-
1
-
-
0018892185
-
Glucoreceptor mechanisms and the control of insulin release and biosynthesis
-
Ashcroft SJ. Glucoreceptor mechanisms and the control of insulin release and biosynthesis. Diabetologia. 1980;18(1):5-15.
-
(1980)
Diabetologia.
, vol.18
, Issue.1
, pp. 5-15
-
-
Ashcroft, S.J.1
-
2
-
-
0027479441
-
Glucose sensing in pancreatic islet β cells: The key role of glucokinase and the glycolytic intermediates
-
German MS. Glucose sensing in pancreatic islet β cells: The key role of glucokinase and the glycolytic intermediates. Proc Natl Acad Sci U S A. 1993;90(5):1781-1785.
-
(1993)
Proc Natl Acad Sci U S A.
, vol.90
, Issue.5
, pp. 1781-1785
-
-
German, M.S.1
-
3
-
-
0019222406
-
Mechanism of glucose-induced insulin secretion
-
Hedeskov CJ. Mechanism of glucose-induced insulin secretion. Physiol Rev. 1980;60(2):442-509.
-
(1980)
Physiol Rev.
, vol.60
, Issue.2
, pp. 442-509
-
-
Hedeskov, C.J.1
-
4
-
-
0018754647
-
Insulin release: The fuel hypothesis
-
Malaisse WJ, Sener A, Herchuelz A, Hutton JC. Insulin release: The fuel hypothesis. Metabolism. 1979;28(4):373-386.
-
(1979)
Metabolism.
, vol.28
, Issue.4
, pp. 373-386
-
-
Malaisse, W.J.1
Sener, A.2
Herchuelz, A.3
Hutton, J.C.4
-
5
-
-
70450285188
-
Tight coupling between glucose and mitochondrial metabolism in clonal β-cells is required for robust insulin secretion
-
Malmgren S, et al. Tight coupling between glucose and mitochondrial metabolism in clonal β-cells is required for robust insulin secretion. J Biol Chem. 2009;284(47):32395-32404.
-
(2009)
J Biol Chem.
, vol.284
, Issue.47
, pp. 32395-32404
-
-
Malmgren, S.1
-
6
-
-
0027358380
-
Glucokinase as pancreatic β cell glucose sensor and diabetes gene
-
Matschinsky F, et al. Glucokinase as pancreatic β cell glucose sensor and diabetes gene. J Clin Invest. 1993;92(5):2092-2098.
-
(1993)
J Clin Invest.
, vol.92
, Issue.5
, pp. 2092-2098
-
-
Matschinsky, F.1
-
7
-
-
0022467904
-
Pancreatic islet glucose metabolism and regulation of insulin secretion
-
Meglasson MD, Matschinsky FM. Pancreatic islet glucose metabolism and regulation of insulin secretion. Diabetes Metab Rev. 1986;2(3):163-214.
-
(1986)
Diabetes Metab Rev.
, vol.2
, Issue.3
, pp. 163-214
-
-
Meglasson, M.D.1
Matschinsky, F.M.2
-
8
-
-
0035157768
-
Glucose sensing in pancreatic β-cells: A model for the study of other glucose-regulated cells in gut, pancreas, and hypothalamus
-
Schuit FC, Huypens P, Heimberg H, Pipeleers DG. Glucose sensing in pancreatic β-cells: A model for the study of other glucose-regulated cells in gut, pancreas, and hypothalamus. Diabetes. 2001;50(1):1-11.
-
(2001)
Diabetes.
, vol.50
, Issue.1
, pp. 1-11
-
-
Schuit, F.C.1
Huypens, P.2
Heimberg, H.3
Pipeleers, D.G.4
-
9
-
-
84857975722
-
Functional β-cell maturation is marked by an increased glucose threshold and by expression of urocortin 3
-
Blum B, Hrvatin SS, Schuetz C, Bonal C, Rezania A, Melton DA. Functional β-cell maturation is marked by an increased glucose threshold and by expression of urocortin 3. Nat Biotechnol. 2012;30(3):261-264.
-
(2012)
Nat Biotechnol.
, vol.30
, Issue.3
, pp. 261-264
-
-
Blum, B.1
Hrvatin, S.S.2
Schuetz, C.3
Bonal, C.4
Rezania, A.5
Melton, D.A.6
-
10
-
-
79953749685
-
Rat neonatal β cells lack the specialised metabolic phenotype of mature β cells
-
Jermendy A, et al. Rat neonatal β cells lack the specialised metabolic phenotype of mature β cells. Diabetologia. 2011;54(3):594-604.
-
(2011)
Diabetologia.
, vol.54
, Issue.3
, pp. 594-604
-
-
Jermendy, A.1
-
11
-
-
34247183601
-
MafB is required for islet β cell maturation
-
Artner I, et al. MafB is required for islet β cell maturation. Proc Natl Acad Sci U S A. 2007;104(10):3853-3858.
-
(2007)
Proc Natl Acad Sci U S A.
, vol.104
, Issue.10
, pp. 3853-3858
-
-
Artner, I.1
-
12
-
-
33646194560
-
A switch from MafB to MafA expression accompanies differentiation to pancreatic β-cells
-
Nishimura W, et al. A switch from MafB to MafA expression accompanies differentiation to pancreatic β-cells. Dev Biol. 2006;293(2):526-539.
-
(2006)
Dev Biol.
, vol.293
, Issue.2
, pp. 526-539
-
-
Nishimura, W.1
-
13
-
-
77949870524
-
Identification of markers for newly formed β-cells in the perinatal period: A time of recognized β-cell immaturity
-
Aye T, Toschi E, Sharma A, Sgroi D, Bonner-Weir S. Identification of markers for newly formed β-cells in the perinatal period: A time of recognized β-cell immaturity. J Histochem Cytochem. 2010;58(4):369-376.
-
(2010)
J Histochem Cytochem.
, vol.58
, Issue.4
, pp. 369-376
-
-
Aye, T.1
Toschi, E.2
Sharma, A.3
Sgroi, D.4
Bonner-Weir, S.5
-
14
-
-
77950225021
-
Pancreatic β cells require NeuroD to achieve and maintain functional maturity
-
Gu C, et al. Pancreatic β cells require NeuroD to achieve and maintain functional maturity. Cell Metab. 2010;11(4):298-310.
-
(2010)
Cell Metab.
, vol.11
, Issue.4
, pp. 298-310
-
-
Gu, C.1
-
15
-
-
84876545846
-
Thyroid hormone promotes postnatal rat pancreatic beta-cell development and glucose-responsive insulin secretion through MAFA
-
Aguayo-Mazzucato C, et al. Thyroid hormone promotes postnatal rat pancreatic beta-cell development and glucose-responsive insulin secretion through MAFA. Diabetes. 2013;62(5):1569-1580.
-
(2013)
Diabetes.
, vol.62
, Issue.5
, pp. 1569-1580
-
-
Aguayo-Mazzucato, C.1
-
16
-
-
85003341559
-
Reversal of β cell de-differentiation by a small molecule inhibitor of the TGFbeta pathway
-
Blum B, et al. Reversal of β cell de-differentiation by a small molecule inhibitor of the TGFbeta pathway. Elife. 2014;3:e02809.
-
(2014)
Elife.
, vol.3
, pp. e02809
-
-
Blum, B.1
-
18
-
-
77953429949
-
Identification of genes selectively disallowed in the pancreatic islet
-
Pullen TJ, Khan AM, Barton G, Butcher SA, Sun G, Rutter GA. Identification of genes selectively disallowed in the pancreatic islet. Islets. 2010;2(2):89-95.
-
(2010)
Islets.
, vol.2
, Issue.2
, pp. 89-95
-
-
Pullen, T.J.1
Khan, A.M.2
Barton, G.3
Butcher, S.A.4
Sun, G.5
Rutter, G.A.6
-
19
-
-
78651472654
-
Tissue-specific disallowance of housekeeping genes: The other face of cell differentiation
-
Thorrez L, et al. Tissue-specific disallowance of housekeeping genes: The other face of cell differentiation. Genome Res. 2011;21(1):95-105.
-
(2011)
Genome Res.
, vol.21
, Issue.1
, pp. 95-105
-
-
Thorrez, L.1
-
20
-
-
84877601932
-
When less is more: The forbidden fruits of gene repression in the adult betacell
-
Pullen TJ, Rutter GA. When less is more: The forbidden fruits of gene repression in the adult betacell. Diabetes Obes Metab. 2013;15(6):503-512.
-
(2013)
Diabetes Obes Metab.
, vol.15
, Issue.6
, pp. 503-512
-
-
Pullen, T.J.1
Rutter, G.A.2
-
21
-
-
84860584838
-
β-Cell-specific gene repression: A mechanism to protect against inappropriate or maladjusted insulin secretion?
-
Schuit F, et al. β-Cell-specific gene repression: A mechanism to protect against inappropriate or maladjusted insulin secretion? Diabetes. 2012;61(5):969-975.
-
(2012)
Diabetes.
, vol.61
, Issue.5
, pp. 969-975
-
-
Schuit, F.1
-
22
-
-
34548204386
-
Physical exercise-induced hypoglycemia caused by failed silencing of monocarboxylate transporter 1 in pancreatic β cells
-
Otonkoski T, et al. Physical exercise-induced hypoglycemia caused by failed silencing of monocarboxylate transporter 1 in pancreatic β cells. Am J Hum Genet. 2007;81(3):467-474.
-
(2007)
Am J Hum Genet.
, vol.81
, Issue.3
, pp. 467-474
-
-
Otonkoski, T.1
-
23
-
-
84872478906
-
Ring1b bookmarks genes in pancreatic embryonic progenitors for repression in adult β cells
-
van Arensbergen J, et al. Ring1b bookmarks genes in pancreatic embryonic progenitors for repression in adult β cells. Genes Dev. 2013;27(1):52-63.
-
(2013)
Genes Dev.
, vol.27
, Issue.1
, pp. 52-63
-
-
Van Arensbergen, J.1
-
24
-
-
77952966500
-
Derepression of Polycomb targets during pancreatic organogenesis allows insulin-producing β-cells to adopt a neural gene activity program
-
van Arensbergen J, et al. Derepression of Polycomb targets during pancreatic organogenesis allows insulin-producing β-cells to adopt a neural gene activity program. Genome Res. 2010;20(6):722-732.
-
(2010)
Genome Res.
, vol.20
, Issue.6
, pp. 722-732
-
-
Van Arensbergen, J.1
-
25
-
-
9644266753
-
β Cell replication is the primary mechanism for maintaining postnatal β cell mass
-
Georgia S, Bhushan A. β Cell replication is the primary mechanism for maintaining postnatal β cell mass. J Clin Invest. 2004;114(7):963-968.
-
(2004)
J Clin Invest.
, vol.114
, Issue.7
, pp. 963-968
-
-
Georgia, S.1
Bhushan, A.2
-
26
-
-
78149378853
-
Quiescent fibroblasts exhibit high metabolic activity
-
Lemons JM, et al. Quiescent fibroblasts exhibit high metabolic activity. PLoS Biol. 2010;8(10):e1000514.
-
(2010)
PLoS Biol.
, vol.8
, Issue.10
, pp. e1000514
-
-
Lemons, J.M.1
-
27
-
-
0034532977
-
Importance of lactate dehydrogenase for the regulation of glycolytic flux and insulin secretion in insulin-producing cells
-
Alcazar O, Tiedge M, Lenzen S. Importance of lactate dehydrogenase for the regulation of glycolytic flux and insulin secretion in insulin-producing cells. Biochem J. 2000;352(pt 2):373-380.
-
(2000)
Biochem J.
, vol.352
, pp. 373-380
-
-
Alcazar, O.1
Tiedge, M.2
Lenzen, S.3
-
28
-
-
0027994097
-
Overexpression of hexokinase i in isolated islets of Langerhans via recombinant adenovirus. Enhancement of glucose metabolism and insulin secretion at basal but not stimulatory glucose levels
-
Becker TC, BeltrandelRio H, Noel RJ, Johnson JH, Newgard CB. Overexpression of hexokinase I in isolated islets of Langerhans via recombinant adenovirus. Enhancement of glucose metabolism and insulin secretion at basal but not stimulatory glucose levels. J Biol Chem. 1994;269(33):21234-21238.
-
(1994)
J Biol Chem.
, vol.269
, Issue.33
, pp. 21234-21238
-
-
Becker, T.C.1
Beltrandelrio, H.2
Noel, R.J.3
Johnson, J.H.4
Newgard, C.B.5
-
29
-
-
84876522789
-
Congenital hyperinsulinism caused by hexokinase i expression or glucokinase-activating mutation in a subset of β-cells
-
Henquin JC, et al. Congenital hyperinsulinism caused by hexokinase I expression or glucokinase-activating mutation in a subset of β-cells. Diabetes. 2013;62(5):1689-1696.
-
(2013)
Diabetes.
, vol.62
, Issue.5
, pp. 1689-1696
-
-
Henquin, J.C.1
-
30
-
-
0028000671
-
Overexpression of hexokinase i but not GLUT1 glucose transporter alters concentration dependence of glucose-stimulated insulin secretion in pancreatic β-cell line MIN6
-
Ishihara H, et al. Overexpression of hexokinase I but not GLUT1 glucose transporter alters concentration dependence of glucose-stimulated insulin secretion in pancreatic β-cell line MIN6. J Biol Chem. 1994;269(4):3081-3087.
-
(1994)
J Biol Chem.
, vol.269
, Issue.4
, pp. 3081-3087
-
-
Ishihara, H.1
-
31
-
-
0032479342
-
Overexpression of lactate dehydrogenase A attenuates glucose-induced insulin secretion in stable MIN-6 β-cell lines
-
Zhao C, Rutter GA. Overexpression of lactate dehydrogenase A attenuates glucose-induced insulin secretion in stable MIN-6 β-cell lines. FEBS Lett. 1998;430(3):213-216.
-
(1998)
FEBS Lett.
, vol.430
, Issue.3
, pp. 213-216
-
-
Zhao, C.1
Rutter, G.A.2
-
32
-
-
77957583357
-
MafA and MafB regulate genes critical to β-cells in a unique temporal manner
-
Artner I, et al. MafA and MafB regulate genes critical to β-cells in a unique temporal manner. Diabetes. 2010;59(10):2530-2539.
-
(2010)
Diabetes.
, vol.59
, Issue.10
, pp. 2530-2539
-
-
Artner, I.1
-
33
-
-
35649014826
-
MafA regulates expression of genes important to islet β-cell function
-
Matsuoka TA, et al. MafA regulates expression of genes important to islet β-cell function. Mol Endocrinol. 2007;21(11):2764-2774.
-
(2007)
Mol Endocrinol.
, vol.21
, Issue.11
, pp. 2764-2774
-
-
Matsuoka, T.A.1
-
34
-
-
84866389264
-
Pancreatic β cell dedifferentiation as a mechanism of diabetic β cell failure
-
Talchai C, Xuan S, Lin HV, Sussel L, Accili D. Pancreatic β cell dedifferentiation as a mechanism of diabetic β cell failure. Cell. 2012;150(6):1223-1234.
-
(2012)
Cell.
, vol.150
, Issue.6
, pp. 1223-1234
-
-
Talchai, C.1
Xuan, S.2
Lin, H.V.3
Sussel, L.4
Accili, D.5
-
35
-
-
0030707689
-
Early diabetes and abnormal postnatal pancreatic islet development in mice lacking Glut-2
-
Guillam MT, et al. Early diabetes and abnormal postnatal pancreatic islet development in mice lacking Glut-2. Nat Genet. 1997;17(3):327-330.
-
(1997)
Nat Genet.
, vol.17
, Issue.3
, pp. 327-330
-
-
Guillam, M.T.1
-
36
-
-
84879878335
-
Pancreas-specific Cre driver lines and considerations for their prudent use
-
Magnuson MA, Osipovich AB. Pancreas-specific Cre driver lines and considerations for their prudent use. Cell Metab. 2013;18(1):9-20.
-
(2013)
Cell Metab.
, vol.18
, Issue.1
, pp. 9-20
-
-
Magnuson, M.A.1
Osipovich, A.B.2
-
37
-
-
84876539588
-
Factors expressed by murine embryonic pancreatic mesenchyme enhance generation of insulin-producing cells from hESCs
-
Guo T, Landsman L, Li N, Hebrok M. Factors expressed by murine embryonic pancreatic mesenchyme enhance generation of insulin-producing cells from hESCs. Diabetes. 2013;62(5):1581-1592.
-
(2013)
Diabetes.
, vol.62
, Issue.5
, pp. 1581-1592
-
-
Guo, T.1
Landsman, L.2
Li, N.3
Hebrok, M.4
-
38
-
-
80052343967
-
A genetically engineered human pancreatic β cell line exhibiting glucose-inducible insulin secretion
-
Ravassard P, et al. A genetically engineered human pancreatic β cell line exhibiting glucose-inducible insulin secretion. J Clin Invest. 2011;121(9):3589-3597.
-
(2011)
J Clin Invest.
, vol.121
, Issue.9
, pp. 3589-3597
-
-
Ravassard, P.1
-
39
-
-
0024999166
-
D-glucose and L-leucine metabolism in neonatal and adult cultured rat pancreatic islets
-
Boschero AC, Bordin S, Sener A, Malaisse WJ. D-glucose and L-leucine metabolism in neonatal and adult cultured rat pancreatic islets. Mol Cell Endocrinol. 1990;73(1):63-71.
-
(1990)
Mol Cell Endocrinol.
, vol.73
, Issue.1
, pp. 63-71
-
-
Boschero, A.C.1
Bordin, S.2
Sener, A.3
Malaisse, W.J.4
-
40
-
-
58549087956
-
Exocytosis of insulin: In vivo maturation of mouse endocrine pancreas
-
Rozzo A, Meneghel-Rozzo T, Delakorda SL, Yang SB, Rupnik M. Exocytosis of insulin: in vivo maturation of mouse endocrine pancreas. Ann N Y Acad Sci. 2009;1152:53-62.
-
(2009)
Ann N y Acad Sci.
, vol.1152
, pp. 53-62
-
-
Rozzo, A.1
Meneghel-Rozzo, T.2
Delakorda, S.L.3
Yang, S.B.4
Rupnik, M.5
-
41
-
-
0029740565
-
Glucose regulates the maximal velocities of glucokinase and glucose utilization in the immature fetal rat pancreatic islet
-
Tu J, Tuch BE. Glucose regulates the maximal velocities of glucokinase and glucose utilization in the immature fetal rat pancreatic islet. Diabetes. 1996;45(8):1068-1075.
-
(1996)
Diabetes.
, vol.45
, Issue.8
, pp. 1068-1075
-
-
Tu, J.1
Tuch, B.E.2
-
42
-
-
84864870977
-
Metabolic differentiation in the embryonic retina
-
Agathocleous M, et al. Metabolic differentiation in the embryonic retina. Nat Cell Biol. 2012;14(8):859-864.
-
(2012)
Nat Cell Biol.
, vol.14
, Issue.8
, pp. 859-864
-
-
Agathocleous, M.1
-
43
-
-
34347259219
-
ERRgamma directs and maintains the transition to oxidative metabolism in the postnatal heart
-
Alaynick WA, et al. ERRgamma directs and maintains the transition to oxidative metabolism in the postnatal heart. Cell Metab. 2007;6(1):13-24.
-
(2007)
Cell Metab.
, vol.6
, Issue.1
, pp. 13-24
-
-
Alaynick, W.A.1
-
44
-
-
84866061103
-
Metabolic trajectory of cellular differentiation in small intestine by Phasor Fluorescence Lifetime Microscopy of NADH
-
Stringari C, Edwards RA, Pate KT, Waterman ML, Donovan PJ, Gratton E. Metabolic trajectory of cellular differentiation in small intestine by Phasor Fluorescence Lifetime Microscopy of NADH. Sci Rep. 2012;2:568.
-
(2012)
Sci Rep.
, vol.2
, pp. 568
-
-
Stringari, C.1
Edwards, R.A.2
Pate, K.T.3
Waterman, M.L.4
Donovan, P.J.5
Gratton, E.6
-
45
-
-
84868351585
-
Metabolic regulation in pluripotent stem cells during reprogramming and self-renewal
-
Zhang J, Nuebel E, Daley GQ, Koehler CM, Teitell MA. Metabolic regulation in pluripotent stem cells during reprogramming and self-renewal. Cell Stem Cell. 2012;11(5):589-595.
-
(2012)
Cell Stem Cell.
, vol.11
, Issue.5
, pp. 589-595
-
-
Zhang, J.1
Nuebel, E.2
Daley, G.Q.3
Koehler, C.M.4
Teitell, M.A.5
-
46
-
-
84863214806
-
Overexpression of monocarboxylate transporter-1 (SLC16A1) in mouse pancreatic β-cells leads to relative hyperinsulinism during exercise
-
Pullen TJ, Sylow L, Sun G, Halestrap AP, Richter EA, Rutter GA. Overexpression of monocarboxylate transporter-1 (SLC16A1) in mouse pancreatic β-cells leads to relative hyperinsulinism during exercise. Diabetes. 2012;61(7):1719-1725.
-
(2012)
Diabetes.
, vol.61
, Issue.7
, pp. 1719-1725
-
-
Pullen, T.J.1
Sylow, L.2
Sun, G.3
Halestrap, A.P.4
Richter, E.A.5
Rutter, G.A.6
-
47
-
-
84910673362
-
Generation of functional human pancreatic β cells in vitro
-
Pagliuca FW, et al. Generation of functional human pancreatic β cells in vitro. Cell. 2014;159(2):428-439.
-
(2014)
Cell.
, vol.159
, Issue.2
, pp. 428-439
-
-
Pagliuca, F.W.1
-
48
-
-
84983134468
-
Reversal of diabetes with insulin-producing cells derived in vitro from human pluripotent stem cells
-
Rezania A, et al. Reversal of diabetes with insulin-producing cells derived in vitro from human pluripotent stem cells. Nat Biotechnol. 2014;32(11):1121-1133.
-
(2014)
Nat Biotechnol.
, vol.32
, Issue.11
, pp. 1121-1133
-
-
Rezania, A.1
-
49
-
-
79954563768
-
Pancreatic β cell identity is maintained by DNA methylation-mediated repression of Arx
-
Dhawan S, Georgia S, Tschen SI, Fan G, Bhushan A. Pancreatic β cell identity is maintained by DNA methylation-mediated repression of Arx. Dev Cell. 2011;20(4):419-429.
-
(2011)
Dev Cell.
, vol.20
, Issue.4
, pp. 419-429
-
-
Dhawan, S.1
Georgia, S.2
Tschen, S.I.3
Fan, G.4
Bhushan, A.5
-
50
-
-
84874250442
-
DNMT1 represses p53 to maintain progenitor cell survival during pancreatic organogenesis
-
Georgia S, Kanji M, Bhushan A. DNMT1 represses p53 to maintain progenitor cell survival during pancreatic organogenesis. Genes Dev. 2013;27(4):372-377.
-
(2013)
Genes Dev.
, vol.27
, Issue.4
, pp. 372-377
-
-
Georgia, S.1
Kanji, M.2
Bhushan, A.3
-
51
-
-
80455173402
-
Nkx2.2 repressor complex regulates islet β-cell specification and prevents β-to-α-cell reprogramming
-
Papizan JB, et al. Nkx2.2 repressor complex regulates islet β-cell specification and prevents β-to-α-cell reprogramming. Genes Dev. 2011;25(21):2291-2305.
-
(2011)
Genes Dev.
, vol.25
, Issue.21
, pp. 2291-2305
-
-
Papizan, J.B.1
-
52
-
-
84913593548
-
Understanding the relationship between DNA methylation and histone lysine methylation
-
Rose NR, Klose RJ. Understanding the relationship between DNA methylation and histone lysine methylation. Biochim Biophys Acta. 2014;1839(12):1362-1372.
-
(2014)
Biochim Biophys Acta.
, vol.1839
, Issue.12
, pp. 1362-1372
-
-
Rose, N.R.1
Klose, R.J.2
-
53
-
-
84866432376
-
Diabetic β cells: To be or not to be?
-
Puri S, Hebrok M. Diabetic β cells: to be or not to be? Cell. 2012;150(6):1103-1104.
-
(2012)
Cell.
, vol.150
, Issue.6
, pp. 1103-1104
-
-
Puri, S.1
Hebrok, M.2
-
54
-
-
84897452599
-
Genome-wide DNA methylation analysis of human pancreatic islets from type 2 diabetic and non-diabetic donors identifies candidate genes that influence insulin secretion
-
Dayeh T, et al. Genome-wide DNA methylation analysis of human pancreatic islets from type 2 diabetic and non-diabetic donors identifies candidate genes that influence insulin secretion. PLoS Genet. 2014;10(3):e1004160.
-
(2014)
PLoS Genet.
, vol.10
, Issue.3
, pp. e1004160
-
-
Dayeh, T.1
-
55
-
-
78951472134
-
Insulin promoter DNA methylation correlates negatively with insulin gene expression and positively with HbA(1c) levels in human pancreatic islets
-
Yang BT, et al. Insulin promoter DNA methylation correlates negatively with insulin gene expression and positively with HbA(1c) levels in human pancreatic islets. Diabetologia. 2011;54(2):360-367.
-
(2011)
Diabetologia.
, vol.54
, Issue.2
, pp. 360-367
-
-
Yang, B.T.1
-
56
-
-
84863334811
-
Increased DNA methylation and decreased expression of PDX-1 in pancreatic islets from patients with type 2 diabetes
-
Yang BT, et al. Increased DNA methylation and decreased expression of PDX-1 in pancreatic islets from patients with type 2 diabetes. Mol Endocrinol. 2012;26(7):1203-1212.
-
(2012)
Mol Endocrinol.
, vol.26
, Issue.7
, pp. 1203-1212
-
-
Yang, B.T.1
-
57
-
-
33745863033
-
Islet β cell failure in type 2 diabetes
-
Prentki M, Nolan CJ. Islet β cell failure in type 2 diabetes. J Clin Invest. 2006;116(7):1802-1812.
-
(2006)
J Clin Invest.
, vol.116
, Issue.7
, pp. 1802-1812
-
-
Prentki, M.1
Nolan, C.J.2
-
58
-
-
84881218353
-
Inactivation of specific β cell transcription factors in type 2 diabetes
-
Guo S, et al. Inactivation of specific β cell transcription factors in type 2 diabetes. J Clin Invest. 2013;123(8):3305-3316.
-
(2013)
J Clin Invest.
, vol.123
, Issue.8
, pp. 3305-3316
-
-
Guo, S.1
-
59
-
-
0034121735
-
Adult insulin-and glucagon-producing cells differentiate from two independent cell lineages
-
Herrera PL. Adult insulin-and glucagon-producing cells differentiate from two independent cell lineages. Development. 2000;127(11):2317-2322.
-
(2000)
Development.
, vol.127
, Issue.11
, pp. 2317-2322
-
-
Herrera, P.L.1
-
60
-
-
0035158704
-
Loss of genomic methylation causes p53-dependent apoptosis and epigenetic deregulation
-
Jackson-Grusby L, et al. Loss of genomic methylation causes p53-dependent apoptosis and epigenetic deregulation. Nat Genet. 2001;27(1):31-39.
-
(2001)
Nat Genet.
, vol.27
, Issue.1
, pp. 31-39
-
-
Jackson-Grusby, L.1
-
61
-
-
0032923739
-
Generalized lacZ expression with the ROSA26 Cre reporter strain
-
Soriano P. Generalized lacZ expression with the ROSA26 Cre reporter strain. Nat Genet. 1999;21(1):70-71.
-
(1999)
Nat Genet.
, vol.21
, Issue.1
, pp. 70-71
-
-
Soriano, P.1
-
62
-
-
35548932872
-
A global double-fluorescent Cre reporter mouse
-
Muzumdar MD, Tasic B, Miyamichi K, Li L, Luo L. A global double-fluorescent Cre reporter mouse. Genesis. 2007;45(9):593-605.
-
(2007)
Genesis.
, vol.45
, Issue.9
, pp. 593-605
-
-
Muzumdar, M.D.1
Tasic, B.2
Miyamichi, K.3
Li, L.4
Luo, L.5
-
63
-
-
84887490509
-
Combined modulation of polycomb and trithorax genes rejuvenates β cell replication
-
Zhou JX, et al. Combined modulation of polycomb and trithorax genes rejuvenates β cell replication. J Clin Invest. 2013;123(11):4849-4858.
-
(2013)
J Clin Invest.
, vol.123
, Issue.11
, pp. 4849-4858
-
-
Zhou, J.X.1
-
64
-
-
34948821871
-
Essential role of Skp2-mediated p27 degradation in growth and adaptive expansion of pancreatic β cells
-
Zhong L, Georgia S, Tschen SI, Nakayama K, Bhushan A. Essential role of Skp2-mediated p27 degradation in growth and adaptive expansion of pancreatic β cells. J Clin Invest. 2007;117(10):2869-2876.
-
(2007)
J Clin Invest.
, vol.117
, Issue.10
, pp. 2869-2876
-
-
Zhong, L.1
Georgia, S.2
Tschen, S.I.3
Nakayama, K.4
Bhushan, A.5
-
65
-
-
0036148155
-
Pulsatile insulin secretion by human pancreatic islets
-
Song SH, et al. Pulsatile insulin secretion by human pancreatic islets. J Clin Endocrinol Metab. 2002;87(1):213-21.
-
(2002)
J Clin Endocrinol Metab.
, vol.87
, Issue.1
, pp. 213-221
-
-
Song, S.H.1
-
66
-
-
0036311221
-
Methylation sequencing from limiting DNA: Embryonic, fixed, and microdissected cells
-
Millar DS, Warnecke PM, Melki JR, Clark SJ. Methylation sequencing from limiting DNA: embryonic, fixed, and microdissected cells. Methods. 2002;27(2):108-113.
-
(2002)
Methods.
, vol.27
, Issue.2
, pp. 108-113
-
-
Millar, D.S.1
Warnecke, P.M.2
Melki, J.R.3
Clark, S.J.4
-
67
-
-
39449101500
-
MicroChIP-A rapid micro chromatin immunoprecipitation assay for small cell samples and biopsies
-
Dahl JA, Collas P. MicroChIP-A rapid micro chromatin immunoprecipitation assay for small cell samples and biopsies. Nucleic Acids Res. 2008;36(3):e15.
-
(2008)
Nucleic Acids Res.
, vol.36
, Issue.3
, pp. e15
-
-
Dahl, J.A.1
Collas, P.2
|