메뉴 건너뛰기




Volumn 35, Issue , 2015, Pages 110-118

Learning with hidden variables

Author keywords

[No Author keywords available]

Indexed keywords

BACK PROPAGATION; BRAIN CORTEX; BRAIN NERVE CELL; CELL FUNCTION; DEEP BELIEF NETWORK; LEARNING; LEARNING ALGORITHM; MACHINE LEARNING; NERVE CELL NETWORK; NERVE CELL PLASTICITY; PRIORITY JOURNAL; REVIEW; ANIMAL; ARTIFICIAL NEURAL NETWORK; HUMAN; PHYSIOLOGY;

EID: 84939788643     PISSN: 09594388     EISSN: 18736882     Source Type: Journal    
DOI: 10.1016/j.conb.2015.07.006     Document Type: Review
Times cited : (23)

References (81)
  • 1
    • 0005309631 scopus 로고
    • Towards an information-flow model of human behaviour
    • MacKay D.M. Towards an information-flow model of human behaviour. Br J Psychol 1956, 47:30-43.
    • (1956) Br J Psychol , vol.47 , pp. 30-43
    • MacKay, D.M.1
  • 2
    • 0345285364 scopus 로고
    • Shape and arrangement of columns in cat's striate cortex
    • Hubel D., Wiesel T. Shape and arrangement of columns in cat's striate cortex. J Physiol 1963, 165:559-568.
    • (1963) J Physiol , vol.165 , pp. 559-568
    • Hubel, D.1    Wiesel, T.2
  • 3
    • 0018275277 scopus 로고
    • Representation and recognition of the spatial organization of three-dimensional shapes
    • Marr D., Nishihara H.K. Representation and recognition of the spatial organization of three-dimensional shapes. Proc R Soc Lond B: Biol Sci 1978, 200:269-294.
    • (1978) Proc R Soc Lond B: Biol Sci , vol.200 , pp. 269-294
    • Marr, D.1    Nishihara, H.K.2
  • 4
    • 0019152630 scopus 로고
    • Neocognitron: a self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position
    • Fukushima K. Neocognitron: a self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position. Biol Cybernet 1980, 36:193-202.
    • (1980) Biol Cybernet , vol.36 , pp. 193-202
    • Fukushima, K.1
  • 5
    • 0000728115 scopus 로고
    • Some informational aspects of visual perception.
    • Attneave F. Some informational aspects of visual perception. Psychol Rev 1954, 61:183.
    • (1954) Psychol Rev , vol.61 , pp. 183
    • Attneave, F.1
  • 7
    • 0022471098 scopus 로고
    • Learning representations by back-propagation errors
    • Rummelhart D. Learning representations by back-propagation errors. Nature 1986, 323:533-536.
    • (1986) Nature , vol.323 , pp. 533-536
    • Rummelhart, D.1
  • 8
    • 0001578518 scopus 로고
    • A learning algorithm for Boltzmann machines
    • Ackley D.H., Hinton G.E., Sejnowski T.J. A learning algorithm for Boltzmann machines. Cogn Sci 1985, 9:147-169.
    • (1985) Cogn Sci , vol.9 , pp. 147-169
    • Ackley, D.H.1    Hinton, G.E.2    Sejnowski, T.J.3
  • 9
    • 0001000562 scopus 로고    scopus 로고
    • Efficient learning in Boltzmann machines using linear response theory
    • Kappen H.J., Rodriguez F.B. Efficient learning in Boltzmann machines using linear response theory. Neurol Comput 1998, 10:1137-1156.
    • (1998) Neurol Comput , vol.10 , pp. 1137-1156
    • Kappen, H.J.1    Rodriguez, F.B.2
  • 10
    • 0001143296 scopus 로고    scopus 로고
    • Mean-field theory of Boltzmann machine learning
    • Tanaka T. Mean-field theory of Boltzmann machine learning. Phys Rev E 1998, 58:2302-2310.
    • (1998) Phys Rev E , vol.58 , pp. 2302-2310
    • Tanaka, T.1
  • 11
    • 0041001763 scopus 로고
    • The limitations of deterministic Boltzmann machine learning
    • Galland C.C. The limitations of deterministic Boltzmann machine learning. Network: Comput Neural Syst 1993, 4:355-379.
    • (1993) Network: Comput Neural Syst , vol.4 , pp. 355-379
    • Galland, C.C.1
  • 13
    • 0029652445 scopus 로고
    • The "wake-sleep" algorithm for unsupervised neural networks
    • Hinton G.E., Dayan P., Frey B.J., Neal R.M. The "wake-sleep" algorithm for unsupervised neural networks. Science 1995, 268:1158-1161.
    • (1995) Science , vol.268 , pp. 1158-1161
    • Hinton, G.E.1    Dayan, P.2    Frey, B.J.3    Neal, R.M.4
  • 14
    • 33745805403 scopus 로고    scopus 로고
    • A fast learning algorithm for deep belief nets
    • Hinton G., Osindero S., Teh Y.-W. A fast learning algorithm for deep belief nets. Neural Comput 2006, 18:1527-1554.
    • (2006) Neural Comput , vol.18 , pp. 1527-1554
    • Hinton, G.1    Osindero, S.2    Teh, Y.-W.3
  • 15
    • 0000329993 scopus 로고
    • Information processing in dynamical systems: Foundations of harmony theory
    • MIT Press
    • Smolensky P. Information processing in dynamical systems: Foundations of harmony theory. Parallel Distributed Processing: vol 1: Foundations 1986, 194-281. MIT Press.
    • (1986) Parallel Distributed Processing: vol 1: Foundations , pp. 194-281
    • Smolensky, P.1
  • 16
    • 0013344078 scopus 로고    scopus 로고
    • Training products of experts by minimizing contrastive divergence
    • Hinton G.E. Training products of experts by minimizing contrastive divergence. Neural Comput 2002, 14:1771-1880.
    • (2002) Neural Comput , vol.14 , pp. 1771-1880
    • Hinton, G.E.1
  • 27
    • 0032203257 scopus 로고    scopus 로고
    • Gradient-based learning applied to document recognition
    • LeCun Y., Bottou L., Bengio Y., Haffner P. Gradient-based learning applied to document recognition. Proc IEEE 1998, 86:2278-2324.
    • (1998) Proc IEEE , vol.86 , pp. 2278-2324
    • LeCun, Y.1    Bottou, L.2    Bengio, Y.3    Haffner, P.4
  • 37
    • 80053460450 scopus 로고    scopus 로고
    • Contractive auto-encoders: Explicit invariance during feature extraction
    • Rifai S. Contractive auto-encoders: Explicit invariance during feature extraction. ICML 2011.
    • (2011) ICML
    • Rifai, S.1
  • 41
    • 84919786239 scopus 로고    scopus 로고
    • Neural variational inference and learning in belief networks
    • Mnih A., Gregor K. Neural variational inference and learning in belief networks. ICML'2014 2014.
    • (2014) ICML'2014
    • Mnih, A.1    Gregor, K.2
  • 42
    • 0020118274 scopus 로고
    • Neural networks and physical systems with emergent collective computational abilities
    • Hopfield J.J. Neural networks and physical systems with emergent collective computational abilities. Proc Natl Acad Sci U S A 1982, 79:2554-2558.
    • (1982) Proc Natl Acad Sci U S A , vol.79 , pp. 2554-2558
    • Hopfield, J.J.1
  • 45
    • 35949008615 scopus 로고
    • Statistical mechanics for networks of graded-response neurons
    • Kühn R., Bös S., van Hemmen J.L. Statistical mechanics for networks of graded-response neurons. Phys Rev A 1991, 43:2084.
    • (1991) Phys Rev A , vol.43 , pp. 2084
    • Kühn, R.1    Bös, S.2    van Hemmen, J.L.3
  • 46
    • 0343793989 scopus 로고
    • Are spin-glass effects relevant to understanding realistic auto-associative networks?
    • Treves A. Are spin-glass effects relevant to understanding realistic auto-associative networks?. J Phys A: Math Gen 1991, 24:2645.
    • (1991) J Phys A: Math Gen , vol.24 , pp. 2645
    • Treves, A.1
  • 53
    • 79251468767 scopus 로고    scopus 로고
    • Mean field theory for nonequilibrium network reconstruction
    • Roudi Y., Hertz J. Mean field theory for nonequilibrium network reconstruction. Phys Rev Lett 2011, 106:048702.
    • (2011) Phys Rev Lett , vol.106 , pp. 048702
    • Roudi, Y.1    Hertz, J.2
  • 54
    • 79961094842 scopus 로고    scopus 로고
    • Network inference using asynchronously updated kinetic Ising model
    • Zeng H.-L., Alava M., Mahmoudi H., Aurell E. Network inference using asynchronously updated kinetic Ising model. Phys Rev E 2011, 83:041135.
    • (2011) Phys Rev E , vol.83 , pp. 041135
    • Zeng, H.-L.1    Alava, M.2    Mahmoudi, H.3    Aurell, E.4
  • 55
    • 84930210135 scopus 로고    scopus 로고
    • Exact mean-field inference in asymmetric kinetic Ising systems
    • Theory Exp.
    • Mezard M, Sakellariou J: Exact mean-field inference in asymmetric kinetic Ising systems. J Stat Mech: Theory Exp.
    • J Stat Mech
    • Mezard, M.1    Sakellariou, J.2
  • 56
    • 84874542191 scopus 로고    scopus 로고
    • Learning and inference in a nonequilibrium Ising model with hidden nodes
    • Dunn B., Roudi Y. Learning and inference in a nonequilibrium Ising model with hidden nodes. Phys Rev E 2013, 87:022127.
    • (2013) Phys Rev E , vol.87 , pp. 022127
    • Dunn, B.1    Roudi, Y.2
  • 57
    • 84889826301 scopus 로고    scopus 로고
    • Network inference with hidden nodes
    • Hertz J., Tyrcha J. Network inference with hidden nodes. Math Biosci Eng 2014, 11:149-156.
    • (2014) Math Biosci Eng , vol.11 , pp. 149-156
    • Hertz, J.1    Tyrcha, J.2
  • 58
    • 84903638888 scopus 로고    scopus 로고
    • Inferring hidden states in a random kinetic Ising model: replica analysis
    • Bachschmid-Romano L., Opper M. Inferring hidden states in a random kinetic Ising model: replica analysis. J Stat Mech: Theory Exp 2014, 2014:P06013.
    • (2014) J Stat Mech: Theory Exp , vol.2014 , pp. P06013
    • Bachschmid-Romano, L.1    Opper, M.2
  • 59
    • 84930643893 scopus 로고    scopus 로고
    • Belief propagation and replicas for inference and learning in a kinetic Ising model with hidden spins
    • Battistin C, Hertz J, Tyrcha J, Roudi Y: Belief propagation and replicas for inference and learning in a kinetic Ising model with hidden spins. J Stat Mech P05021.
    • J Stat Mech P05021.
    • Battistin, C.1    Hertz, J.2    Tyrcha, J.3    Roudi, Y.4
  • 72
    • 33644927837 scopus 로고    scopus 로고
    • Making working memory work: a computational model of learning in the prefrontal cortex and basal ganglia
    • O'Reilly R.C., Frank M.J. Making working memory work: a computational model of learning in the prefrontal cortex and basal ganglia. Neural Comput 2006, 18:283-328.
    • (2006) Neural Comput , vol.18 , pp. 283-328
    • O'Reilly, R.C.1    Frank, M.J.2
  • 75
    • 84929440599 scopus 로고    scopus 로고
    • Spiking neuron network Helmholtz machine
    • Sountsov P., Miller P. Spiking neuron network Helmholtz machine. Front Comput Neurosci 2015, 9:46.
    • (2015) Front Comput Neurosci , vol.9 , pp. 46
    • Sountsov, P.1    Miller, P.2
  • 76
    • 0001272825 scopus 로고
    • Graded-response neurons and information encodings in autoassociative memories
    • Treves A. Graded-response neurons and information encodings in autoassociative memories. Phys Rev A 1990, 42:2418.
    • (1990) Phys Rev A , vol.42 , pp. 2418
    • Treves, A.1
  • 77
    • 0041324844 scopus 로고    scopus 로고
    • Rate models for conductance-based cortical neuronal networks
    • Shriki O., Hansel D., Sompolinsky H. Rate models for conductance-based cortical neuronal networks. Neural Comput 2003, 15:1809-1841.
    • (2003) Neural Comput , vol.15 , pp. 1809-1841
    • Shriki, O.1    Hansel, D.2    Sompolinsky, H.3
  • 78
    • 33744785080 scopus 로고    scopus 로고
    • Localized activity profiles and storage capacity of rate-based autoassociative networks
    • Roudi Y., Treves A. Localized activity profiles and storage capacity of rate-based autoassociative networks. Phys Rev E 2006, 73:061904.
    • (2006) Phys Rev E , vol.73 , pp. 061904
    • Roudi, Y.1    Treves, A.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.