997)
Ind Eng Chem Res.
, vol.36
, pp. 4659-4665
-
-
Taherzadeh, M.J.1
Eklund, R.2
Gustafsson, L.3
Niklasson, C.4
Liden, G.5
-
18
-
-
77951292087
-
Metabolism: Biofuel via biodetoxification
-
1:CAS:528:DC%2BC3cXkvFSjs7s%3D
-
Dong H, Bao J. Metabolism: biofuel via biodetoxification. Nat Chem Biol. 2010;6:316-8.
-
(2010)
Nat Chem Biol.
, vol.6
, pp. 316-318
-
-
Dong, H.1
Bao, J.2
-
19
-
-
79951843066
-
Biotechnological strategies to overcome inhibitors in lignocellulose hydrolysates for ethanol production: Review
-
1:CAS:528:DC%2BC3MXitVOisLg%3D
-
Parawira W, Tekere M. Biotechnological strategies to overcome inhibitors in lignocellulose hydrolysates for ethanol production: review. Crit Rev Biotechnol. 2011;31:20-31.
-
(2011)
Crit Rev Biotechnol.
, vol.31
, pp. 20-31
-
-
Parawira, W.1
Tekere, M.2
-
20
-
-
0343618697
-
Fermentation of lignocellulosic hydrolysates. II: Inhibitors and mechanisms of inhibition
-
1:CAS:528:DC%2BD3cXjt1Ggs7s%3D
-
Palmqvist E, Hahn-Hagerdal B. Fermentation of lignocellulosic hydrolysates. II: inhibitors and mechanisms of inhibition. Bioresour Technol. 2000;74:25-33.
-
(2000)
Bioresour Technol
, vol.74
, pp. 25-33
-
-
Palmqvist, E.1
Hahn-Hagerdal, B.2
-
21
-
-
33947286326
-
Increased tolerance and conversion of inhibitors in lignocellulosic hydrolysates by Saccharomyces cerevisiae
-
1:CAS:528:DC%2BD2sXkvFCjtbo%3D
-
Almeida JRM, Modig T, Petersson A, Hahn-Hagerdal B, Liden G, Gorwa-Grauslund MF. Increased tolerance and conversion of inhibitors in lignocellulosic hydrolysates by Saccharomyces cerevisiae. J Chem Technol Biotechnol. 2007;82:340-9.
-
(2007)
J Chem Technol Biotechnol.
, vol.82
, pp. 340-349
-
-
Almeida, J.R.M.1
Modig, T.2
Petersson, A.3
Hahn-Hagerdal, B.4
Liden, G.5
Gorwa-Grauslund, M.F.6
-
22
-
-
81555215571
-
Effect of pretreatment severity on the conversion of barley straw to fermentable substrates and the release of inhibitory compounds
-
1:CAS:528:DC%2BC3MXhsVOjtLbI
-
Panagiotopoulos IA, Bakker RR, de Vrije T, Koukios EG. Effect of pretreatment severity on the conversion of barley straw to fermentable substrates and the release of inhibitory compounds. Bioresour Technol. 2011;102:11204-11.
-
(2011)
Bioresour Technol.
, vol.102
, pp. 11204-11211
-
-
Panagiotopoulos, I.A.1
Bakker, R.R.2
De Vrije, T.3
Koukios, E.G.4
-
23
-
-
54249164674
-
Dilute acid hydrolysis of Loblolly pine: A comprehensive approach
-
1:CAS:528:DC%2BD1cXhtVaru7fO
-
Marzialetti T, Olarte MBV, Sievers C, Hoskins TJC, Agrawal PK, Jones CW. Dilute acid hydrolysis of Loblolly pine: a comprehensive approach. Ind Eng Chem Res. 2008;47:7131-40.
-
(2008)
Ind Eng Chem Res.
, vol.47
, pp. 7131-7140
-
-
Marzialetti, T.1
Olarte, M.B.V.2
Sievers, C.3
Hoskins, T.J.C.4
Agrawal, P.K.5
Jones, C.W.6
-
24
-
-
38849168306
-
Production of ethanol from soybean hull hydrolysate by osmotolerant Candida guilliermondii NRRL Y-2075
-
1:CAS:528:DC%2BD1cXhvFOksL4%3D
-
Schirmer-Michel AC, Flores SH, Hertz PF, Matos GS, Ayub MAZ. Production of ethanol from soybean hull hydrolysate by osmotolerant Candida guilliermondii NRRL Y-2075. Bioresour Technol. 2008;99:2898-904.
-
(2008)
Bioresour Technol.
, vol.99
, pp. 2898-2904
-
-
Schirmer-Michel, A.C.1
Flores, S.H.2
Hertz, P.F.3
Matos, G.S.4
Ayub, M.A.Z.5
-
25
-
-
0037416692
-
Comparison of the resistance of industrial and laboratory strains of Saccharomyces and Zygosaccharomyces to lignocellulose-derived fermentation inhibitors
-
1:CAS:528:DC%2BD3sXmsFWhtA%3D%3D
-
Martin C, Jonsson LJ. Comparison of the resistance of industrial and laboratory strains of Saccharomyces and Zygosaccharomyces to lignocellulose-derived fermentation inhibitors. Enzyme Microb Technol. 2003;32:386-95.
-
(2003)
Enzyme Microb Technol.
, vol.32
, pp. 386-395
-
-
Martin, C.1
Jonsson, L.J.2
-
26
-
-
0037457404
-
Potential inhibitors from wet oxidation of wheat straw and their effect on ethanol production of Saccharomyces cerevisiae: Wet oxidation and fermentation by yeast
-
1:CAS:528:DC%2BD3sXhtlOmsrw%3D
-
Klinke HB, Olsson L, Thomsen AB, Ahring BK. Potential inhibitors from wet oxidation of wheat straw and their effect on ethanol production of Saccharomyces cerevisiae: wet oxidation and fermentation by yeast. Biotechnol Bioeng. 2003;81:738-47.
-
(2003)
Biotechnol Bioeng.
, vol.81
, pp. 738-747
-
-
Klinke, H.B.1
Olsson, L.2
Thomsen, A.B.3
Ahring, B.K.4
-
27
-
-
34247473843
-
Effect of lignocellulose-derived inhibitors on growth of and ethanol production by growth-arrested Corynebacterium glutamicum R
-
1:CAS:528:DC%2BD2sXkt1Kqurs%3D
-
Sakai S, Tsuchida Y, Nakamoto H, Okino S, Ichihashi O, Kawaguchi H, et al. Effect of lignocellulose-derived inhibitors on growth of and ethanol production by growth-arrested Corynebacterium glutamicum R. Appl Environ Microbiol. 2007;73:2349-53.
-
(2007)
Appl Environ Microbiol.
, vol.73
, pp. 2349-2353
-
-
Sakai, S.1
Tsuchida, Y.2
Nakamoto, H.3
Okino, S.4
Ichihashi, O.5
Kawaguchi, H.6
-
28
-
-
84868135591
-
Global regulator engineering significantly improved Escherichia coli tolerances toward inhibitors of lignocellulosic hydrolysates
-
1:CAS:528:DC%2BC38XovVamu7g%3D
-
Wang J, Zhang Y, Chen Y, Lin M, Lin Z. Global regulator engineering significantly improved Escherichia coli tolerances toward inhibitors of lignocellulosic hydrolysates. Biotechnol Bioeng. 2012;109:3133-42.
-
(2012)
Biotechnol Bioeng.
, vol.109
, pp. 3133-3142
-
-
Wang, J.1
Zhang, Y.2
Chen, Y.3
Lin, M.4
Lin, Z.5
-
29
-
-
84880029566
-
Inhibition of growth of Zymomonas mobilis by model compounds found in lignocellulosic hydrolysates
-
1:CAS:528:DC%2BC3sXht1WjsL%2FK
-
Franden MA, Pilath HM, Mohagheghi A, Pienkos PT, Zhang M. Inhibition of growth of Zymomonas mobilis by model compounds found in lignocellulosic hydrolysates. Biotechnol Biofuels. 2013;6:99.
-
(2013)
Biotechnol Biofuels.
, vol.6
, pp. 99
-
-
Franden, M.A.1
Pilath, H.M.2
Mohagheghi, A.3
Pienkos, P.T.4
Zhang, M.5
-
30
-
-
84900633940
-
Effect of lignocellulose degradation products on microbial biomass and lipid production by the oleaginous yeast Cryptococcus curvatus
-
1:CAS:528:DC%2BC3sXhvFOhurrJ
-
Yu XC, Zeng JJ, Zheng YB, Chen SL. Effect of lignocellulose degradation products on microbial biomass and lipid production by the oleaginous yeast Cryptococcus curvatus. Process Biochem. 2014;49:457-65.
-
(2014)
Process Biochem.
, vol.49
, pp. 457-465
-
-
Yu, X.C.1
Zeng, J.J.2
Zheng, Y.B.3
Chen, S.L.4
-
31
-
-
80355126344
-
Effect of inhibitors formed during wheat straw pretreatment on ethanol fermentation by Pichia stipitis
-
1:CAS:528:DC%2BC3MXhtlKktL7I
-
Bellido C, Bolado S, Coca M, Lucas S, Gonzalez-Benito G, Garcia-Cubero MT. Effect of inhibitors formed during wheat straw pretreatment on ethanol fermentation by Pichia stipitis. Bioresour Technol. 2011;102:10868-74.
-
(2011)
Bioresour Technol.
, vol.102
, pp. 10868-10874
-
-
Bellido, C.1
Bolado, S.2
Coca, M.3
Lucas, S.4
Gonzalez-Benito, G.5
Garcia-Cubero, M.T.6
-
32
-
-
67649210765
-
Effects of biomass hydrolysis by-products on oleaginous yeast Rhodosporidium toruloides
-
1:CAS:528:DC%2BD1MXnvVCgs7s%3D
-
Hu CM, Zhao X, Zhao J, Wu SG, Zhao ZBK. Effects of biomass hydrolysis by-products on oleaginous yeast Rhodosporidium toruloides. Bioresour Technol. 2009;100:4843-7.
-
(2009)
Bioresour Technol.
, vol.100
, pp. 4843-4847
-
-
Hu, C.M.1
Zhao, X.2
Zhao, J.3
Wu, S.G.4
Zhao, Z.B.K.5
-
33
-
-
0033526123
-
Main and interaction effects of acetic acid, furfural, and p-hydroxybenzoic acid on growth and ethanol productivity of yeasts
-
1:CAS:528:DyaK1MXhslaitb4%3D
-
Palmqvist E, Grage H, Meinander NQ, Hahn-Hagerdal B. Main and interaction effects of acetic acid, furfural, and p-hydroxybenzoic acid on growth and ethanol productivity of yeasts. Biotechnol Bioeng. 1999;63:46-55.
-
(1999)
Biotechnol Bioeng.
, vol.63
, pp. 46-55
-
-
Palmqvist, E.1
Grage, H.2
Meinander, N.Q.3
Hahn-Hagerdal, B.4
-
34
-
-
84855863459
-
Effect of organic acids on the growth and lipid accumulation of oleaginous yeast Trichosporon fermentans
-
1:CAS:528:DC%2BC38XltVynsbw%3D
-
Huang C, Wu H, Liu ZJ, Cai J, Lou WY, Zong MH. Effect of organic acids on the growth and lipid accumulation of oleaginous yeast Trichosporon fermentans. Biotechnol Biofuels. 2012;5:4.
-
(2012)
Biotechnol Biofuels.
, vol.5
, pp. 4
-
-
Huang, C.1
Wu, H.2
Liu, Z.J.3
Cai, J.4
Lou, W.Y.5
Zong, M.H.6
-
35
-
-
1342265594
-
Alternatives for detoxification of diluted-acid lignocellulosic hydrolyzates for use in fermentative processes: A review
-
1:CAS:528:DC%2BD2cXhsFeltLo%3D
-
Mussatto SI, Roberto IC. Alternatives for detoxification of diluted-acid lignocellulosic hydrolyzates for use in fermentative processes: a review. Bioresour Technol. 2004;93:1-10.
-
(2004)
Bioresour Technol.
, vol.93
, pp. 1-10
-
-
Mussatto, S.I.1
Roberto, I.C.2
-
37
-
-
0033030735
-
Comparison of different methods for the detoxification of lignocellulose hydrolyzates of spruce
-
Larsson S, Reimann A, Nilvebrant NO, Jonsson LJ. Comparison of different methods for the detoxification of lignocellulose hydrolyzates of spruce. Appl Biochem Biotechnol. 1999;77:91-103.
-
(1999)
Appl Biochem Biotechnol.
, vol.77
, pp. 91-103
-
-
Larsson, S.1
Reimann, A.2
Nilvebrant, N.O.3
Jonsson, L.J.4
-
38
-
-
68149124672
-
Role of pretreatment and conditioning processes on toxicity of lignocellulosic biomass hydrolysates
-
1:CAS:528:DC%2BD1MXotlyitbw%3D
-
Pienkos PT, Zhang M. Role of pretreatment and conditioning processes on toxicity of lignocellulosic biomass hydrolysates. Cellulose. 2009;16:743-62.
-
(2009)
Cellulose.
, vol.16
, pp. 743-762
-
-
Pienkos, P.T.1
Zhang, M.2
-
39
-
-
62749102780
-
The commercial performance of cellulosic ethanol supply-chains in Europe
-
Slade R, Bauen A, Shah N. The commercial performance of cellulosic ethanol supply-chains in Europe. Biotechnol Biofuels. 2009;2:3.
-
(2009)
Biotechnol Biofuels.
, vol.2
, pp. 3
-
-
Slade, R.1
Bauen, A.2
Shah, N.3
-
40
-
-
0042443510
-
Techno-economic evaluation of producing ethanol from softwood: Comparison of SSF and SHF and identification of bottlenecks
-
1:CAS:528:DC%2BD3sXktlyqurs%3D
-
Wingren A, Galbe M, Zacchi G. Techno-economic evaluation of producing ethanol from softwood: Comparison of SSF and SHF and identification of bottlenecks. Biotechnol Prog. 2003;19:1109-17.
-
(2003)
Biotechnol Prog.
, vol.19
, pp. 1109-1117
-
-
Wingren, A.1
Galbe, M.2
Zacchi, G.3
-
41
-
-
84883764668
-
Kinetic modeling of batch fermentation for Populus hydrolysate tolerant mutant and wild type strains of Clostridium thermocellum
-
1:CAS:528:DC%2BC3sXhsFWmt73P
-
Linville JL, Rodriguez M, Mielenz JR, Cox CD. Kinetic modeling of batch fermentation for Populus hydrolysate tolerant mutant and wild type strains of Clostridium thermocellum. Bioresour Technol. 2013;147:605-13.
-
(2013)
Bioresour Technol.
, vol.147
, pp. 605-613
-
-
Linville, J.L.1
Rodriguez, M.2
Mielenz, J.R.3
Cox, C.D.4
-
42
-
-
80053172430
-
Engineering microbes for tolerance to next-generation biofuels
-
1:CAS:528:DC%2BC3MXhtlyntr%2FL
-
Dunlop MJ. Engineering microbes for tolerance to next-generation biofuels. Biotechnol Biofuels. 2011;4:32.
-
(2011)
Biotechnol Biofuels.
, vol.4
, pp. 32
-
-
Dunlop, M.J.1
-
43
-
-
0035289692
-
Development of a Saccharomyces cerevisiae strain with enhanced resistance to phenolic fermentation inhibitors in lignocellulose hydrolysates by heterologous expression of laccase
-
1:CAS:528:DC%2BD3MXhslSjs7Y%3D
-
Larsson S, Cassland P, Jonsson LJ. Development of a Saccharomyces cerevisiae strain with enhanced resistance to phenolic fermentation inhibitors in lignocellulose hydrolysates by heterologous expression of laccase. Appl Environ Microbiol. 2001;67:1163-70.
-
(2001)
Appl Environ Microbiol.
, vol.67
, pp. 1163-1170
-
-
Larsson, S.1
Cassland, P.2
Jonsson, L.J.3
-
44
-
-
33745667335
-
Tolerance to furfural-induced stress is associated with pentose phosphate pathway genes ZWF1, GND1, RPE1, and TKL1 in Saccharomyces cerevisiae
-
1:CAS:528:DC%2BD28XmtFCgur0%3D
-
Gorsich SW, Dien BS, Nichols NN, Slininger PJ, Liu ZL, Skory CD. Tolerance to furfural-induced stress is associated with pentose phosphate pathway genes ZWF1, GND1, RPE1, and TKL1 in Saccharomyces cerevisiae. Appl Microbiol Biotechnol. 2006;71:339-49.
-
(2006)
Appl Microbiol Biotechnol.
, vol.71
, pp. 339-349
-
-
Gorsich, S.W.1
Dien, B.S.2
Nichols, N.N.3
Slininger, P.J.4
Liu, Z.L.5
Skory, C.D.6
-
45
-
-
78650995732
-
Metabolic pathway engineering based on metabolomics confers acetic and formic acid tolerance to a recombinant xylose-fermenting strain of Saccharomyces cerevisiae
-
1:CAS:528:DC%2BC3MXhvVKmsbo%3D
-
Hasunuma T, Sanda T, Yamada R, Yoshimura K, Ishii J, Kondo A. Metabolic pathway engineering based on metabolomics confers acetic and formic acid tolerance to a recombinant xylose-fermenting strain of Saccharomyces cerevisiae. Microb Cell Fact. 2011;10:2.
-
(2011)
Microb Cell Fact.
, vol.10
, pp. 2
-
-
Hasunuma, T.1
Sanda, T.2
Yamada, R.3
Yoshimura, K.4
Ishii, J.5
Kondo, A.6
-
46
-
-
71249132746
-
Overexpression of Saccharomyces cerevisiae transcription factor and multidrug resistance genes conveys enhanced resistance to lignocellulose-derived fermentation inhibitors
-
1:CAS:528:DC%2BD1MXhsFGgtLjF
-
Alriksson B, Horvath IS, Jonsson LJ. Overexpression of Saccharomyces cerevisiae transcription factor and multidrug resistance genes conveys enhanced resistance to lignocellulose-derived fermentation inhibitors. Process Biochem. 2010;45:264-71.
-
(2010)
Process Biochem.
, vol.45
, pp. 264-271
-
-
Alriksson, B.1
Horvath, I.S.2
Jonsson, L.J.3
-
47
-
-
81055149872
-
A strain of Saccharomyces cerevisiae evolved for fermentation of lignocellulosic biomass displays improved growth and fermentative ability in high solids concentrations and in the presence of inhibitory compounds
-
1:CAS:528:DC%2BC38XhvVyktrY%3D
-
Hawkins GM, Doran-Peterson J. A strain of Saccharomyces cerevisiae evolved for fermentation of lignocellulosic biomass displays improved growth and fermentative ability in high solids concentrations and in the presence of inhibitory compounds. Biotechnol Biofuels. 2011;4:49.
-
(2011)
Biotechnol Biofuels
, vol.4
, pp. 49
-
-
Hawkins, G.M.1
Doran-Peterson, J.2
-
48
-
-
84885551317
-
Adaptive evolution of an industrial strain of Saccharomyces cerevisiae for combined tolerance to inhibitors and temperature
-
1:CAS:528:DC%2BC3sXhvVChs7zE
-
Wallace-Salinas V, Gorwa-Grauslund MF. Adaptive evolution of an industrial strain of Saccharomyces cerevisiae for combined tolerance to inhibitors and temperature. Biotechnol Biofuels. 2013;6:151.
-
(2013)
Biotechnol Biofuels.
, vol.6
, pp. 151
-
-
Wallace-Salinas, V.1
Gorwa-Grauslund, M.F.2
-
49
-
-
84900839963
-
Simultaneously improving xylose fermentation and tolerance to lignocellulosic inhibitors through evolutionary engineering of recombinant Saccharomyces cerevisiae harbouring xylose isomerase
-
Smith J, van Rensburg E, Gorgens JF. Simultaneously improving xylose fermentation and tolerance to lignocellulosic inhibitors through evolutionary engineering of recombinant Saccharomyces cerevisiae harbouring xylose isomerase. BMC Biotechnol. 2014;14:41.
-
(2014)
BMC Biotechnol.
, vol.14
, pp. 41
-
-
Smith, J.1
Van Rensburg, E.2
Gorgens, J.F.3
-
50
-
-
15044340553
-
Evolutionary engineering of multiple-stress resistant Saccharomyces cerevisiae
-
1:CAS:528:DC%2BD2MXisVChu7s%3D
-
Cakar ZP, Seker UOS, Tamerler C, Sonderegger M, Sauer U. Evolutionary engineering of multiple-stress resistant Saccharomyces cerevisiae. FEMS Yeast Res. 2005;5:569-78.
-
(2005)
FEMS Yeast Res.
, vol.5
, pp. 569-578
-
-
Cakar, Z.P.1
Seker, U.O.S.2
Tamerler, C.3
Sonderegger, M.4
Sauer, U.5
-
51
-
-
84870767120
-
Adaptation of a flocculent Saccharomyces cerevisiae strain to lignocellulosic inhibitors by cell recycle batch fermentation
-
1:CAS:528:DC%2BC38Xhslygur%2FO
-
Landaeta R, Aroca G, Acevedo F, Teixeira JA, Mussatto SI. Adaptation of a flocculent Saccharomyces cerevisiae strain to lignocellulosic inhibitors by cell recycle batch fermentation. Appl Energ. 2013;102:124-30.
-
(2013)
Appl Energ.
, vol.102
, pp. 124-130
-
-
Landaeta, R.1
Aroca, G.2
Acevedo, F.3
Teixeira, J.A.4
Mussatto, S.I.5
-
52
-
-
0030163048
-
Formation of intracytoplasmic lipid inclusions by Rhodococcus opacus strain PD630
-
1:CAS:528:DyaK28XktVWmsLs%3D
-
Alvarez HM, Mayer F, Fabritius D, Steinbuchel A. Formation of intracytoplasmic lipid inclusions by Rhodococcus opacus strain PD630. Arch Microbiol. 1996;165:377-86.
-
(1996)
Arch Microbiol.
, vol.165
, pp. 377-386
-
-
Alvarez, H.M.1
Mayer, F.2
Fabritius, D.3
Steinbuchel, A.4
-
53
-
-
0034064965
-
Rhodococcus opacus strain PD630 as a new source of high-value single-cell oil? Isolation and characterization of triacylglycerols and other storage lipids
-
1:CAS:528:DC%2BD3cXjsFertrk%3D
-
Waltermann M, Luftmann H, Baumeister D, Kalscheuer R, Steinbuchel A. Rhodococcus opacus strain PD630 as a new source of high-value single-cell oil? Isolation and characterization of triacylglycerols and other storage lipids. Microbiology. 2000;146:1143-9.
-
(2000)
Microbiology.
, vol.146
, pp. 1143-1149
-
-
Waltermann, M.1
Luftmann, H.2
Baumeister, D.3
Kalscheuer, R.4
Steinbuchel, A.5
-
54
-
-
78149417794
-
High-cell-density batch fermentation of Rhodococcus opacus PD630 using a high glucose concentration for triacylglycerol production
-
1:CAS:528:DC%2BC3cXntVemu7c%3D
-
Kurosawa K, Boccazzi P, de Almeida NM, Sinskey AJ. High-cell-density batch fermentation of Rhodococcus opacus PD630 using a high glucose concentration for triacylglycerol production. J Biotechnol. 2010;147:212-8.
-
(2010)
J Biotechnol.
, vol.147
, pp. 212-218
-
-
Kurosawa, K.1
Boccazzi, P.2
De Almeida, N.M.3
Sinskey, A.J.4
-
55
-
-
84883791840
-
Engineering xylose metabolism in triacylglycerol-producing Rhodococcus opacus for lignocellulosic fuel production
-
1:CAS:528:DC%2BC3sXhvVegsrfJ
-
Kurosawa K, Wewetzer SJ, Sinskey AJ. Engineering xylose metabolism in triacylglycerol-producing Rhodococcus opacus for lignocellulosic fuel production. Biotechnol Biofuels. 2013;6:134.
-
(2013)
Biotechnol Biofuels.
, vol.6
, pp. 134
-
-
Kurosawa, K.1
Wewetzer, S.J.2
Sinskey, A.J.3
-
56
-
-
84906965971
-
Triacylglycerol production from corn stover using a xylose-fermenting Rhodococcus opacus strain for lignocellulosic biofuels
-
1:CAS:528:DC%2BC2cXitVWqs7jE
-
Kurosawa K, Wewetzer SJ, Sinskey AJ. Triacylglycerol production from corn stover using a xylose-fermenting Rhodococcus opacus strain for lignocellulosic biofuels. J Microbial Biochem Technol. 2014;6:254-9.
-
(2014)
J Microbial Biochem Technol.
, vol.6
, pp. 254-259
-
-
Kurosawa, K.1
Wewetzer, S.J.2
Sinskey, A.J.3
-
58
-
-
84897097855
-
Cultivation of lipid-producing bacteria with lignocellulosic biomass: Effects of inhibitory compounds of lignocellulosic hydrolysates
-
1:CAS:528:DC%2BC2cXotV2htb4%3D
-
Wang BX, Rezenom YH, Cho KC, Tran JL, Lee DG, Russell DH, et al. Cultivation of lipid-producing bacteria with lignocellulosic biomass: Effects of inhibitory compounds of lignocellulosic hydrolysates. Bioresour Technol. 2014;161:162-70.
-
(2014)
Bioresour Technol.
, vol.161
, pp. 162-170
-
-
Wang, B.X.1
Rezenom, Y.H.2
Cho, K.C.3
Tran, J.L.4
Lee, D.G.5
Russell, D.H.6
-
59
-
-
84924931290
-
Improved glycerol utilization by a triacylglycerol-producing Rhodococcus opacus strain for renewable fuels
-
Kurosawa K, Radek A, Plassmeier JK, Sinskey AJ. Improved glycerol utilization by a triacylglycerol-producing Rhodococcus opacus strain for renewable fuels. Biotechnol Biofuels. 2015;8:31.
-
(2015)
Biotechnol Biofuels.
, vol.8
, pp. 31
-
-
Kurosawa, K.1
Radek, A.2
Plassmeier, J.K.3
Sinskey, A.J.4
-
60
-
-
79955049264
-
Oil production by oleaginous yeasts using the hydrolysate from pretreatment of wheat straw with dilute sulfuric acid
-
1:CAS:528:DC%2BC3MXlt1Clsr4%3D
-
Yu XC, Zheng YB, Dorgan KM, Chen SL. Oil production by oleaginous yeasts using the hydrolysate from pretreatment of wheat straw with dilute sulfuric acid. Bioresour Technol. 2011;102:6134-40.
-
(2011)
Bioresour Technol.
, vol.102
, pp. 6134-6140
-
-
Yu, X.C.1
Zheng, Y.B.2
Dorgan, K.M.3
Chen, S.L.4
-
61
-
-
71249144967
-
Screening of oleaginous yeast strains tolerant to lignocellulose degradation compounds
-
1:CAS:528:DC%2BD1MXhsVKit7nM
-
Chen X, Li Z, Zhang X, Hu F, Ryu DD, Bao J. Screening of oleaginous yeast strains tolerant to lignocellulose degradation compounds. Appl Biochem Biotechnol. 2009;159:591-604.
-
(2009)
Appl Biochem Biotechnol.
, vol.159
, pp. 591-604
-
-
Chen, X.1
Li, Z.2
Zhang, X.3
Hu, F.4
Ryu, D.D.5
Bao, J.6
-
62
-
-
64849104184
-
Identification of furfural as a key toxin in lignocellulosic hydrolysates and evolution of a tolerant yeast strain
-
1:CAS:528:DC%2BD1MXotlCitLY%3D
-
Heer D, Sauer U. Identification of furfural as a key toxin in lignocellulosic hydrolysates and evolution of a tolerant yeast strain. J Microbial Biotechnol. 2008;1:497-506.
-
(2008)
J Microbial Biotechnol.
, vol.1
, pp. 497-506
-
-
Heer, D.1
Sauer, U.2
-
63
-
-
0032922829
-
High-cell-density cultivation of microorganisms
-
1:CAS:528:DyaK1MXjtlagtLY%3D
-
Riesenberg D, Guthke R. High-cell-density cultivation of microorganisms. Appl Microbiol Biotechnol. 1999;51:422-30.
-
(1999)
Appl Microbiol Biotechnol.
, vol.51
, pp. 422-430
-
-
Riesenberg, D.1
Guthke, R.2
-
64
-
-
16544366101
-
Recent progress in microbial cultivation techniques
-
1:CAS:528:DC%2BD2cXotFWqsb8%3D
-
Park EY. Recent progress in microbial cultivation techniques. Adv Biochem Eng Biotechnol. 2004;90:1-33.
-
(2004)
Adv Biochem Eng Biotechnol.
, vol.90
, pp. 1-33
-
-
Park, E.Y.1
-
65
-
-
70450257650
-
Development of a high-throughput method to evaluate the impact of inhibitory compounds from lignocellulosic hydrolysates on the growth of Zymomonas mobilis
-
1:CAS:528:DC%2BD1MXhsV2htbbF
-
Franden MA, Pienkos PT, Zhang M. Development of a high-throughput method to evaluate the impact of inhibitory compounds from lignocellulosic hydrolysates on the growth of Zymomonas mobilis. J Biotechnol. 2009;144:259-67.
-
(2009)
J Biotechnol.
, vol.144
, pp. 259-267
-
-
Franden, M.A.1
Pienkos, P.T.2
Zhang, M.3
-
66
-
-
0030586862
-
Effects of lignocellulose degradation products on ethanol fermentations of glucose and xylose by Saccharomyces cerevisiae, Zymomonas mobilis, Pichia stipitis, and Candida shehatae
-
1:CAS:528:DyaK28XksFCjsrs%3D
-
Delgenes JP, Moletta R, Navarro JM. Effects of lignocellulose degradation products on ethanol fermentations of glucose and xylose by Saccharomyces cerevisiae, Zymomonas mobilis, Pichia stipitis, and Candida shehatae. Enzyme Microb Technol. 1996;19:220-5.
-
(1996)
Enzyme Microb Technol.
, vol.19
, pp. 220-225
-
-
Delgenes, J.P.1
Moletta, R.2
Navarro, J.M.3
-
67
-
-
84856265267
-
Bioconversion of lignin model compounds with oleaginous Rhodococci
-
1:CAS:528:DC%2BC38XntlGkuw%3D%3D
-
Kosa M, Ragauskas AJ. Bioconversion of lignin model compounds with oleaginous Rhodococci. Appl Microbiol Biotechnol. 2012;93:891-900.
-
(2012)
Appl Microbiol Biotechnol.
, vol.93
, pp. 891-900
-
-
Kosa, M.1
Ragauskas, A.J.2
-
68
-
-
84884196212
-
Lignin to lipid bioconversion by oleaginous Rhodococci
-
1:CAS:528:DC%2BC3sXhtFClur7E
-
Kosa M, Ragauskas AJ. Lignin to lipid bioconversion by oleaginous Rhodococci. Green Chem. 2013;15:2070-4.
-
(2013)
Green Chem.
, vol.15
, pp. 2070-2074
-
-
Kosa, M.1
Ragauskas, A.J.2
-
70
-
-
84871679746
-
Structural and chemical characterization of hardwood from tree species with applications as bioenergy feedstocks
-
1:CAS:528:DC%2BC3sXnsVyqsg%3D%3D
-
Cetinkol OP, Smith-Moritz AM, Cheng G, Lao J, George A, Hong KL, et al. Structural and chemical characterization of hardwood from tree species with applications as bioenergy feedstocks. Plos One. 2012;7:e52820.
-
(2012)
Plos One.
, vol.7
, pp. e52820
-
-
Cetinkol, O.P.1
Smith-Moritz, A.M.2
Cheng, G.3
Lao, J.4
George, A.5
Hong, K.L.6
|