-
1
-
-
0005309631
-
Towards an information-flow model of human behaviour
-
MacKay D.M. Towards an information-flow model of human behaviour. Br J Psychol 1956, 47:30-43.
-
(1956)
Br J Psychol
, vol.47
, pp. 30-43
-
-
MacKay, D.M.1
-
2
-
-
0345285364
-
Shape and arrangement of columns in cat's striate cortex
-
Hubel D., Wiesel T. Shape and arrangement of columns in cat's striate cortex. J Physiol 1963, 165:559-568.
-
(1963)
J Physiol
, vol.165
, pp. 559-568
-
-
Hubel, D.1
Wiesel, T.2
-
3
-
-
0018275277
-
Representation and recognition of the spatial organization of three-dimensional shapes
-
Marr D., Nishihara H.K. Representation and recognition of the spatial organization of three-dimensional shapes. Proc R Soc Lond B: Biol Sci 1978, 200:269-294.
-
(1978)
Proc R Soc Lond B: Biol Sci
, vol.200
, pp. 269-294
-
-
Marr, D.1
Nishihara, H.K.2
-
4
-
-
0019152630
-
Neocognitron: a self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position
-
Fukushima K. Neocognitron: a self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position. Biol Cybernet 1980, 36:193-202.
-
(1980)
Biol Cybernet
, vol.36
, pp. 193-202
-
-
Fukushima, K.1
-
5
-
-
0000728115
-
Some informational aspects of visual perception.
-
Attneave F. Some informational aspects of visual perception. Psychol Rev 1954, 61:183.
-
(1954)
Psychol Rev
, vol.61
, pp. 183
-
-
Attneave, F.1
-
7
-
-
0022471098
-
Learning representations by back-propagation errors
-
Rummelhart D. Learning representations by back-propagation errors. Nature 1986, 323:533-536.
-
(1986)
Nature
, vol.323
, pp. 533-536
-
-
Rummelhart, D.1
-
9
-
-
0001000562
-
Efficient learning in Boltzmann machines using linear response theory
-
Kappen H.J., Rodriguez F.B. Efficient learning in Boltzmann machines using linear response theory. Neurol Comput 1998, 10:1137-1156.
-
(1998)
Neurol Comput
, vol.10
, pp. 1137-1156
-
-
Kappen, H.J.1
Rodriguez, F.B.2
-
10
-
-
0001143296
-
Mean-field theory of Boltzmann machine learning
-
Tanaka T. Mean-field theory of Boltzmann machine learning. Phys Rev E 1998, 58:2302-2310.
-
(1998)
Phys Rev E
, vol.58
, pp. 2302-2310
-
-
Tanaka, T.1
-
11
-
-
0041001763
-
The limitations of deterministic Boltzmann machine learning
-
Galland C.C. The limitations of deterministic Boltzmann machine learning. Network: Comput Neural Syst 1993, 4:355-379.
-
(1993)
Network: Comput Neural Syst
, vol.4
, pp. 355-379
-
-
Galland, C.C.1
-
12
-
-
0029372831
-
The Helmholtz machine
-
Dayan P., Hinton G.E., Neal R.M., Zemel R.S. The Helmholtz machine. Neural Comput 1995, 7:889-904.
-
(1995)
Neural Comput
, vol.7
, pp. 889-904
-
-
Dayan, P.1
Hinton, G.E.2
Neal, R.M.3
Zemel, R.S.4
-
13
-
-
0029652445
-
The "wake-sleep" algorithm for unsupervised neural networks
-
Hinton G.E., Dayan P., Frey B.J., Neal R.M. The "wake-sleep" algorithm for unsupervised neural networks. Science 1995, 268:1158-1161.
-
(1995)
Science
, vol.268
, pp. 1158-1161
-
-
Hinton, G.E.1
Dayan, P.2
Frey, B.J.3
Neal, R.M.4
-
14
-
-
33745805403
-
A fast learning algorithm for deep belief nets
-
Hinton G., Osindero S., Teh Y.-W. A fast learning algorithm for deep belief nets. Neural Comput 2006, 18:1527-1554.
-
(2006)
Neural Comput
, vol.18
, pp. 1527-1554
-
-
Hinton, G.1
Osindero, S.2
Teh, Y.-W.3
-
15
-
-
0000329993
-
Information processing in dynamical systems: Foundations of harmony theory
-
MIT Press
-
Smolensky P. Information processing in dynamical systems: Foundations of harmony theory. Parallel Distributed Processing: vol 1: Foundations 1986, 194-281. MIT Press.
-
(1986)
Parallel Distributed Processing: vol 1: Foundations
, pp. 194-281
-
-
Smolensky, P.1
-
16
-
-
0013344078
-
Training products of experts by minimizing contrastive divergence
-
Hinton G.E. Training products of experts by minimizing contrastive divergence. Neural Comput 2002, 14:1771-1880.
-
(2002)
Neural Comput
, vol.14
, pp. 1771-1880
-
-
Hinton, G.E.1
-
17
-
-
77949522811
-
Why does unsupervised pre-training help deep learning?
-
Erhan D., Bengio Y., Courville A., Manzagol P.-A., Vincent P., Bengio S. Why does unsupervised pre-training help deep learning?. J Mach Learn Res 2010, 11:625-660.
-
(2010)
J Mach Learn Res
, vol.11
, pp. 625-660
-
-
Erhan, D.1
Bengio, Y.2
Courville, A.3
Manzagol, P.-A.4
Vincent, P.5
Bengio, S.6
-
18
-
-
34547967782
-
An empirical evaluation of deep architectures on problems with many factors of variation
-
Larochelle H., Erhan D., Courville A., Bergstra J., Bengio Y. An empirical evaluation of deep architectures on problems with many factors of variation. Proceedings of the 24th Annual International Conference on Machine Learning (ICML) 2007, 473-480.
-
(2007)
Proceedings of the 24th Annual International Conference on Machine Learning (ICML)
, pp. 473-480
-
-
Larochelle, H.1
Erhan, D.2
Courville, A.3
Bergstra, J.4
Bengio, Y.5
-
20
-
-
84864069017
-
Efficient learning of sparse representations with an energy-based model
-
Ranzato M., Poultney C.S., Chopra S., LeCun Y. Efficient learning of sparse representations with an energy-based model. Advances in Neural Information Processing Systems (NIPS), vol 19 2007, 1137-1144.
-
(2007)
Advances in Neural Information Processing Systems (NIPS), vol 19
, pp. 1137-1144
-
-
Ranzato, M.1
Poultney, C.S.2
Chopra, S.3
LeCun, Y.4
-
22
-
-
70049083257
-
-
Tech. Rep., Computational and Biological Learning Lab, Courant Institute, NYU, cBLL-TR-2008-12-01
-
Kavukcuoglu K., Ranzato M., LeCun Y. Fast Inference in Sparse Coding Algorithms with Applications to Object Recognition 2008, Tech. Rep., Computational and Biological Learning Lab, Courant Institute, NYU, cBLL-TR-2008-12-01.
-
(2008)
Fast Inference in Sparse Coding Algorithms with Applications to Object Recognition
-
-
Kavukcuoglu, K.1
Ranzato, M.2
LeCun, Y.3
-
27
-
-
0032203257
-
Gradient-based learning applied to document recognition
-
LeCun Y., Bottou L., Bengio Y., Haffner P. Gradient-based learning applied to document recognition. Proc IEEE 1998, 86:2278-2324.
-
(1998)
Proc IEEE
, vol.86
, pp. 2278-2324
-
-
LeCun, Y.1
Bottou, L.2
Bengio, Y.3
Haffner, P.4
-
29
-
-
84911364368
-
Large-scale video classification with convolutional neural networks
-
Karpathy A., Toderici G., Shetty S., Leung T., Sukthankar R., Li F.-F. Large-scale video classification with convolutional neural networks. CVPR 2014.
-
(2014)
CVPR
-
-
Karpathy, A.1
Toderici, G.2
Shetty, S.3
Leung, T.4
Sukthankar, R.5
Li, F.-F.6
-
31
-
-
84939821073
-
-
Mao J., Xu W., Yang Y., Wang J., Yuille A. Deep captioning with multimodal recurrent neural networks (m-RNN) 2014, http://arxiv.org/abs/1412.6632.
-
(2014)
Deep captioning with multimodal recurrent neural networks (m-RNN)
-
-
Mao, J.1
Xu, W.2
Yang, Y.3
Wang, J.4
Yuille, A.5
-
32
-
-
84939821074
-
-
Xu K., Ba J., Kiros R., Courville A., Salakhutdinov R., Zemel R., Bengio Y. Show, attend and tell: Neural image caption generation with visual attention 2015, http://arxiv.org/abs/1502.03044.
-
(2015)
Show, attend and tell: Neural image caption generation with visual attention
-
-
Xu, K.1
Ba, J.2
Kiros, R.3
Courville, A.4
Salakhutdinov, R.5
Zemel, R.6
Bengio, Y.7
-
34
-
-
84876258641
-
Learning hierarchical features for scene labeling
-
Farabet C., Couprie C., Najman L., LeCun Y. Learning hierarchical features for scene labeling. IEEE Trans Pattern Anal Mach Intell 2013, 35:1915-1929.
-
(2013)
IEEE Trans Pattern Anal Mach Intell
, vol.35
, pp. 1915-1929
-
-
Farabet, C.1
Couprie, C.2
Najman, L.3
LeCun, Y.4
-
37
-
-
80053460450
-
Contractive auto-encoders: Explicit invariance during feature extraction
-
Rifai S. Contractive auto-encoders: Explicit invariance during feature extraction. ICML 2011.
-
(2011)
ICML
-
-
Rifai, S.1
-
41
-
-
84919786239
-
Neural variational inference and learning in belief networks
-
Mnih A., Gregor K. Neural variational inference and learning in belief networks. ICML'2014 2014.
-
(2014)
ICML'2014
-
-
Mnih, A.1
Gregor, K.2
-
42
-
-
0020118274
-
Neural networks and physical systems with emergent collective computational abilities
-
Hopfield J.J. Neural networks and physical systems with emergent collective computational abilities. Proc Natl Acad Sci U S A 1982, 79:2554-2558.
-
(1982)
Proc Natl Acad Sci U S A
, vol.79
, pp. 2554-2558
-
-
Hopfield, J.J.1
-
45
-
-
35949008615
-
Statistical mechanics for networks of graded-response neurons
-
Kühn R., Bös S., van Hemmen J.L. Statistical mechanics for networks of graded-response neurons. Phys Rev A 1991, 43:2084.
-
(1991)
Phys Rev A
, vol.43
, pp. 2084
-
-
Kühn, R.1
Bös, S.2
van Hemmen, J.L.3
-
46
-
-
0343793989
-
Are spin-glass effects relevant to understanding realistic auto-associative networks?
-
Treves A. Are spin-glass effects relevant to understanding realistic auto-associative networks?. J Phys A: Math Gen 1991, 24:2645.
-
(1991)
J Phys A: Math Gen
, vol.24
, pp. 2645
-
-
Treves, A.1
-
51
-
-
84859446368
-
Contextual tag inference
-
Mandel M.I., Pascanu R., Eck D., Bengio Y., Aiello L.M., Schifanella R., Menczer F. Contextual tag inference. ACM Trans Multimedia Comput Commun Appl 2011, 7:32.
-
(2011)
ACM Trans Multimedia Comput Commun Appl
, vol.7
, pp. 32
-
-
Mandel, M.I.1
Pascanu, R.2
Eck, D.3
Bengio, Y.4
Aiello, L.M.5
Schifanella, R.6
Menczer, F.7
-
52
-
-
85162551426
-
Facial expression transfer with input-output temporal restricted Boltzmann machines
-
Zeiler M.D., Taylor G.W., Sigal L., Matthews I., Fergus R. Facial expression transfer with input-output temporal restricted Boltzmann machines. Advances in Neural Information Processing Systems 2011, 1629-1637.
-
(2011)
Advances in Neural Information Processing Systems
, pp. 1629-1637
-
-
Zeiler, M.D.1
Taylor, G.W.2
Sigal, L.3
Matthews, I.4
Fergus, R.5
-
53
-
-
79251468767
-
Mean field theory for nonequilibrium network reconstruction
-
Roudi Y., Hertz J. Mean field theory for nonequilibrium network reconstruction. Phys Rev Lett 2011, 106:048702.
-
(2011)
Phys Rev Lett
, vol.106
, pp. 048702
-
-
Roudi, Y.1
Hertz, J.2
-
54
-
-
79961094842
-
Network inference using asynchronously updated kinetic Ising model
-
Zeng H.-L., Alava M., Mahmoudi H., Aurell E. Network inference using asynchronously updated kinetic Ising model. Phys Rev E 2011, 83:041135.
-
(2011)
Phys Rev E
, vol.83
, pp. 041135
-
-
Zeng, H.-L.1
Alava, M.2
Mahmoudi, H.3
Aurell, E.4
-
55
-
-
84930210135
-
Exact mean-field inference in asymmetric kinetic Ising systems
-
Theory Exp.
-
Mezard M, Sakellariou J: Exact mean-field inference in asymmetric kinetic Ising systems. J Stat Mech: Theory Exp.
-
J Stat Mech
-
-
Mezard, M.1
Sakellariou, J.2
-
56
-
-
84874542191
-
Learning and inference in a nonequilibrium Ising model with hidden nodes
-
Dunn B., Roudi Y. Learning and inference in a nonequilibrium Ising model with hidden nodes. Phys Rev E 2013, 87:022127.
-
(2013)
Phys Rev E
, vol.87
, pp. 022127
-
-
Dunn, B.1
Roudi, Y.2
-
57
-
-
84889826301
-
Network inference with hidden nodes
-
Hertz J., Tyrcha J. Network inference with hidden nodes. Math Biosci Eng 2014, 11:149-156.
-
(2014)
Math Biosci Eng
, vol.11
, pp. 149-156
-
-
Hertz, J.1
Tyrcha, J.2
-
58
-
-
84903638888
-
Inferring hidden states in a random kinetic Ising model: replica analysis
-
Bachschmid-Romano L., Opper M. Inferring hidden states in a random kinetic Ising model: replica analysis. J Stat Mech: Theory Exp 2014, 2014:P06013.
-
(2014)
J Stat Mech: Theory Exp
, vol.2014
, pp. P06013
-
-
Bachschmid-Romano, L.1
Opper, M.2
-
59
-
-
84930643893
-
Belief propagation and replicas for inference and learning in a kinetic Ising model with hidden spins
-
Battistin C, Hertz J, Tyrcha J, Roudi Y: Belief propagation and replicas for inference and learning in a kinetic Ising model with hidden spins. J Stat Mech P05021.
-
J Stat Mech P05021.
-
-
Battistin, C.1
Hertz, J.2
Tyrcha, J.3
Roudi, Y.4
-
70
-
-
84939804661
-
-
Mikolov T., Joulin A., Chopra S., Mathieu M., Ranzato M. Learning longer memory in recurrent neural networks 2014, http://arxiv.org/abs/1412.7753.
-
(2014)
Learning longer memory in recurrent neural networks
-
-
Mikolov, T.1
Joulin, A.2
Chopra, S.3
Mathieu, M.4
Ranzato, M.5
-
71
-
-
84928545733
-
-
Hannun A., Case C., Casper J., Catanzaro B., Diamos G., Elsen E., Prenger R., Satheesh S., Sengupta S., Coates A., et al. Deepspeech: scaling up end-to-end speech recognition 2014, http://arxiv.org/abs/1412.5567.
-
(2014)
Deepspeech: scaling up end-to-end speech recognition
-
-
Hannun, A.1
Case, C.2
Casper, J.3
Catanzaro, B.4
Diamos, G.5
Elsen, E.6
Prenger, R.7
Satheesh, S.8
Sengupta, S.9
Coates, A.10
-
72
-
-
33644927837
-
Making working memory work: a computational model of learning in the prefrontal cortex and basal ganglia
-
O'Reilly R.C., Frank M.J. Making working memory work: a computational model of learning in the prefrontal cortex and basal ganglia. Neural Comput 2006, 18:283-328.
-
(2006)
Neural Comput
, vol.18
, pp. 283-328
-
-
O'Reilly, R.C.1
Frank, M.J.2
-
76
-
-
0001272825
-
Graded-response neurons and information encodings in autoassociative memories
-
Treves A. Graded-response neurons and information encodings in autoassociative memories. Phys Rev A 1990, 42:2418.
-
(1990)
Phys Rev A
, vol.42
, pp. 2418
-
-
Treves, A.1
-
77
-
-
0041324844
-
Rate models for conductance-based cortical neuronal networks
-
Shriki O., Hansel D., Sompolinsky H. Rate models for conductance-based cortical neuronal networks. Neural Comput 2003, 15:1809-1841.
-
(2003)
Neural Comput
, vol.15
, pp. 1809-1841
-
-
Shriki, O.1
Hansel, D.2
Sompolinsky, H.3
-
78
-
-
33744785080
-
Localized activity profiles and storage capacity of rate-based autoassociative networks
-
Roudi Y., Treves A. Localized activity profiles and storage capacity of rate-based autoassociative networks. Phys Rev E 2006, 73:061904.
-
(2006)
Phys Rev E
, vol.73
, pp. 061904
-
-
Roudi, Y.1
Treves, A.2
-
79
-
-
84862294866
-
Deep sparse rectifier networks
-
Glorot X., Bordes A., Bengio Y. Deep sparse rectifier networks. Proceedings of the 14th International Conference on Artificial Intelligence and Statistics, JMLR W&CP Volume, vol 15 2011, 315-323.
-
(2011)
Proceedings of the 14th International Conference on Artificial Intelligence and Statistics, JMLR W&CP Volume, vol 15
, pp. 315-323
-
-
Glorot, X.1
Bordes, A.2
Bengio, Y.3
-
81
-
-
84867720412
-
-
Hinton G.E., Srivastava N., Krizhevsky A., Sutskever I., Salakhutdinov R.R. Improving neural networks by preventing co-adaptation of feature detectors 2012, http://arxiv.org/abs/1207.0580.
-
(2012)
Improving neural networks by preventing co-adaptation of feature detectors
-
-
Hinton, G.E.1
Srivastava, N.2
Krizhevsky, A.3
Sutskever, I.4
Salakhutdinov, R.R.5
|