메뉴 건너뛰기




Volumn 112, Issue 25, 2015, Pages E3246-E3254

Inflammation negatively regulates FOXP3 and regulatory T-cell function via DBC1

Author keywords

Deleted in breast cancer 1; Foxp3 complex; Inflammation; Regulatory T cells

Indexed keywords

CALMODULIN BINDING PROTEIN; CASPASE 8; DBC1 PROTEIN; INTERLEUKIN 17; INTERLEUKIN 1BETA; INTERLEUKIN 6; PROTEIN; PROTEIN A; TRANSCRIPTION FACTOR FOXP3; TUMOR NECROSIS FACTOR ALPHA; UNCLASSIFIED DRUG; FORKHEAD TRANSCRIPTION FACTOR; FOXP3 PROTEIN, MOUSE; KIAA1967 PROTEIN, MOUSE; SIGNAL TRANSDUCING ADAPTOR PROTEIN;

EID: 84934949643     PISSN: 00278424     EISSN: 10916490     Source Type: Journal    
DOI: 10.1073/pnas.1421463112     Document Type: Article
Times cited : (104)

References (43)
  • 1
    • 84859416933 scopus 로고    scopus 로고
    • Regulatory T cells: Mechanisms of differentiation and function
    • Josefowicz SZ, Lu LF, Rudensky AY (2012) Regulatory T cells: Mechanisms of differentiation and function. Annu Rev Immunol 30:531-564.
    • (2012) Annu Rev Immunol , vol.30 , pp. 531-564
    • Josefowicz, S.Z.1    Lu, L.F.2    Rudensky, A.Y.3
  • 2
    • 77950349016 scopus 로고    scopus 로고
    • Th17 and regulatory T cells in mediating and restraining inflammation
    • Littman DR, Rudensky AY (2010) Th17 and regulatory T cells in mediating and restraining inflammation. Cell 140(6):845-858.
    • (2010) Cell , vol.140 , Issue.6 , pp. 845-858
    • Littman, D.R.1    Rudensky, A.Y.2
  • 3
    • 43949105866 scopus 로고    scopus 로고
    • Regulatory T cells and immune tolerance
    • Sakaguchi S, Yamaguchi T, Nomura T, Ono M (2008) Regulatory T cells and immune tolerance. Cell 133(5):775-787.
    • (2008) Cell , vol.133 , Issue.5 , pp. 775-787
    • Sakaguchi, S.1    Yamaguchi, T.2    Nomura, T.3    Ono, M.4
  • 4
    • 0037385330 scopus 로고    scopus 로고
    • Foxp3 programs the development and function of CD4+CD25+ regulatory T cells
    • Fontenot JD, Gavin MA, Rudensky AY (2003) Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nat Immunol 4(4):330-336.
    • (2003) Nat Immunol , vol.4 , Issue.4 , pp. 330-336
    • Fontenot, J.D.1    Gavin, M.A.2    Rudensky, A.Y.3
  • 5
    • 0347785480 scopus 로고    scopus 로고
    • Control of regulatory T cell development by the transcription factor Foxp3
    • Hori S, Nomura T, Sakaguchi S (2003) Control of regulatory T cell development by the transcription factor Foxp3. Science 299(5609):1057-1061.
    • (2003) Science , vol.299 , Issue.5609 , pp. 1057-1061
    • Hori, S.1    Nomura, T.2    Sakaguchi, S.3
  • 6
    • 33646168597 scopus 로고    scopus 로고
    • FOXP3: Of mice and men
    • Ziegler SF (2006) FOXP3: Of mice and men. Annu Rev Immunol 24:209-226.
    • (2006) Annu Rev Immunol , vol.24 , pp. 209-226
    • Ziegler, S.F.1
  • 7
    • 79251500661 scopus 로고    scopus 로고
    • Phenotypical and functional specialization of FOXP3+ regulatory T cells
    • Campbell DJ, Koch MA (2011) Phenotypical and functional specialization of FOXP3+ regulatory T cells. Nat Rev Immunol 11(2):119-130.
    • (2011) Nat Rev Immunol , vol.11 , Issue.2 , pp. 119-130
    • Campbell, D.J.1    Koch, M.A.2
  • 8
    • 33646240855 scopus 로고    scopus 로고
    • Single-cell analysis of normal and FOXP3-mutant human T cells: FOXP3 expression without regulatory T cell development
    • Gavin MA, et al. (2006) Single-cell analysis of normal and FOXP3-mutant human T cells: FOXP3 expression without regulatory T cell development. Proc Natl Acad Sci USA 103(17):6659-6664.
    • (2006) Proc Natl Acad Sci USA , vol.103 , Issue.17 , pp. 6659-6664
    • Gavin, M.A.1
  • 10
    • 84866533054 scopus 로고    scopus 로고
    • A multiply redundant genetic switch 'locks in' the transcriptional signature of regulatory T cells
    • Fu W, et al. (2012) A multiply redundant genetic switch 'locks in' the transcriptional signature of regulatory T cells. Nat Immunol 13(10):972-980.
    • (2012) Nat Immunol , vol.13 , Issue.10 , pp. 972-980
    • Fu, W.1
  • 11
    • 84866548843 scopus 로고    scopus 로고
    • Transcription factor Foxp3 and its protein partners form a complex regulatory network
    • Rudra D, et al. (2012) Transcription factor Foxp3 and its protein partners form a complex regulatory network. Nat Immunol 13(10):1010-1019.
    • (2012) Nat Immunol , vol.13 , Issue.10 , pp. 1010-1019
    • Rudra, D.1
  • 12
    • 84875498856 scopus 로고    scopus 로고
    • Development and maintenance of regulatory T cells
    • Ohkura N, Kitagawa Y, Sakaguchi S (2013) Development and maintenance of regulatory T cells. Immunity 38(3):414-423.
    • (2013) Immunity , vol.38 , Issue.3 , pp. 414-423
    • Ohkura, N.1    Kitagawa, Y.2    Sakaguchi, S.3
  • 13
    • 84866548798 scopus 로고    scopus 로고
    • The Foxp3 interactome: A network perspective of T(reg) cells
    • Hori S (2012) The Foxp3 interactome: A network perspective of T(reg) cells. Nat Immunol 13(10):943-945.
    • (2012) Nat Immunol , vol.13 , Issue.10 , pp. 943-945
    • Hori, S.1
  • 14
    • 34547821980 scopus 로고    scopus 로고
    • FOXP3 is a homo-oligomer and a component of a supramolecular regulatory complex disabled in the human XLAAD/IPEX autoimmune disease
    • Li B, et al. (2007) FOXP3 is a homo-oligomer and a component of a supramolecular regulatory complex disabled in the human XLAAD/IPEX autoimmune disease. Int Immunol 19(7):825-835.
    • (2007) Int Immunol , vol.19 , Issue.7 , pp. 825-835
    • Li, B.1
  • 15
    • 80053130719 scopus 로고    scopus 로고
    • An essential role of the transcription factor GATA-3 for the function of regulatory T cells
    • Wang Y, Su MA, Wan YY (2011) An essential role of the transcription factor GATA-3 for the function of regulatory T cells. Immunity 35(3):337-348.
    • (2011) Immunity , vol.35 , Issue.3 , pp. 337-348
    • Wang, Y.1    Su, M.A.2    Wan, Y.Y.3
  • 16
    • 44449131480 scopus 로고    scopus 로고
    • Isoform-specific inhibition of ROR alpha-mediated transcriptional activation by human FOXP3
    • Du J, Huang C, Zhou B, Ziegler SF (2008) Isoform-specific inhibition of ROR alpha-mediated transcriptional activation by human FOXP3. J Immunol 180(7):4785-4792.
    • (2008) J Immunol , vol.180 , Issue.7 , pp. 4785-4792
    • Du, J.1    Huang, C.2    Zhou, B.3    Ziegler, S.F.4
  • 17
    • 69549120242 scopus 로고    scopus 로고
    • Eos mediates Foxp3-dependent gene silencing in CD4+ regulatory T cells
    • Pan F, et al. (2009) Eos mediates Foxp3-dependent gene silencing in CD4+ regulatory T cells. Science 325(5944):1142-1146.
    • (2009) Science , vol.325 , Issue.5944 , pp. 1142-1146
    • Pan, F.1
  • 18
    • 34247215187 scopus 로고    scopus 로고
    • Foxp3 controls regulatory T-cell function by interacting with AML1/Runx1
    • Ono M, et al. (2007) Foxp3 controls regulatory T-cell function by interacting with AML1/Runx1. Nature 446(7136):685-689.
    • (2007) Nature , vol.446 , Issue.7136 , pp. 685-689
    • Ono, M.1
  • 19
    • 34248379172 scopus 로고    scopus 로고
    • FOXP3 interactions with histone acetyltransferase and class II histone deacetylases are required for repression
    • Li B, et al. (2007) FOXP3 interactions with histone acetyltransferase and class II histone deacetylases are required for repression. Proc Natl Acad Sci USA 104(11):4571-4576.
    • (2007) Proc Natl Acad Sci USA , vol.104 , Issue.11 , pp. 4571-4576
    • Li, B.1
  • 20
    • 77649225958 scopus 로고    scopus 로고
    • Regulation of Treg functionality by acetylation-mediated Foxp3 protein stabilization
    • van Loosdregt J, et al. (2010) Regulation of Treg functionality by acetylation-mediated Foxp3 protein stabilization. Blood 115(5):965-974.
    • (2010) Blood , vol.115 , Issue.5 , pp. 965-974
    • Van Loosdregt, J.1
  • 21
    • 79955438868 scopus 로고    scopus 로고
    • Rapid temporal control of Foxp3 protein degradation by sirtuin-1
    • van Loosdregt J, et al. (2011) Rapid temporal control of Foxp3 protein degradation by sirtuin-1. PLoS ONE 6(4):e19047.
    • (2011) PLoS ONE , vol.6 , Issue.4
    • Van Loosdregt, J.1
  • 22
    • 67649170980 scopus 로고    scopus 로고
    • Foxp3+ regulatory T cells: Differentiation, specification, subphenotypes
    • Feuerer M, Hill JA, Mathis D, Benoist C (2009) Foxp3+ regulatory T cells: Differentiation, specification, subphenotypes. Nat Immunol 10(7):689-695.
    • (2009) Nat Immunol , vol.10 , Issue.7 , pp. 689-695
    • Feuerer, M.1    Hill, J.A.2    Mathis, D.3    Benoist, C.4
  • 23
    • 65549136983 scopus 로고    scopus 로고
    • Mechanisms of foxp3+ T regulatory cell-mediated suppression
    • Shevach EM (2009) Mechanisms of foxp3+ T regulatory cell-mediated suppression. Immunity 30(5):636-645.
    • (2009) Immunity , vol.30 , Issue.5 , pp. 636-645
    • Shevach, E.M.1
  • 24
    • 84906308941 scopus 로고    scopus 로고
    • Critical role of all-trans retinoic acid in stabilizing human natural regulatory T cells under inflammatory conditions
    • Lu L, et al. (2014) Critical role of all-trans retinoic acid in stabilizing human natural regulatory T cells under inflammatory conditions. Proc Natl Acad Sci USA 111(33):E3432-E3440.
    • (2014) Proc Natl Acad Sci USA , vol.111 , Issue.33 , pp. E3432-E3440
    • Lu, L.1
  • 25
    • 84882683958 scopus 로고    scopus 로고
    • The ubiquitin ligase Stub1 negatively modulates regulatory T cell suppressive activity by promoting degradation of the transcription factor Foxp3
    • Chen Z, et al. (2013) The ubiquitin ligase Stub1 negatively modulates regulatory T cell suppressive activity by promoting degradation of the transcription factor Foxp3. Immunity 39(2):272-285.
    • (2013) Immunity , vol.39 , Issue.2 , pp. 272-285
    • Chen, Z.1
  • 26
    • 84907588706 scopus 로고    scopus 로고
    • PIM1 kinase phosphorylates the human transcription factor FOXP3 at serine 422 to negatively regulate its activity under inflammation
    • Li Z, et al. (2014) PIM1 kinase phosphorylates the human transcription factor FOXP3 at serine 422 to negatively regulate its activity under inflammation. J Biol Chem 289(39):26872-26881.
    • (2014) J Biol Chem , vol.289 , Issue.39 , pp. 26872-26881
    • Li, Z.1
  • 27
    • 77952313777 scopus 로고    scopus 로고
    • Differentiation of effector CD4 T cell populations (∗)
    • Zhu J, Yamane H, Paul WE (2010) Differentiation of effector CD4 T cell populations (∗). Annu Rev Immunol 28:445-489.
    • (2010) Annu Rev Immunol , vol.28 , pp. 445-489
    • Zhu, J.1    Yamane, H.2    Paul, W.E.3
  • 28
    • 33646370647 scopus 로고    scopus 로고
    • TNF downmodulates the function of human CD4+CD25hi T-regulatory cells
    • Valencia X, et al. (2006) TNF downmodulates the function of human CD4+CD25hi T-regulatory cells. Blood 108(1):253-261.
    • (2006) Blood , vol.108 , Issue.1 , pp. 253-261
    • Valencia, X.1
  • 29
    • 84875153425 scopus 로고    scopus 로고
    • Phosphorylation of FOXP3 controls regulatory T cell function and is inhibited by TNF-α in rheumatoid arthritis
    • Nie H, et al. (2013) Phosphorylation of FOXP3 controls regulatory T cell function and is inhibited by TNF-α in rheumatoid arthritis. Nat Med 19(3):322-328.
    • (2013) Nat Med , vol.19 , Issue.3 , pp. 322-328
    • Nie, H.1
  • 30
    • 77957371028 scopus 로고    scopus 로고
    • Stability of the regulatory T cell lineage in vivo
    • Rubtsov YP, et al. (2010) Stability of the regulatory T cell lineage in vivo. Science 329(5999):1667-1671.
    • (2010) Science , vol.329 , Issue.5999 , pp. 1667-1671
    • Rubtsov, Y.P.1
  • 31
    • 76649085804 scopus 로고    scopus 로고
    • Deleted in breast cancer-1 regulates SIRT1 activity and contributes to high-fat diet-induced liver steatosis in mice
    • Escande C, et al. (2010) Deleted in breast cancer-1 regulates SIRT1 activity and contributes to high-fat diet-induced liver steatosis in mice. J Clin Invest 120(2):545-558.
    • (2010) J Clin Invest , vol.120 , Issue.2 , pp. 545-558
    • Escande, C.1
  • 32
    • 23744485726 scopus 로고    scopus 로고
    • Caspase-dependent processing activates the proapoptotic activity of deleted in breast cancer-1 during tumor necrosis factor-alpha-mediated death signaling
    • Sundararajan R, Chen G, Mukherjee C, White E (2005) Caspase-dependent processing activates the proapoptotic activity of deleted in breast cancer-1 during tumor necrosis factor-alpha-mediated death signaling. Oncogene 24(31):4908-4920.
    • (2005) Oncogene , vol.24 , Issue.31 , pp. 4908-4920
    • Sundararajan, R.1    Chen, G.2    Mukherjee, C.3    White, E.4
  • 33
    • 84868579788 scopus 로고    scopus 로고
    • Polyclonal CD4+Foxp3+ Treg cells induce TGFbeta-dependent tolerogenic dendritic cells that suppress murine lupus-like syndrome
    • Lan Q, et al. (2012) Polyclonal CD4+Foxp3+ Treg cells induce TGFbeta-dependent tolerogenic dendritic cells that suppress murine lupus-like syndrome. J Mol Cell Biol 4(6):409-419.
    • (2012) J Mol Cell Biol , vol.4 , Issue.6 , pp. 409-419
    • Lan, Q.1
  • 34
    • 1842451620 scopus 로고    scopus 로고
    • Death without caspases, caspases without death
    • Abraham MC, Shaham S (2004) Death without caspases, caspases without death. Trends Cell Biol 14(4):184-193.
    • (2004) Trends Cell Biol , vol.14 , Issue.4 , pp. 184-193
    • Abraham, M.C.1    Shaham, S.2
  • 35
    • 84855942635 scopus 로고    scopus 로고
    • Molecular mechanisms underlying the regulation and functional plasticity of FOXP3(+) regulatory T cells
    • Gao Y, et al. (2012) Molecular mechanisms underlying the regulation and functional plasticity of FOXP3(+) regulatory T cells. Genes Immun 13(1):1-13.
    • (2012) Genes Immun , vol.13 , Issue.1 , pp. 1-13
    • Gao, Y.1
  • 36
    • 55149094300 scopus 로고    scopus 로고
    • Human CD25highFoxp3pos regulatory T cells differentiate into IL-17-producing cells
    • Koenen HJ, et al. (2008) Human CD25highFoxp3pos regulatory T cells differentiate into IL-17-producing cells. Blood 112(6):2340-2352.
    • (2008) Blood , vol.112 , Issue.6 , pp. 2340-2352
    • Koenen, H.J.1
  • 37
    • 84857416489 scopus 로고    scopus 로고
    • Plasticity of Foxp3(+) T cells reflects promiscuous Foxp3 expression in conventional T cells but not reprogramming of regulatory T cells
    • Miyao T, et al. (2012) Plasticity of Foxp3(+) T cells reflects promiscuous Foxp3 expression in conventional T cells but not reprogramming of regulatory T cells. Immunity 36(2):262-275.
    • (2012) Immunity , vol.36 , Issue.2 , pp. 262-275
    • Miyao, T.1
  • 38
    • 70449532980 scopus 로고    scopus 로고
    • Decrease of Foxp3+ Treg cell number and acquisition of effector cell phenotype during lethal infection
    • Oldenhove G, et al. (2009) Decrease of Foxp3+ Treg cell number and acquisition of effector cell phenotype during lethal infection. Immunity 31(5):772-786.
    • (2009) Immunity , vol.31 , Issue.5 , pp. 772-786
    • Oldenhove, G.1
  • 39
    • 77951483356 scopus 로고    scopus 로고
    • Plasticity of T reg at infected sites
    • Wohlfert E, Belkaid Y (2010) Plasticity of T reg at infected sites. Mucosal Immunol 3(3): 213-215.
    • (2010) Mucosal Immunol , vol.3 , Issue.3 , pp. 213-215
    • Wohlfert, E.1    Belkaid, Y.2
  • 40
    • 78649900433 scopus 로고    scopus 로고
    • Pathogenic T cells have a paradoxical protective effect in murine autoimmune diabetes by boosting Tregs
    • Grinberg-Bleyer Y, et al. (2010) Pathogenic T cells have a paradoxical protective effect in murine autoimmune diabetes by boosting Tregs. J Clin Invest 120(12):4558-4568.
    • (2010) J Clin Invest , vol.120 , Issue.12 , pp. 4558-4568
    • Grinberg-Bleyer, Y.1
  • 41
    • 79959554060 scopus 로고    scopus 로고
    • Natural but not inducible regulatory T cells require TNF-alpha signaling for in vivo function
    • Housley WJ, et al. (2011) Natural but not inducible regulatory T cells require TNF-alpha signaling for in vivo function. J Immunol 186(12):6779-6787.
    • (2011) J Immunol , vol.186 , Issue.12 , pp. 6779-6787
    • Housley, W.J.1
  • 42
    • 84875708261 scopus 로고    scopus 로고
    • TNF-α impairs differentiation and function of TGF-β-induced Treg cells in autoimmune diseases through Akt and Smad3 signaling pathway
    • Zhang Q, et al. (2013) TNF-α impairs differentiation and function of TGF-β-induced Treg cells in autoimmune diseases through Akt and Smad3 signaling pathway. J Mol Cell Biol 5(2):85-98.
    • (2013) J Mol Cell Biol , vol.5 , Issue.2 , pp. 85-98
    • Zhang, Q.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.