메뉴 건너뛰기




Volumn 125, Issue 7, 2015, Pages 2851-2860

DNA methylation directs functional maturation of pancreatic β cells

Author keywords

[No Author keywords available]

Indexed keywords

DNA METHYLTRANSFERASE 3A; GLUCOSE; HEXOKINASE 1; LACTATE DEHYDROGENASE; LACTATE DEHYDROGENASE A; UNCLASSIFIED DRUG; DNA (CYTOSINE 5) METHYLTRANSFERASE; INSULIN; MESSENGER RNA;

EID: 84936797255     PISSN: 00219738     EISSN: 15588238     Source Type: Journal    
DOI: 10.1172/JCI79956     Document Type: Article
Times cited : (128)

References (67)
  • 1
    • 0018892185 scopus 로고
    • Glucoreceptor mechanisms and the control of insulin release and biosynthesis
    • Ashcroft SJ. Glucoreceptor mechanisms and the control of insulin release and biosynthesis. Diabetologia. 1980;18(1):5-15.
    • (1980) Diabetologia. , vol.18 , Issue.1 , pp. 5-15
    • Ashcroft, S.J.1
  • 2
    • 0027479441 scopus 로고
    • Glucose sensing in pancreatic islet β cells: The key role of glucokinase and the glycolytic intermediates
    • German MS. Glucose sensing in pancreatic islet β cells: The key role of glucokinase and the glycolytic intermediates. Proc Natl Acad Sci U S A. 1993;90(5):1781-1785.
    • (1993) Proc Natl Acad Sci U S A. , vol.90 , Issue.5 , pp. 1781-1785
    • German, M.S.1
  • 3
    • 0019222406 scopus 로고
    • Mechanism of glucose-induced insulin secretion
    • Hedeskov CJ. Mechanism of glucose-induced insulin secretion. Physiol Rev. 1980;60(2):442-509.
    • (1980) Physiol Rev. , vol.60 , Issue.2 , pp. 442-509
    • Hedeskov, C.J.1
  • 5
    • 70450285188 scopus 로고    scopus 로고
    • Tight coupling between glucose and mitochondrial metabolism in clonal β-cells is required for robust insulin secretion
    • Malmgren S, et al. Tight coupling between glucose and mitochondrial metabolism in clonal β-cells is required for robust insulin secretion. J Biol Chem. 2009;284(47):32395-32404.
    • (2009) J Biol Chem. , vol.284 , Issue.47 , pp. 32395-32404
    • Malmgren, S.1
  • 6
    • 0027358380 scopus 로고
    • Glucokinase as pancreatic β cell glucose sensor and diabetes gene
    • Matschinsky F, et al. Glucokinase as pancreatic β cell glucose sensor and diabetes gene. J Clin Invest. 1993;92(5):2092-2098.
    • (1993) J Clin Invest. , vol.92 , Issue.5 , pp. 2092-2098
    • Matschinsky, F.1
  • 7
    • 0022467904 scopus 로고
    • Pancreatic islet glucose metabolism and regulation of insulin secretion
    • Meglasson MD, Matschinsky FM. Pancreatic islet glucose metabolism and regulation of insulin secretion. Diabetes Metab Rev. 1986;2(3):163-214.
    • (1986) Diabetes Metab Rev. , vol.2 , Issue.3 , pp. 163-214
    • Meglasson, M.D.1    Matschinsky, F.M.2
  • 8
    • 0035157768 scopus 로고    scopus 로고
    • Glucose sensing in pancreatic β-cells: A model for the study of other glucose-regulated cells in gut, pancreas, and hypothalamus
    • Schuit FC, Huypens P, Heimberg H, Pipeleers DG. Glucose sensing in pancreatic β-cells: A model for the study of other glucose-regulated cells in gut, pancreas, and hypothalamus. Diabetes. 2001;50(1):1-11.
    • (2001) Diabetes. , vol.50 , Issue.1 , pp. 1-11
    • Schuit, F.C.1    Huypens, P.2    Heimberg, H.3    Pipeleers, D.G.4
  • 9
    • 84857975722 scopus 로고    scopus 로고
    • Functional β-cell maturation is marked by an increased glucose threshold and by expression of urocortin 3
    • Blum B, Hrvatin SS, Schuetz C, Bonal C, Rezania A, Melton DA. Functional β-cell maturation is marked by an increased glucose threshold and by expression of urocortin 3. Nat Biotechnol. 2012;30(3):261-264.
    • (2012) Nat Biotechnol. , vol.30 , Issue.3 , pp. 261-264
    • Blum, B.1    Hrvatin, S.S.2    Schuetz, C.3    Bonal, C.4    Rezania, A.5    Melton, D.A.6
  • 10
    • 79953749685 scopus 로고    scopus 로고
    • Rat neonatal β cells lack the specialised metabolic phenotype of mature β cells
    • Jermendy A, et al. Rat neonatal β cells lack the specialised metabolic phenotype of mature β cells. Diabetologia. 2011;54(3):594-604.
    • (2011) Diabetologia. , vol.54 , Issue.3 , pp. 594-604
    • Jermendy, A.1
  • 11
    • 34247183601 scopus 로고    scopus 로고
    • MafB is required for islet β cell maturation
    • Artner I, et al. MafB is required for islet β cell maturation. Proc Natl Acad Sci U S A. 2007;104(10):3853-3858.
    • (2007) Proc Natl Acad Sci U S A. , vol.104 , Issue.10 , pp. 3853-3858
    • Artner, I.1
  • 12
    • 33646194560 scopus 로고    scopus 로고
    • A switch from MafB to MafA expression accompanies differentiation to pancreatic β-cells
    • Nishimura W, et al. A switch from MafB to MafA expression accompanies differentiation to pancreatic β-cells. Dev Biol. 2006;293(2):526-539.
    • (2006) Dev Biol. , vol.293 , Issue.2 , pp. 526-539
    • Nishimura, W.1
  • 13
    • 77949870524 scopus 로고    scopus 로고
    • Identification of markers for newly formed β-cells in the perinatal period: A time of recognized β-cell immaturity
    • Aye T, Toschi E, Sharma A, Sgroi D, Bonner-Weir S. Identification of markers for newly formed β-cells in the perinatal period: A time of recognized β-cell immaturity. J Histochem Cytochem. 2010;58(4):369-376.
    • (2010) J Histochem Cytochem. , vol.58 , Issue.4 , pp. 369-376
    • Aye, T.1    Toschi, E.2    Sharma, A.3    Sgroi, D.4    Bonner-Weir, S.5
  • 14
    • 77950225021 scopus 로고    scopus 로고
    • Pancreatic β cells require NeuroD to achieve and maintain functional maturity
    • Gu C, et al. Pancreatic β cells require NeuroD to achieve and maintain functional maturity. Cell Metab. 2010;11(4):298-310.
    • (2010) Cell Metab. , vol.11 , Issue.4 , pp. 298-310
    • Gu, C.1
  • 15
    • 84876545846 scopus 로고    scopus 로고
    • Thyroid hormone promotes postnatal rat pancreatic beta-cell development and glucose-responsive insulin secretion through MAFA
    • Aguayo-Mazzucato C, et al. Thyroid hormone promotes postnatal rat pancreatic beta-cell development and glucose-responsive insulin secretion through MAFA. Diabetes. 2013;62(5):1569-1580.
    • (2013) Diabetes. , vol.62 , Issue.5 , pp. 1569-1580
    • Aguayo-Mazzucato, C.1
  • 16
    • 85003341559 scopus 로고    scopus 로고
    • Reversal of β cell de-differentiation by a small molecule inhibitor of the TGFbeta pathway
    • Blum B, et al. Reversal of β cell de-differentiation by a small molecule inhibitor of the TGFbeta pathway. Elife. 2014;3:e02809.
    • (2014) Elife. , vol.3 , pp. e02809
    • Blum, B.1
  • 18
  • 19
    • 78651472654 scopus 로고    scopus 로고
    • Tissue-specific disallowance of housekeeping genes: The other face of cell differentiation
    • Thorrez L, et al. Tissue-specific disallowance of housekeeping genes: The other face of cell differentiation. Genome Res. 2011;21(1):95-105.
    • (2011) Genome Res. , vol.21 , Issue.1 , pp. 95-105
    • Thorrez, L.1
  • 20
    • 84877601932 scopus 로고    scopus 로고
    • When less is more: The forbidden fruits of gene repression in the adult betacell
    • Pullen TJ, Rutter GA. When less is more: The forbidden fruits of gene repression in the adult betacell. Diabetes Obes Metab. 2013;15(6):503-512.
    • (2013) Diabetes Obes Metab. , vol.15 , Issue.6 , pp. 503-512
    • Pullen, T.J.1    Rutter, G.A.2
  • 21
    • 84860584838 scopus 로고    scopus 로고
    • β-Cell-specific gene repression: A mechanism to protect against inappropriate or maladjusted insulin secretion?
    • Schuit F, et al. β-Cell-specific gene repression: A mechanism to protect against inappropriate or maladjusted insulin secretion? Diabetes. 2012;61(5):969-975.
    • (2012) Diabetes. , vol.61 , Issue.5 , pp. 969-975
    • Schuit, F.1
  • 22
    • 34548204386 scopus 로고    scopus 로고
    • Physical exercise-induced hypoglycemia caused by failed silencing of monocarboxylate transporter 1 in pancreatic β cells
    • Otonkoski T, et al. Physical exercise-induced hypoglycemia caused by failed silencing of monocarboxylate transporter 1 in pancreatic β cells. Am J Hum Genet. 2007;81(3):467-474.
    • (2007) Am J Hum Genet. , vol.81 , Issue.3 , pp. 467-474
    • Otonkoski, T.1
  • 23
    • 84872478906 scopus 로고    scopus 로고
    • Ring1b bookmarks genes in pancreatic embryonic progenitors for repression in adult β cells
    • van Arensbergen J, et al. Ring1b bookmarks genes in pancreatic embryonic progenitors for repression in adult β cells. Genes Dev. 2013;27(1):52-63.
    • (2013) Genes Dev. , vol.27 , Issue.1 , pp. 52-63
    • Van Arensbergen, J.1
  • 24
    • 77952966500 scopus 로고    scopus 로고
    • Derepression of Polycomb targets during pancreatic organogenesis allows insulin-producing β-cells to adopt a neural gene activity program
    • van Arensbergen J, et al. Derepression of Polycomb targets during pancreatic organogenesis allows insulin-producing β-cells to adopt a neural gene activity program. Genome Res. 2010;20(6):722-732.
    • (2010) Genome Res. , vol.20 , Issue.6 , pp. 722-732
    • Van Arensbergen, J.1
  • 25
    • 9644266753 scopus 로고    scopus 로고
    • β Cell replication is the primary mechanism for maintaining postnatal β cell mass
    • Georgia S, Bhushan A. β Cell replication is the primary mechanism for maintaining postnatal β cell mass. J Clin Invest. 2004;114(7):963-968.
    • (2004) J Clin Invest. , vol.114 , Issue.7 , pp. 963-968
    • Georgia, S.1    Bhushan, A.2
  • 26
    • 78149378853 scopus 로고    scopus 로고
    • Quiescent fibroblasts exhibit high metabolic activity
    • Lemons JM, et al. Quiescent fibroblasts exhibit high metabolic activity. PLoS Biol. 2010;8(10):e1000514.
    • (2010) PLoS Biol. , vol.8 , Issue.10 , pp. e1000514
    • Lemons, J.M.1
  • 27
    • 0034532977 scopus 로고    scopus 로고
    • Importance of lactate dehydrogenase for the regulation of glycolytic flux and insulin secretion in insulin-producing cells
    • Alcazar O, Tiedge M, Lenzen S. Importance of lactate dehydrogenase for the regulation of glycolytic flux and insulin secretion in insulin-producing cells. Biochem J. 2000;352(pt 2):373-380.
    • (2000) Biochem J. , vol.352 , pp. 373-380
    • Alcazar, O.1    Tiedge, M.2    Lenzen, S.3
  • 28
    • 0027994097 scopus 로고
    • Overexpression of hexokinase i in isolated islets of Langerhans via recombinant adenovirus. Enhancement of glucose metabolism and insulin secretion at basal but not stimulatory glucose levels
    • Becker TC, BeltrandelRio H, Noel RJ, Johnson JH, Newgard CB. Overexpression of hexokinase I in isolated islets of Langerhans via recombinant adenovirus. Enhancement of glucose metabolism and insulin secretion at basal but not stimulatory glucose levels. J Biol Chem. 1994;269(33):21234-21238.
    • (1994) J Biol Chem. , vol.269 , Issue.33 , pp. 21234-21238
    • Becker, T.C.1    Beltrandelrio, H.2    Noel, R.J.3    Johnson, J.H.4    Newgard, C.B.5
  • 29
    • 84876522789 scopus 로고    scopus 로고
    • Congenital hyperinsulinism caused by hexokinase i expression or glucokinase-activating mutation in a subset of β-cells
    • Henquin JC, et al. Congenital hyperinsulinism caused by hexokinase I expression or glucokinase-activating mutation in a subset of β-cells. Diabetes. 2013;62(5):1689-1696.
    • (2013) Diabetes. , vol.62 , Issue.5 , pp. 1689-1696
    • Henquin, J.C.1
  • 30
    • 0028000671 scopus 로고
    • Overexpression of hexokinase i but not GLUT1 glucose transporter alters concentration dependence of glucose-stimulated insulin secretion in pancreatic β-cell line MIN6
    • Ishihara H, et al. Overexpression of hexokinase I but not GLUT1 glucose transporter alters concentration dependence of glucose-stimulated insulin secretion in pancreatic β-cell line MIN6. J Biol Chem. 1994;269(4):3081-3087.
    • (1994) J Biol Chem. , vol.269 , Issue.4 , pp. 3081-3087
    • Ishihara, H.1
  • 31
    • 0032479342 scopus 로고    scopus 로고
    • Overexpression of lactate dehydrogenase A attenuates glucose-induced insulin secretion in stable MIN-6 β-cell lines
    • Zhao C, Rutter GA. Overexpression of lactate dehydrogenase A attenuates glucose-induced insulin secretion in stable MIN-6 β-cell lines. FEBS Lett. 1998;430(3):213-216.
    • (1998) FEBS Lett. , vol.430 , Issue.3 , pp. 213-216
    • Zhao, C.1    Rutter, G.A.2
  • 32
    • 77957583357 scopus 로고    scopus 로고
    • MafA and MafB regulate genes critical to β-cells in a unique temporal manner
    • Artner I, et al. MafA and MafB regulate genes critical to β-cells in a unique temporal manner. Diabetes. 2010;59(10):2530-2539.
    • (2010) Diabetes. , vol.59 , Issue.10 , pp. 2530-2539
    • Artner, I.1
  • 33
    • 35649014826 scopus 로고    scopus 로고
    • MafA regulates expression of genes important to islet β-cell function
    • Matsuoka TA, et al. MafA regulates expression of genes important to islet β-cell function. Mol Endocrinol. 2007;21(11):2764-2774.
    • (2007) Mol Endocrinol. , vol.21 , Issue.11 , pp. 2764-2774
    • Matsuoka, T.A.1
  • 34
    • 84866389264 scopus 로고    scopus 로고
    • Pancreatic β cell dedifferentiation as a mechanism of diabetic β cell failure
    • Talchai C, Xuan S, Lin HV, Sussel L, Accili D. Pancreatic β cell dedifferentiation as a mechanism of diabetic β cell failure. Cell. 2012;150(6):1223-1234.
    • (2012) Cell. , vol.150 , Issue.6 , pp. 1223-1234
    • Talchai, C.1    Xuan, S.2    Lin, H.V.3    Sussel, L.4    Accili, D.5
  • 35
    • 0030707689 scopus 로고    scopus 로고
    • Early diabetes and abnormal postnatal pancreatic islet development in mice lacking Glut-2
    • Guillam MT, et al. Early diabetes and abnormal postnatal pancreatic islet development in mice lacking Glut-2. Nat Genet. 1997;17(3):327-330.
    • (1997) Nat Genet. , vol.17 , Issue.3 , pp. 327-330
    • Guillam, M.T.1
  • 36
    • 84879878335 scopus 로고    scopus 로고
    • Pancreas-specific Cre driver lines and considerations for their prudent use
    • Magnuson MA, Osipovich AB. Pancreas-specific Cre driver lines and considerations for their prudent use. Cell Metab. 2013;18(1):9-20.
    • (2013) Cell Metab. , vol.18 , Issue.1 , pp. 9-20
    • Magnuson, M.A.1    Osipovich, A.B.2
  • 37
    • 84876539588 scopus 로고    scopus 로고
    • Factors expressed by murine embryonic pancreatic mesenchyme enhance generation of insulin-producing cells from hESCs
    • Guo T, Landsman L, Li N, Hebrok M. Factors expressed by murine embryonic pancreatic mesenchyme enhance generation of insulin-producing cells from hESCs. Diabetes. 2013;62(5):1581-1592.
    • (2013) Diabetes. , vol.62 , Issue.5 , pp. 1581-1592
    • Guo, T.1    Landsman, L.2    Li, N.3    Hebrok, M.4
  • 38
    • 80052343967 scopus 로고    scopus 로고
    • A genetically engineered human pancreatic β cell line exhibiting glucose-inducible insulin secretion
    • Ravassard P, et al. A genetically engineered human pancreatic β cell line exhibiting glucose-inducible insulin secretion. J Clin Invest. 2011;121(9):3589-3597.
    • (2011) J Clin Invest. , vol.121 , Issue.9 , pp. 3589-3597
    • Ravassard, P.1
  • 39
    • 0024999166 scopus 로고
    • D-glucose and L-leucine metabolism in neonatal and adult cultured rat pancreatic islets
    • Boschero AC, Bordin S, Sener A, Malaisse WJ. D-glucose and L-leucine metabolism in neonatal and adult cultured rat pancreatic islets. Mol Cell Endocrinol. 1990;73(1):63-71.
    • (1990) Mol Cell Endocrinol. , vol.73 , Issue.1 , pp. 63-71
    • Boschero, A.C.1    Bordin, S.2    Sener, A.3    Malaisse, W.J.4
  • 41
    • 0029740565 scopus 로고    scopus 로고
    • Glucose regulates the maximal velocities of glucokinase and glucose utilization in the immature fetal rat pancreatic islet
    • Tu J, Tuch BE. Glucose regulates the maximal velocities of glucokinase and glucose utilization in the immature fetal rat pancreatic islet. Diabetes. 1996;45(8):1068-1075.
    • (1996) Diabetes. , vol.45 , Issue.8 , pp. 1068-1075
    • Tu, J.1    Tuch, B.E.2
  • 42
    • 84864870977 scopus 로고    scopus 로고
    • Metabolic differentiation in the embryonic retina
    • Agathocleous M, et al. Metabolic differentiation in the embryonic retina. Nat Cell Biol. 2012;14(8):859-864.
    • (2012) Nat Cell Biol. , vol.14 , Issue.8 , pp. 859-864
    • Agathocleous, M.1
  • 43
    • 34347259219 scopus 로고    scopus 로고
    • ERRgamma directs and maintains the transition to oxidative metabolism in the postnatal heart
    • Alaynick WA, et al. ERRgamma directs and maintains the transition to oxidative metabolism in the postnatal heart. Cell Metab. 2007;6(1):13-24.
    • (2007) Cell Metab. , vol.6 , Issue.1 , pp. 13-24
    • Alaynick, W.A.1
  • 44
    • 84866061103 scopus 로고    scopus 로고
    • Metabolic trajectory of cellular differentiation in small intestine by Phasor Fluorescence Lifetime Microscopy of NADH
    • Stringari C, Edwards RA, Pate KT, Waterman ML, Donovan PJ, Gratton E. Metabolic trajectory of cellular differentiation in small intestine by Phasor Fluorescence Lifetime Microscopy of NADH. Sci Rep. 2012;2:568.
    • (2012) Sci Rep. , vol.2 , pp. 568
    • Stringari, C.1    Edwards, R.A.2    Pate, K.T.3    Waterman, M.L.4    Donovan, P.J.5    Gratton, E.6
  • 45
    • 84868351585 scopus 로고    scopus 로고
    • Metabolic regulation in pluripotent stem cells during reprogramming and self-renewal
    • Zhang J, Nuebel E, Daley GQ, Koehler CM, Teitell MA. Metabolic regulation in pluripotent stem cells during reprogramming and self-renewal. Cell Stem Cell. 2012;11(5):589-595.
    • (2012) Cell Stem Cell. , vol.11 , Issue.5 , pp. 589-595
    • Zhang, J.1    Nuebel, E.2    Daley, G.Q.3    Koehler, C.M.4    Teitell, M.A.5
  • 46
    • 84863214806 scopus 로고    scopus 로고
    • Overexpression of monocarboxylate transporter-1 (SLC16A1) in mouse pancreatic β-cells leads to relative hyperinsulinism during exercise
    • Pullen TJ, Sylow L, Sun G, Halestrap AP, Richter EA, Rutter GA. Overexpression of monocarboxylate transporter-1 (SLC16A1) in mouse pancreatic β-cells leads to relative hyperinsulinism during exercise. Diabetes. 2012;61(7):1719-1725.
    • (2012) Diabetes. , vol.61 , Issue.7 , pp. 1719-1725
    • Pullen, T.J.1    Sylow, L.2    Sun, G.3    Halestrap, A.P.4    Richter, E.A.5    Rutter, G.A.6
  • 47
    • 84910673362 scopus 로고    scopus 로고
    • Generation of functional human pancreatic β cells in vitro
    • Pagliuca FW, et al. Generation of functional human pancreatic β cells in vitro. Cell. 2014;159(2):428-439.
    • (2014) Cell. , vol.159 , Issue.2 , pp. 428-439
    • Pagliuca, F.W.1
  • 48
    • 84983134468 scopus 로고    scopus 로고
    • Reversal of diabetes with insulin-producing cells derived in vitro from human pluripotent stem cells
    • Rezania A, et al. Reversal of diabetes with insulin-producing cells derived in vitro from human pluripotent stem cells. Nat Biotechnol. 2014;32(11):1121-1133.
    • (2014) Nat Biotechnol. , vol.32 , Issue.11 , pp. 1121-1133
    • Rezania, A.1
  • 49
    • 79954563768 scopus 로고    scopus 로고
    • Pancreatic β cell identity is maintained by DNA methylation-mediated repression of Arx
    • Dhawan S, Georgia S, Tschen SI, Fan G, Bhushan A. Pancreatic β cell identity is maintained by DNA methylation-mediated repression of Arx. Dev Cell. 2011;20(4):419-429.
    • (2011) Dev Cell. , vol.20 , Issue.4 , pp. 419-429
    • Dhawan, S.1    Georgia, S.2    Tschen, S.I.3    Fan, G.4    Bhushan, A.5
  • 50
    • 84874250442 scopus 로고    scopus 로고
    • DNMT1 represses p53 to maintain progenitor cell survival during pancreatic organogenesis
    • Georgia S, Kanji M, Bhushan A. DNMT1 represses p53 to maintain progenitor cell survival during pancreatic organogenesis. Genes Dev. 2013;27(4):372-377.
    • (2013) Genes Dev. , vol.27 , Issue.4 , pp. 372-377
    • Georgia, S.1    Kanji, M.2    Bhushan, A.3
  • 51
    • 80455173402 scopus 로고    scopus 로고
    • Nkx2.2 repressor complex regulates islet β-cell specification and prevents β-to-α-cell reprogramming
    • Papizan JB, et al. Nkx2.2 repressor complex regulates islet β-cell specification and prevents β-to-α-cell reprogramming. Genes Dev. 2011;25(21):2291-2305.
    • (2011) Genes Dev. , vol.25 , Issue.21 , pp. 2291-2305
    • Papizan, J.B.1
  • 52
    • 84913593548 scopus 로고    scopus 로고
    • Understanding the relationship between DNA methylation and histone lysine methylation
    • Rose NR, Klose RJ. Understanding the relationship between DNA methylation and histone lysine methylation. Biochim Biophys Acta. 2014;1839(12):1362-1372.
    • (2014) Biochim Biophys Acta. , vol.1839 , Issue.12 , pp. 1362-1372
    • Rose, N.R.1    Klose, R.J.2
  • 53
    • 84866432376 scopus 로고    scopus 로고
    • Diabetic β cells: To be or not to be?
    • Puri S, Hebrok M. Diabetic β cells: to be or not to be? Cell. 2012;150(6):1103-1104.
    • (2012) Cell. , vol.150 , Issue.6 , pp. 1103-1104
    • Puri, S.1    Hebrok, M.2
  • 54
    • 84897452599 scopus 로고    scopus 로고
    • Genome-wide DNA methylation analysis of human pancreatic islets from type 2 diabetic and non-diabetic donors identifies candidate genes that influence insulin secretion
    • Dayeh T, et al. Genome-wide DNA methylation analysis of human pancreatic islets from type 2 diabetic and non-diabetic donors identifies candidate genes that influence insulin secretion. PLoS Genet. 2014;10(3):e1004160.
    • (2014) PLoS Genet. , vol.10 , Issue.3 , pp. e1004160
    • Dayeh, T.1
  • 55
    • 78951472134 scopus 로고    scopus 로고
    • Insulin promoter DNA methylation correlates negatively with insulin gene expression and positively with HbA(1c) levels in human pancreatic islets
    • Yang BT, et al. Insulin promoter DNA methylation correlates negatively with insulin gene expression and positively with HbA(1c) levels in human pancreatic islets. Diabetologia. 2011;54(2):360-367.
    • (2011) Diabetologia. , vol.54 , Issue.2 , pp. 360-367
    • Yang, B.T.1
  • 56
    • 84863334811 scopus 로고    scopus 로고
    • Increased DNA methylation and decreased expression of PDX-1 in pancreatic islets from patients with type 2 diabetes
    • Yang BT, et al. Increased DNA methylation and decreased expression of PDX-1 in pancreatic islets from patients with type 2 diabetes. Mol Endocrinol. 2012;26(7):1203-1212.
    • (2012) Mol Endocrinol. , vol.26 , Issue.7 , pp. 1203-1212
    • Yang, B.T.1
  • 57
    • 33745863033 scopus 로고    scopus 로고
    • Islet β cell failure in type 2 diabetes
    • Prentki M, Nolan CJ. Islet β cell failure in type 2 diabetes. J Clin Invest. 2006;116(7):1802-1812.
    • (2006) J Clin Invest. , vol.116 , Issue.7 , pp. 1802-1812
    • Prentki, M.1    Nolan, C.J.2
  • 58
    • 84881218353 scopus 로고    scopus 로고
    • Inactivation of specific β cell transcription factors in type 2 diabetes
    • Guo S, et al. Inactivation of specific β cell transcription factors in type 2 diabetes. J Clin Invest. 2013;123(8):3305-3316.
    • (2013) J Clin Invest. , vol.123 , Issue.8 , pp. 3305-3316
    • Guo, S.1
  • 59
    • 0034121735 scopus 로고    scopus 로고
    • Adult insulin-and glucagon-producing cells differentiate from two independent cell lineages
    • Herrera PL. Adult insulin-and glucagon-producing cells differentiate from two independent cell lineages. Development. 2000;127(11):2317-2322.
    • (2000) Development. , vol.127 , Issue.11 , pp. 2317-2322
    • Herrera, P.L.1
  • 60
    • 0035158704 scopus 로고    scopus 로고
    • Loss of genomic methylation causes p53-dependent apoptosis and epigenetic deregulation
    • Jackson-Grusby L, et al. Loss of genomic methylation causes p53-dependent apoptosis and epigenetic deregulation. Nat Genet. 2001;27(1):31-39.
    • (2001) Nat Genet. , vol.27 , Issue.1 , pp. 31-39
    • Jackson-Grusby, L.1
  • 61
    • 0032923739 scopus 로고    scopus 로고
    • Generalized lacZ expression with the ROSA26 Cre reporter strain
    • Soriano P. Generalized lacZ expression with the ROSA26 Cre reporter strain. Nat Genet. 1999;21(1):70-71.
    • (1999) Nat Genet. , vol.21 , Issue.1 , pp. 70-71
    • Soriano, P.1
  • 62
  • 63
    • 84887490509 scopus 로고    scopus 로고
    • Combined modulation of polycomb and trithorax genes rejuvenates β cell replication
    • Zhou JX, et al. Combined modulation of polycomb and trithorax genes rejuvenates β cell replication. J Clin Invest. 2013;123(11):4849-4858.
    • (2013) J Clin Invest. , vol.123 , Issue.11 , pp. 4849-4858
    • Zhou, J.X.1
  • 64
    • 34948821871 scopus 로고    scopus 로고
    • Essential role of Skp2-mediated p27 degradation in growth and adaptive expansion of pancreatic β cells
    • Zhong L, Georgia S, Tschen SI, Nakayama K, Bhushan A. Essential role of Skp2-mediated p27 degradation in growth and adaptive expansion of pancreatic β cells. J Clin Invest. 2007;117(10):2869-2876.
    • (2007) J Clin Invest. , vol.117 , Issue.10 , pp. 2869-2876
    • Zhong, L.1    Georgia, S.2    Tschen, S.I.3    Nakayama, K.4    Bhushan, A.5
  • 65
    • 0036148155 scopus 로고    scopus 로고
    • Pulsatile insulin secretion by human pancreatic islets
    • Song SH, et al. Pulsatile insulin secretion by human pancreatic islets. J Clin Endocrinol Metab. 2002;87(1):213-21.
    • (2002) J Clin Endocrinol Metab. , vol.87 , Issue.1 , pp. 213-221
    • Song, S.H.1
  • 66
    • 0036311221 scopus 로고    scopus 로고
    • Methylation sequencing from limiting DNA: Embryonic, fixed, and microdissected cells
    • Millar DS, Warnecke PM, Melki JR, Clark SJ. Methylation sequencing from limiting DNA: embryonic, fixed, and microdissected cells. Methods. 2002;27(2):108-113.
    • (2002) Methods. , vol.27 , Issue.2 , pp. 108-113
    • Millar, D.S.1    Warnecke, P.M.2    Melki, J.R.3    Clark, S.J.4
  • 67
    • 39449101500 scopus 로고    scopus 로고
    • MicroChIP-A rapid micro chromatin immunoprecipitation assay for small cell samples and biopsies
    • Dahl JA, Collas P. MicroChIP-A rapid micro chromatin immunoprecipitation assay for small cell samples and biopsies. Nucleic Acids Res. 2008;36(3):e15.
    • (2008) Nucleic Acids Res. , vol.36 , Issue.3 , pp. e15
    • Dahl, J.A.1    Collas, P.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.