메뉴 건너뛰기




Volumn 11, Issue 1, 2014, Pages 149-165

Network inference with hidden units

Author keywords

Hidden Units; Kinetic Ising Models; Latent Variables; Mean FiEld Theory; Network Inference

Indexed keywords

ACTION POTENTIAL; ALGORITHM; ARTICLE; ARTIFICIAL NEURAL NETWORK; BIOLOGICAL MODEL; COMPUTER SIMULATION; EXCITATORY POSTSYNAPTIC POTENTIAL; HUMAN; INHIBITORY POSTSYNAPTIC POTENTIAL; NERVE CELL; PHYSIOLOGY; PROBABILITY; STATISTICS; THEORETICAL MODEL;

EID: 84889826301     PISSN: 15471063     EISSN: 15510018     Source Type: Journal    
DOI: 10.3934/mbe.2014.11.149     Document Type: Article
Times cited : (27)

References (21)
  • 1
    • 0001578518 scopus 로고
    • A learning algorithm for Boltzmann machines
    • D. Ackley, G. E. Hinton and T. J. Sejnowski, A learning algorithm for Boltzmann machines, Cogn. Sci., 9 (1985), 147-169.
    • (1985) Cogn Sci. , vol.9 , pp. 147-169
    • Ackley, D.1    Hinton, G.E.2    Sejnowski, T.J.3
  • 2
    • 0016355478 scopus 로고
    • A new look at the statistical model identification. System identification and time- series analysis
    • H. Akaike, A new look at the statistical model identification. System identification and time- series analysis, IEE Transactions on Automatic Control, AC-19 (1974), 716-723.
    • (1974) IEE Transactions on Automatic Control, AC-19 , pp. 716-723
    • Akaike, H.1
  • 4
    • 0002629270 scopus 로고
    • Maximum likelihood from incomplete data via the em algorithm. with discussion
    • A. P. Dempster, N. M. Laird and D. B. Rubin, Maximum likelihood from incomplete data via the EM algorithm. With discussion, J. Roy. Stat. Soc. B, 39 (1977), 1-38.
    • (1977) J. Roy. Stat. Soc. B , vol.39 , pp. 1-38
    • Dempster, A.P.1    Laird, N.M.2    Rubin, D.B.3
  • 5
    • 84874542191 scopus 로고    scopus 로고
    • Learning and inference in a nonequilibrium Ising model with hidden nodes
    • B. Dunn and Y. Roudi, Learning and inference in a nonequilibrium Ising model with hidden nodes, Phys. Rev. E, 87 (2013), 022127.
    • (2013) Phys. Rev. e , vol.87 , pp. 022127
    • Dunn, B.1    Roudi, Y.2
  • 6
    • 11644279337 scopus 로고
    • Time-dependent statistics of the Ising model
    • R. J. Glauber, Time-dependent statistics of the Ising model, J. Math. Phys., 4 (1963), 294- 307.
    • (1963) J. Math. Phys. , vol.4 , pp. 294-307
    • Glauber, R.J.1
  • 7
    • 85054755730 scopus 로고    scopus 로고
    • Tyrcha Ising Models for Inferring Network Structure from Spike Data
    • (eds. S. Panzeri and R. R. Quiroga) CRC Press
    • J. Hertz, Y. Roudi and J. Tyrcha, Ising models for inferring network structure from spike data, in"Principles of Neural Coding" (eds. S. Panzeri and R. R. Quiroga), CRC Press, (2013), 527-546.
    • (2013) Principles of Neural Coding , pp. 527-546
    • Hertz, J.1    Roudi, Y.2    Tyrcha, J.3
  • 9
    • 0001202597 scopus 로고
    • Learning state space trajectories in recurrent neural networks
    • B. A. Pearlmutter, Learning state space trajectories in recurrent neural networks, Neural Computation, 1 (1989), 263-269.
    • (1989) Neural Computation , vol.1 , pp. 263-269
    • Pearlmutter, B.A.1
  • 10
    • 0021325618 scopus 로고
    • Collective properties of neural networks: A statistical physics approach
    • P. Peretto, Collective properties of neural networks: A statistical physics approach, Biol. Cybern., 50 (1984), 51-62.
    • (1984) Biol. Cybern. , vol.50 , pp. 51-62
    • Peretto, P.1
  • 11
    • 0000442791 scopus 로고
    • Generalization of back-propagation to recurrent neural networks
    • F. J. Pineda, Generalization of back-propagation to recurrent neural networks, Phys. Rev. Lett., 59 (1987), 2229-2232.
    • (1987) Phys. Rev. Lett. , vol.59 , pp. 2229-2232
    • Pineda, F.J.1
  • 12
    • 79251468767 scopus 로고    scopus 로고
    • Mean-field theory for nonequilibrium network reconstruction
    • Y. Roudi and J. Hertz, Mean-field theory for nonequilibrium network reconstruction, Phys. Rev. Lett., 106 (2011), 048702.
    • (2011) Phys. Rev. Lett. , vol.106 , pp. 048702
    • Roudi, Y.1    Hertz, J.2
  • 13
    • 67549115079 scopus 로고    scopus 로고
    • The Ising model for neural data: Model quality and approximate methods for extracting functional connectivity
    • Y. Roudi, J. Tyrcha and J. Hertz, The Ising model for neural data: Model quality and approximate methods for extracting functional connectivity, Phys. Rev. E, 79 (2009), 051915.
    • (2009) Phys. Rev. e , vol.79 , pp. 051915
    • Roudi, Y.1    Tyrcha, J.2    Hertz, J.3
  • 14
    • 0000646059 scopus 로고
    • Learning Internal Representations by Error Propagation
    • (eds. D. E. Rumelhart and J. L. McClelland) Chapter 8 MIT Press
    • D. E. Rumelhart, G. E. Hinton and R. J. Williams, Learning Internal Representations by Error Propagation, in"Parallel Distributed Processing" (eds. D. E. Rumelhart and J. L. McClelland), Vol. 1, Chapter 8, MIT Press, 1986.
    • (1986) Parallel Distributed Processing , vol.1
    • Rumelhart, D.E.1    Hinton, G.E.2    Williams, R.J.3
  • 15
  • 16
    • 33646170322 scopus 로고    scopus 로고
    • Weak pairwise correlations imply strongly correlated network states in a neural population
    • E. Schneidman, M. J. Berry, R. Segev and W. Bialek, Weak pairwise correlations imply strongly correlated network states in a neural population, Nature, 440 (2006), 1007-1012.
    • (2006) Nature , vol.440 , pp. 1007-1012
    • Schneidman, E.1    Berry, M.J.2    Segev, R.3    Bialek, W.4
  • 17
    • 0000120766 scopus 로고
    • Estimating the dimension of a model
    • G. E. Schwarz, Estimating the dimension of a model, Annals of Statistics, 6 (1978), 461-464.
    • (1978) Annals of Statistics , vol.6 , pp. 461-464
    • Schwarz, G.E.1
  • 18
    • 0001953676 scopus 로고
    • Maximum likelihood theory for incomplete data from an exponential family
    • R. Sundberg, Maximum likelihood theory for incomplete data from an exponential family, Scand. J. Statistics, 1 (1974), 49-58.
    • (1974) Scand. J. Statistics , vol.1 , pp. 49-58
    • Sundberg, R.1
  • 20
    • 84889815204 scopus 로고
    • Solution of"soluble model of a spin glass,"
    • D. J. Thouless, P. W. Anderson and R. G. Palmer, Solution of"soluble model of a spin glass," Philos. Mag., 92 (1974), 272-279.
    • (1974) Philos. Mag. , vol.92 , pp. 272-279
    • Thouless, D.J.1    Anderson, P.W.2    Palmer, R.G.3
  • 21
    • 0001202594 scopus 로고
    • A learning algorithm for continually running fully recurrent networks
    • R. J. Williams and D. Zipser, A learning algorithm for continually running fully recurrent networks, Neural Comp., 1 (1989), 270-280.
    • (1989) Neural Comp. , vol.1 , pp. 270-280
    • Williams, R.J.1    Zipser, D.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.