-
1
-
-
79954764137
-
Existence of an endogenous circadian blood pressure rhythm in humans that peaks in the evening
-
Shea S.A., et al. Existence of an endogenous circadian blood pressure rhythm in humans that peaks in the evening. Circ. Res. 2011, 108:980-984.
-
(2011)
Circ. Res.
, vol.108
, pp. 980-984
-
-
Shea, S.A.1
-
2
-
-
33847143709
-
Circadian rhythms in the CNS and peripheral clock disorders: function of clock genes: influence of medication for bronchial asthma on circadian gene
-
Burioka N., et al. Circadian rhythms in the CNS and peripheral clock disorders: function of clock genes: influence of medication for bronchial asthma on circadian gene. J. Pharmacol. Sci. 2007, 103:144-149.
-
(2007)
J. Pharmacol. Sci.
, vol.103
, pp. 144-149
-
-
Burioka, N.1
-
3
-
-
35148824741
-
Chronobiology and chronotherapy of allergic rhinitis and bronchial asthma
-
Smolensky M.H., et al. Chronobiology and chronotherapy of allergic rhinitis and bronchial asthma. Adv. Drug Deliv. Rev. 2007, 59:852-882.
-
(2007)
Adv. Drug Deliv. Rev.
, vol.59
, pp. 852-882
-
-
Smolensky, M.H.1
-
4
-
-
63149163425
-
Adverse metabolic and cardiovascular consequences of circadian misalignment
-
Scheer F.A.J.L., et al. Adverse metabolic and cardiovascular consequences of circadian misalignment. Proc. Natl. Acad. Sci. U.S.A. 2009, 106:4453-4458.
-
(2009)
Proc. Natl. Acad. Sci. U.S.A.
, vol.106
, pp. 4453-4458
-
-
Scheer, F.A.J.L.1
-
5
-
-
84863601152
-
Circadian disruption, sleep loss, and prostate cancer risk: a systematic review of epidemiologic studies
-
Sigurdardottir L.G., et al. Circadian disruption, sleep loss, and prostate cancer risk: a systematic review of epidemiologic studies. Cancer Epidemiol. Biomark. Prev. 2012, 21:1002-1011.
-
(2012)
Cancer Epidemiol. Biomark. Prev.
, vol.21
, pp. 1002-1011
-
-
Sigurdardottir, L.G.1
-
6
-
-
84863494541
-
Correlation of the risk of breast cancer and disruption of the circadian rhythm (Review)
-
Libra M. Correlation of the risk of breast cancer and disruption of the circadian rhythm (Review). Oncol. Rep. 2012, 28:418-428.
-
(2012)
Oncol. Rep.
, vol.28
, pp. 418-428
-
-
Libra, M.1
-
7
-
-
0032511229
-
A serum shock induces circadian gene expression in mammalian tissue culture cells
-
Balsalobre A., et al. A serum shock induces circadian gene expression in mammalian tissue culture cells. Cell 1998, 93:929-937.
-
(1998)
Cell
, vol.93
, pp. 929-937
-
-
Balsalobre, A.1
-
8
-
-
0037006807
-
Circadian programs of transcriptional activation, signaling, and protein turnover revealed by microarray analysis of mammalian cells
-
Duffield G.E., et al. Circadian programs of transcriptional activation, signaling, and protein turnover revealed by microarray analysis of mammalian cells. Curr. Biol. 2002, 12:551-557.
-
(2002)
Curr. Biol.
, vol.12
, pp. 551-557
-
-
Duffield, G.E.1
-
9
-
-
8844256589
-
Circadian gene expression in individual fibroblasts - cell-autonomous and self-sustained oscillators pass time to daughter cells
-
Nagoshi E.E., et al. Circadian gene expression in individual fibroblasts - cell-autonomous and self-sustained oscillators pass time to daughter cells. Cell 2004, 119:13.
-
(2004)
Cell
, vol.119
, pp. 13
-
-
Nagoshi, E.E.1
-
10
-
-
84869036539
-
Circadian topology of metabolism
-
Bass J. Circadian topology of metabolism. Nature 2012, 491:348-356.
-
(2012)
Nature
, vol.491
, pp. 348-356
-
-
Bass, J.1
-
11
-
-
79251566511
-
Circadian clocks in human red blood cells
-
O'Neill J.S., Reddy A.B. Circadian clocks in human red blood cells. Nature 2011, 469:498-503.
-
(2011)
Nature
, vol.469
, pp. 498-503
-
-
O'Neill, J.S.1
Reddy, A.B.2
-
12
-
-
79251539603
-
Circadian rhythms persist without transcription in a eukaryote
-
O'Neill J.S., et al. Circadian rhythms persist without transcription in a eukaryote. Nature 2011, 469:554-558.
-
(2011)
Nature
, vol.469
, pp. 554-558
-
-
O'Neill, J.S.1
-
13
-
-
84861452257
-
Peroxiredoxins are conserved markers of circadian rhythms
-
Edgar R.S., et al. Peroxiredoxins are conserved markers of circadian rhythms. Nature 2012, 485:459-464.
-
(2012)
Nature
, vol.485
, pp. 459-464
-
-
Edgar, R.S.1
-
14
-
-
84885593578
-
Atmospheric oxygenation three billion years ago
-
Crowe S.A., et al. Atmospheric oxygenation three billion years ago. Nature 2013, 501:535-538.
-
(2013)
Nature
, vol.501
, pp. 535-538
-
-
Crowe, S.A.1
-
15
-
-
78649687209
-
Circadian integration of metabolism and energetics
-
Bass J., Takahashi J.S. Circadian integration of metabolism and energetics. Science 2010, 330:1349-1354.
-
(2010)
Science
, vol.330
, pp. 1349-1354
-
-
Bass, J.1
Takahashi, J.S.2
-
16
-
-
0035059442
-
Restricted feeding entrains liver clock without participation of the suprachiasmatic nucleus
-
Hara R., et al. Restricted feeding entrains liver clock without participation of the suprachiasmatic nucleus. Genes Cells 2001, 6:269-278.
-
(2001)
Genes Cells
, vol.6
, pp. 269-278
-
-
Hara, R.1
-
17
-
-
33646477979
-
Time-restricted feeding entrains daily rhythms of energy metabolism in mice
-
Satoh Y. Time-restricted feeding entrains daily rhythms of energy metabolism in mice. Am. J. Regul. Integr. Comp. Physiol. 2005, 290:R1276-R1283.
-
(2005)
Am. J. Regul. Integr. Comp. Physiol.
, vol.290
, pp. R1276-R1283
-
-
Satoh, Y.1
-
18
-
-
0033637383
-
Restricted feeding uncouples circadian oscillators in peripheral tissues from the central pacemaker in the suprachiasmatic nucleus
-
Damiola F., et al. Restricted feeding uncouples circadian oscillators in peripheral tissues from the central pacemaker in the suprachiasmatic nucleus. Genes Dev. 2000, 14:2950-2961.
-
(2000)
Genes Dev.
, vol.14
, pp. 2950-2961
-
-
Damiola, F.1
-
19
-
-
35548930677
-
High-fat diet disrupts behavioral and molecular circadian rhythms in mice
-
Kohsaka A., et al. High-fat diet disrupts behavioral and molecular circadian rhythms in mice. Cell Metab. 2007, 6:414-421.
-
(2007)
Cell Metab.
, vol.6
, pp. 414-421
-
-
Kohsaka, A.1
-
20
-
-
84860383862
-
Adverse metabolic consequences in humans of prolonged sleep restriction combined with circadian disruption
-
129ra43
-
Buxton O.M., et al. Adverse metabolic consequences in humans of prolonged sleep restriction combined with circadian disruption. Sci. Transl. Med. 2012, 4:129ra43.
-
(2012)
Sci. Transl. Med.
, vol.4
-
-
Buxton, O.M.1
-
21
-
-
65549103855
-
+ biosynthesis
-
+ biosynthesis. Science 2009, 324:651-654.
-
(2009)
Science
, vol.324
, pp. 651-654
-
-
Ramsey, K.M.1
-
22
-
-
65549118773
-
+ salvage pathway by CLOCK-SIRT1
-
+ salvage pathway by CLOCK-SIRT1. Science 2009, 324:654-657.
-
(2009)
Science
, vol.324
, pp. 654-657
-
-
Nakahata, Y.1
-
23
-
-
84884248040
-
+ cycle drives mitochondrial oxidative metabolism in mice
-
+ cycle drives mitochondrial oxidative metabolism in mice. Science 2013, 342:1243417.
-
(2013)
Science
, vol.342
, pp. 1243417
-
-
Peek, C.B.1
-
24
-
-
84455180597
-
+ oscillation
-
+ oscillation. Aging 2011, 3:794-802.
-
(2011)
Aging
, vol.3
, pp. 794-802
-
-
Sahar, S.1
-
25
-
-
47749140333
-
SIRT1 regulates circadian clock gene expression through PER2 deacetylation
-
Asher G., et al. SIRT1 regulates circadian clock gene expression through PER2 deacetylation. Cell 2008, 134:317-328.
-
(2008)
Cell
, vol.134
, pp. 317-328
-
-
Asher, G.1
-
26
-
-
47549088250
-
+-dependent deacetylase SIRT1 modulates CLOCK-mediated chromatin remodeling and circadian control
-
+-dependent deacetylase SIRT1 modulates CLOCK-mediated chromatin remodeling and circadian control. Cell 2008, 134:329-340.
-
(2008)
Cell
, vol.134
, pp. 329-340
-
-
Nakahata, Y.1
-
27
-
-
0035919479
-
Regulation of Clock and NPAS2 DNA binding by the redox state of NAD cofactors
-
Rutter J. Regulation of Clock and NPAS2 DNA binding by the redox state of NAD cofactors. Science 2001, 293:510-514.
-
(2001)
Science
, vol.293
, pp. 510-514
-
-
Rutter, J.1
-
28
-
-
0346668332
-
NPAS2: a gas-responsive transcription factor
-
Dioum E.M. NPAS2: a gas-responsive transcription factor. Science 2002, 298:2385-2387.
-
(2002)
Science
, vol.298
, pp. 2385-2387
-
-
Dioum, E.M.1
-
29
-
-
39549117367
-
Effects of mutations in the heme domain on the transcriptional activity and DNA-binding activity of NPAS2
-
Ishida M., et al. Effects of mutations in the heme domain on the transcriptional activity and DNA-binding activity of NPAS2. Biochem. Biophys. Res. Commun. 2008, 368:292-297.
-
(2008)
Biochem. Biophys. Res. Commun.
, vol.368
, pp. 292-297
-
-
Ishida, M.1
-
30
-
-
3343024625
-
Reciprocal regulation of haem biosynthesis and the circadian clock in mammals
-
Kaasik K., Lee C.C. Reciprocal regulation of haem biosynthesis and the circadian clock in mammals. Nature 2004, 430:467-471.
-
(2004)
Nature
, vol.430
, pp. 467-471
-
-
Kaasik, K.1
Lee, C.C.2
-
31
-
-
47949112304
-
A novel heme-regulatory motif mediates heme-dependent degradation of the circadian factor period 2
-
Yang J., et al. A novel heme-regulatory motif mediates heme-dependent degradation of the circadian factor period 2. Mol. Cell. Biol. 2008, 28:4697-4711.
-
(2008)
Mol. Cell. Biol.
, vol.28
, pp. 4697-4711
-
-
Yang, J.1
-
32
-
-
79953012491
-
Thiol-disulfide redox dependence of heme binding and heme ligand switching in nuclear hormone receptor Rev-erbβ
-
Gupta N., Ragsdale S.W. Thiol-disulfide redox dependence of heme binding and heme ligand switching in nuclear hormone receptor Rev-erbβ. J. Biol. Chem. 2011, 286:4392-4403.
-
(2011)
J. Biol. Chem.
, vol.286
, pp. 4392-4403
-
-
Gupta, N.1
Ragsdale, S.W.2
-
33
-
-
84897111311
-
Modulation of nuclear receptor function by cellular redox poise
-
Carter E.L., Ragsdale S.W. Modulation of nuclear receptor function by cellular redox poise. J. Inorg. Biochem. 2014, 133:92-103.
-
(2014)
J. Inorg. Biochem.
, vol.133
, pp. 92-103
-
-
Carter, E.L.1
Ragsdale, S.W.2
-
34
-
-
84934295856
-
Molecular assembly of the period-cryptochrome circadian transcriptional repressor complex
-
Nangle S.N., et al. Molecular assembly of the period-cryptochrome circadian transcriptional repressor complex. Elife 2014, 3:e03674.
-
(2014)
Elife
, vol.3
, pp. e03674
-
-
Nangle, S.N.1
-
35
-
-
84901358563
-
Interaction of circadian clock proteins CRY1 and PER2 is modulated by zinc binding and disulfide bond formation
-
Schmalen I., et al. Interaction of circadian clock proteins CRY1 and PER2 is modulated by zinc binding and disulfide bond formation. Cell 2014, 157:1203-1215.
-
(2014)
Cell
, vol.157
, pp. 1203-1215
-
-
Schmalen, I.1
-
36
-
-
59149086433
-
Unusual circadian locomotor activity and pathophysiology in mutant CRY1 transgenic mice
-
Okano S., et al. Unusual circadian locomotor activity and pathophysiology in mutant CRY1 transgenic mice. Neurosci. Lett. 2009, 451:246-251.
-
(2009)
Neurosci. Lett.
, vol.451
, pp. 246-251
-
-
Okano, S.1
-
37
-
-
70350128135
-
AMPK regulates the circadian clock by cryptochrome phosphorylation and degradation
-
Lamia K.A., et al. AMPK regulates the circadian clock by cryptochrome phosphorylation and degradation. Science 2009, 326:437-440.
-
(2009)
Science
, vol.326
, pp. 437-440
-
-
Lamia, K.A.1
-
38
-
-
84893432818
-
A redox-dependent mechanism for regulation of AMPK activation by thioredoxin1 during energy starvation
-
Shao D., et al. A redox-dependent mechanism for regulation of AMPK activation by thioredoxin1 during energy starvation. Cell Metab. 2014, 19:232-245.
-
(2014)
Cell Metab.
, vol.19
, pp. 232-245
-
-
Shao, D.1
-
39
-
-
84924623965
-
DNA damage shifts circadian clock time via Hausp-dependent Cry1 stabilization
-
Papp S.J., et al. DNA damage shifts circadian clock time via Hausp-dependent Cry1 stabilization. Elife 2015, 4:e04883.
-
(2015)
Elife
, vol.4
, pp. e04883
-
-
Papp, S.J.1
-
40
-
-
84875912087
-
Reversible inactivation of deubiquitinases by reactive oxygen species in vitro and in cells
-
Lee J-G., et al. Reversible inactivation of deubiquitinases by reactive oxygen species in vitro and in cells. Nat. Commun. 2013, 4:1568.
-
(2013)
Nat. Commun.
, vol.4
, pp. 1568
-
-
Lee, J.-G.1
-
41
-
-
0141876062
-
Circadian rhythms, oxidative stress, and antioxidative defense mechanisms
-
Hardeland R., et al. Circadian rhythms, oxidative stress, and antioxidative defense mechanisms. Chronobiol. Int. 2003, 20:921-962.
-
(2003)
Chronobiol. Int.
, vol.20
, pp. 921-962
-
-
Hardeland, R.1
-
42
-
-
77957827874
-
Melatonin signaling and cell protection function
-
Luchetti F., et al. Melatonin signaling and cell protection function. FASEB J. 2010, 24:3603-3624.
-
(2010)
FASEB J.
, vol.24
, pp. 3603-3624
-
-
Luchetti, F.1
-
43
-
-
0019821550
-
Circadian variation of liver metabolites and amino acids in rats adapted to a high protein, carbohydrate-free diet
-
Robinson J.L., et al. Circadian variation of liver metabolites and amino acids in rats adapted to a high protein, carbohydrate-free diet. J. Nutr. 1981, 111:1711-1720.
-
(1981)
J. Nutr.
, vol.111
, pp. 1711-1720
-
-
Robinson, J.L.1
-
44
-
-
0021231801
-
Analysis of the circadian rhythm in energy metabolism of rat liver
-
Kaminsky Y.G., et al. Analysis of the circadian rhythm in energy metabolism of rat liver. Int. J. Biochem. 1984, 16:629-639.
-
(1984)
Int. J. Biochem.
, vol.16
, pp. 629-639
-
-
Kaminsky, Y.G.1
-
45
-
-
0017380975
-
Cyclic AMP-dependent control of the rat hepatic glutathione disulfide-sulfhydryl ratio
-
Isaacs J.T., Binkley F. Cyclic AMP-dependent control of the rat hepatic glutathione disulfide-sulfhydryl ratio. Biochim. Biophys. Acta 1977, 498:29-38.
-
(1977)
Biochim. Biophys. Acta
, vol.498
, pp. 29-38
-
-
Isaacs, J.T.1
Binkley, F.2
-
46
-
-
0017339770
-
Glutathione dependent control of protein disulfide-sulfhydryl content by subcellular fractions of hepatic tissue
-
Isaacs J., Binkley F. Glutathione dependent control of protein disulfide-sulfhydryl content by subcellular fractions of hepatic tissue. Biochim. Biophys. Acta 1977, 497:192-204.
-
(1977)
Biochim. Biophys. Acta
, vol.497
, pp. 192-204
-
-
Isaacs, J.1
Binkley, F.2
-
47
-
-
0025970306
-
Temporal variations in microsomal lipid peroxidation and in glutathione concentration of rat liver
-
Bélanger P.M., et al. Temporal variations in microsomal lipid peroxidation and in glutathione concentration of rat liver. Drug Metab. Dispos. 1991, 19:241-244.
-
(1991)
Drug Metab. Dispos.
, vol.19
, pp. 241-244
-
-
Bélanger, P.M.1
-
48
-
-
0030017568
-
Diurnal variability of cysteine and glutathione content in the pancreas and liver of the mouse
-
Neuschwander-Tetri B.A., Rozin T. Diurnal variability of cysteine and glutathione content in the pancreas and liver of the mouse. Comp. Biochem. Physiol. B: Biochem. Mol. Biol. 1996, 114:91-95.
-
(1996)
Comp. Biochem. Physiol. B: Biochem. Mol. Biol.
, vol.114
, pp. 91-95
-
-
Neuschwander-Tetri, B.A.1
Rozin, T.2
-
49
-
-
0030967151
-
Pharmacologic modulation of reduced glutathione circadian rhythms with buthionine sulfoximine: relationship with cisplatin toxicity in mice
-
Li X.M., et al. Pharmacologic modulation of reduced glutathione circadian rhythms with buthionine sulfoximine: relationship with cisplatin toxicity in mice. Toxicol. Appl. Pharmacol. 1997, 143:281-290.
-
(1997)
Toxicol. Appl. Pharmacol.
, vol.143
, pp. 281-290
-
-
Li, X.M.1
-
50
-
-
84896339411
-
The circadian clock regulates rhythmic activation of the NRF2/glutathione-mediated antioxidant defense pathway to modulate pulmonary fibrosis
-
Pekovic-Vaughan V., et al. The circadian clock regulates rhythmic activation of the NRF2/glutathione-mediated antioxidant defense pathway to modulate pulmonary fibrosis. Genes Dev. 2014, 28:548-560.
-
(2014)
Genes Dev.
, vol.28
, pp. 548-560
-
-
Pekovic-Vaughan, V.1
-
51
-
-
84904957497
-
Evaluation of hepatic damage by reactive metabolites - with consideration of circadian variation of murine hepatic glutathione levels
-
Mori K., et al. Evaluation of hepatic damage by reactive metabolites - with consideration of circadian variation of murine hepatic glutathione levels. J. Toxicol. Sci. 2014, 39:537-544.
-
(2014)
J. Toxicol. Sci.
, vol.39
, pp. 537-544
-
-
Mori, K.1
-
52
-
-
84865579647
-
Diurnal variation of hepatic antioxidant gene expression in mice
-
Xu Y-Q., et al. Diurnal variation of hepatic antioxidant gene expression in mice. PLoS ONE 2012, 7:e44237.
-
(2012)
PLoS ONE
, vol.7
, pp. e44237
-
-
Xu, Y.-Q.1
-
53
-
-
77950648335
-
Effect of melatonin on the expression of Nrf2 and NF-kappaB during cyclophosphamide-induced urinary bladder injury in rat
-
Tripathi D.N., Jena G.B. Effect of melatonin on the expression of Nrf2 and NF-kappaB during cyclophosphamide-induced urinary bladder injury in rat. J. Pineal Res. 2010, 48:324-331.
-
(2010)
J. Pineal Res.
, vol.48
, pp. 324-331
-
-
Tripathi, D.N.1
Jena, G.B.2
-
54
-
-
79951642115
-
Melatonin modulates neuroinflammation and oxidative stress in experimental diabetic neuropathy: effects on NF-κB and Nrf2 cascades
-
Negi G., et al. Melatonin modulates neuroinflammation and oxidative stress in experimental diabetic neuropathy: effects on NF-κB and Nrf2 cascades. J. Pineal Res. 2011, 50:124-131.
-
(2011)
J. Pineal Res.
, vol.50
, pp. 124-131
-
-
Negi, G.1
-
55
-
-
0022393529
-
Glutathione levels in human platelets display a circadian rhythm in vitro
-
Radha E., et al. Glutathione levels in human platelets display a circadian rhythm in vitro. Thromb. Res. 1985, 40:823-831.
-
(1985)
Thromb. Res.
, vol.40
, pp. 823-831
-
-
Radha, E.1
-
56
-
-
80052523535
-
The human endogenous circadian system causes greatest platelet activation during the biological morning independent of behaviors
-
Scheer F.A.J.L., et al. The human endogenous circadian system causes greatest platelet activation during the biological morning independent of behaviors. PLoS ONE 2011, 6:e24549.
-
(2011)
PLoS ONE
, vol.6
, pp. e24549
-
-
Scheer, F.A.J.L.1
-
57
-
-
35148859694
-
Diurnal variation in glutathione and cysteine redox states in human plasma
-
Blanco R.A., et al. Diurnal variation in glutathione and cysteine redox states in human plasma. Am. J. Clin. Nutr. 2007, 86:1016-1023.
-
(2007)
Am. J. Clin. Nutr.
, vol.86
, pp. 1016-1023
-
-
Blanco, R.A.1
-
58
-
-
84865080952
-
Circadian rhythm of redox state regulates excitability in suprachiasmatic nucleus neurons
-
Wang T.A., et al. Circadian rhythm of redox state regulates excitability in suprachiasmatic nucleus neurons. Science 2012, 337:839-842.
-
(2012)
Science
, vol.337
, pp. 839-842
-
-
Wang, T.A.1
-
59
-
-
33746191906
-
Early aging and age-related pathologies in mice deficient in BMAL1, the core componentof the circadian clock
-
Kondratov R.V. Early aging and age-related pathologies in mice deficient in BMAL1, the core componentof the circadian clock. Genes Dev. 2006, 20:1868-1873.
-
(2006)
Genes Dev.
, vol.20
, pp. 1868-1873
-
-
Kondratov, R.V.1
-
60
-
-
40149090376
-
Redundant function of REV-ERBα and β and non-essential role for Bmal1 cycling in transcriptional regulation of intracellular circadian rhythms
-
Liu A.C., et al. Redundant function of REV-ERBα and β and non-essential role for Bmal1 cycling in transcriptional regulation of intracellular circadian rhythms. PLoS Genet. 2008, 4:e1000023.
-
(2008)
PLoS Genet.
, vol.4
, pp. e1000023
-
-
Liu, A.C.1
-
61
-
-
33751558792
-
Evolutionary history of Salmonella Typhi
-
Roumagnac P., et al. Evolutionary history of Salmonella Typhi. Science 2006, 314:1301-1304.
-
(2006)
Science
, vol.314
, pp. 1301-1304
-
-
Roumagnac, P.1
-
62
-
-
84906322941
-
Circadian rhythm of hyperoxidized peroxiredoxin II is determined by hemoglobin autoxidation and the 20S proteasome in red blood cells
-
Cho C.S., et al. Circadian rhythm of hyperoxidized peroxiredoxin II is determined by hemoglobin autoxidation and the 20S proteasome in red blood cells. Proc. Natl. Acad. Sci. U.S.A. 2014, 111:12043-12048.
-
(2014)
Proc. Natl. Acad. Sci. U.S.A.
, vol.111
, pp. 12043-12048
-
-
Cho, C.S.1
-
63
-
-
0037222255
-
Structure, mechanism and regulation of peroxiredoxins
-
Wood Z.A., et al. Structure, mechanism and regulation of peroxiredoxins. Trends Biochem. Sci. 2003, 28:32-40.
-
(2003)
Trends Biochem. Sci.
, vol.28
, pp. 32-40
-
-
Wood, Z.A.1
-
64
-
-
84901599371
-
Circadian redox and metabolic oscillations in mammalian systems
-
O'Neill J.S., Feeney K.A. Circadian redox and metabolic oscillations in mammalian systems. Antioxid. Redox Signal. 2013, 20:2966-2981.
-
(2013)
Antioxid. Redox Signal.
, vol.20
, pp. 2966-2981
-
-
O'Neill, J.S.1
Feeney, K.A.2
-
65
-
-
46449103811
-
Peroxiredoxin 2 and peroxide metabolism in the erythrocyte
-
Low F.M., et al. Peroxiredoxin 2 and peroxide metabolism in the erythrocyte. Antioxid. Redox Signal. 2008, 10:1621-1630.
-
(2008)
Antioxid. Redox Signal.
, vol.10
, pp. 1621-1630
-
-
Low, F.M.1
-
66
-
-
84861964383
-
2-dependent, reversible Inactivation of peroxiredoxin III in mitochondria
-
2-dependent, reversible Inactivation of peroxiredoxin III in mitochondria. Mol. Cell 2012, 46:584-594.
-
(2012)
Mol. Cell
, vol.46
, pp. 584-594
-
-
Kil, I.S.1
-
67
-
-
10944237769
-
Characterization of mammalian sulfiredoxin and its reactivation of hyperoxidized peroxiredoxin through reduction of cysteine sulfinic acid in the active site to cysteine
-
Chang T-S., et al. Characterization of mammalian sulfiredoxin and its reactivation of hyperoxidized peroxiredoxin through reduction of cysteine sulfinic acid in the active site to cysteine. J. Biol. Chem. 2004, 279:50994-51001.
-
(2004)
J. Biol. Chem.
, vol.279
, pp. 50994-51001
-
-
Chang, T.-S.1
-
68
-
-
70349184395
-
A genome-wide RNAi screen for modifiers of the circadian clock in human cells
-
Zhang E.E., et al. A genome-wide RNAi screen for modifiers of the circadian clock in human cells. Cell 2009, 139:199-210.
-
(2009)
Cell
, vol.139
, pp. 199-210
-
-
Zhang, E.E.1
-
69
-
-
84879183900
-
Circadian rhythm connections to oxidative stress: implications for human health
-
Wilking M., et al. Circadian rhythm connections to oxidative stress: implications for human health. Antioxid. Redox Signal. 2013, 19:192-208.
-
(2013)
Antioxid. Redox Signal.
, vol.19
, pp. 192-208
-
-
Wilking, M.1
-
70
-
-
80051623066
-
Circadian rhythms, aging, and life span in mammals
-
Froy O. Circadian rhythms, aging, and life span in mammals. Physiology 2011, 26:225-235.
-
(2011)
Physiology
, vol.26
, pp. 225-235
-
-
Froy, O.1
-
71
-
-
0032185940
-
The significance of circadian organization for longevity in the golden hamster
-
Hurd M.W., Ralph M.R. The significance of circadian organization for longevity in the golden hamster. J. Biol. Rhythms 1998, 13:430-436.
-
(1998)
J. Biol. Rhythms
, vol.13
, pp. 430-436
-
-
Hurd, M.W.1
Ralph, M.R.2
-
72
-
-
77953648439
-
Antioxidant N-acetyl-L-cysteine ameliorates symptoms of premature aging associated with the deficiency of the circadian protein BMAL1
-
Kondratov R.V., et al. Antioxidant N-acetyl-L-cysteine ameliorates symptoms of premature aging associated with the deficiency of the circadian protein BMAL1. Aging 2009, 1:979-987.
-
(2009)
Aging
, vol.1
, pp. 979-987
-
-
Kondratov, R.V.1
-
73
-
-
77953454534
-
Effect of feeding regimens on circadian rhythms: implications for aging and longevity
-
Froy O., Miskin R. Effect of feeding regimens on circadian rhythms: implications for aging and longevity. Aging 2010, 2:7-27.
-
(2010)
Aging
, vol.2
, pp. 7-27
-
-
Froy, O.1
Miskin, R.2
-
74
-
-
69849107217
-
Caloric restriction, SIRT1 and longevity
-
Cantó C., Auwerx J. Caloric restriction, SIRT1 and longevity. Trends Endocrinol. Metab. 2009, 20:325-331.
-
(2009)
Trends Endocrinol. Metab.
, vol.20
, pp. 325-331
-
-
Cantó, C.1
Auwerx, J.2
-
75
-
-
84887609711
-
Circadian molecular clocks and cancer
-
Kelleher F.C., et al. Circadian molecular clocks and cancer. Cancer Lett. 2014, 342:9-18.
-
(2014)
Cancer Lett.
, vol.342
, pp. 9-18
-
-
Kelleher, F.C.1
-
76
-
-
77953384917
-
Redox regulation in cancer: a double-edged sword with therapeutic potential
-
Acharya A., et al. Redox regulation in cancer: a double-edged sword with therapeutic potential. Oxid. Med. Cell. Longev. 2010, 3:23-34.
-
(2010)
Oxid. Med. Cell. Longev.
, vol.3
, pp. 23-34
-
-
Acharya, A.1
-
77
-
-
41849150779
-
FOXOs, cancer and regulation of apoptosis
-
Fu Z., Tindall D.J. FOXOs, cancer and regulation of apoptosis. Oncogene 2008, 27:2312-2319.
-
(2008)
Oncogene
, vol.27
, pp. 2312-2319
-
-
Fu, Z.1
Tindall, D.J.2
-
79
-
-
84896823538
-
2-Cys peroxiredoxins: emerging hubs determining redox dependency of mammalian signaling networks
-
Park J., et al. 2-Cys peroxiredoxins: emerging hubs determining redox dependency of mammalian signaling networks. Int. J. Cell Biol. 2014, 2014:715867.
-
(2014)
Int. J. Cell Biol.
, vol.2014
, pp. 715867
-
-
Park, J.1
-
80
-
-
34547441421
-
Sulfiredoxin, the cysteine sulfinic acid reductase specific to 2-Cys peroxiredoxin: its discovery, mechanism of action, and biological significance
-
Rhee S.G., et al. Sulfiredoxin, the cysteine sulfinic acid reductase specific to 2-Cys peroxiredoxin: its discovery, mechanism of action, and biological significance. Kidney Int. Suppl. 2007, 2007:S3-S8.
-
(2007)
Kidney Int. Suppl.
, vol.2007
, pp. S3-S8
-
-
Rhee, S.G.1
-
81
-
-
0037064080
-
Inactivation of human peroxiredoxin I during catalysis as the result of the oxidation of the catalytic site cysteine to cysteine-sulfinic acid
-
Yang K., et al. Inactivation of human peroxiredoxin I during catalysis as the result of the oxidation of the catalytic site cysteine to cysteine-sulfinic acid. J. Biol. Chem. 2002, 41:38029-38036.
-
(2002)
J. Biol. Chem.
, vol.41
, pp. 38029-38036
-
-
Yang, K.1
|