-
1
-
-
84901842133
-
Biosynthesis and physiology of coenzyme Q in bacteria
-
Aussel, L. et al. Biosynthesis and physiology of coenzyme Q in bacteria. Biochim. Biophys. Acta 1837, 1004-1011 (2014).
-
(2014)
Biochim. Biophys. Acta
, vol.1837
, pp. 1004-1011
-
-
Aussel, L.1
-
2
-
-
35748939100
-
The role of UbiX in Escherichia coli coenzyme Q biosynthesis
-
Gulmezian, M., Hyman, K. R., Marbois, B. N., Clarke, C. F. & Javor, G. T. The role of UbiX in Escherichia coli coenzyme Q biosynthesis. Arch. Biochem. Biophys. 467, 144-153 (2007).
-
(2007)
Arch. Biochem. Biophys.
, vol.467
, pp. 144-153
-
-
Gulmezian, M.1
Hyman, K.R.2
Marbois, B.N.3
Clarke, C.F.4
Javor, G.T.5
-
3
-
-
0017157812
-
Membrane-associated reactions in ubiquinone biosynthesis in Escherichia coli. 3-octoprenyl-4-hydroxybenzoate carboxy-lyase
-
Leppik, R. A., Young, I. G. & Gibson, F. Membrane-associated reactions in ubiquinone biosynthesis in Escherichia coli. 3-octoprenyl-4-hydroxybenzoate carboxy-lyase. Biochim. Biophys. Acta 436, 800-810 (1976).
-
(1976)
Biochim. Biophys. Acta
, vol.436
, pp. 800-810
-
-
Leppik, R.A.1
Young, I.G.2
Gibson, F.3
-
4
-
-
83155188303
-
Carboxylases in natural and synthetic microbial pathways
-
Erb, T. J. Carboxylases in natural and synthetic microbial pathways. Appl. Environ. Microbiol. 77, 8466-8477 (2011).
-
(2011)
Appl. Environ. Microbiol.
, vol.77
, pp. 8466-8477
-
-
Erb, T.J.1
-
5
-
-
84896737581
-
Anaerobic degradation of homocyclic aromatic compounds via arylcarboxyl-coenzymeA esters: Organisms, strategies and key enzymes
-
Boll, M., Loeffler, C., Morris, B. E. L. & Kung, J. W. Anaerobic degradation of homocyclic aromatic compounds via arylcarboxyl-coenzymeA esters: organisms, strategies and key enzymes. Environ. Microbiol. 16, 612-627 (2014).
-
(2014)
Environ. Microbiol.
, vol.16
, pp. 612-627
-
-
Boll, M.1
Loeffler, C.2
Morris, B.E.L.3
Kung, J.W.4
-
6
-
-
77952110668
-
PAD1 and FDC1 are essential for the decarboxylation of phenylacrylic acids in Saccharomyces cerevisiae
-
Mukai, N., Masaki, K., Fujii, T., Kawamukai, M. & Iefuji, H. PAD1 and FDC1 are essential for the decarboxylation of phenylacrylic acids in Saccharomyces cerevisiae. J. Biosci. Bioeng. 109, 564-569 (2010).
-
(2010)
J. Biosci. Bioeng.
, vol.109
, pp. 564-569
-
-
Mukai, N.1
Masaki, K.2
Fujii, T.3
Kawamukai, M.4
Iefuji, H.5
-
7
-
-
7244244199
-
Crystal structure of a dodecameric FMN-dependent UbiXlike decarboxylate (Pad1) from Eschericia coli O157:H7
-
Rangarajan, E. S. et al. Crystal structure of a dodecameric FMN-dependent UbiXlike decarboxylate (Pad1) from Eschericia coli O157:H7. Protein Sci. 13, 3006-3016 (2004).
-
(2004)
Protein Sci.
, vol.13
, pp. 3006-3016
-
-
Rangarajan, E.S.1
-
8
-
-
84877317598
-
Structural insights into the UbiD protein family from the crystal structure of PA0254 from Pseudomonas aeruginosa
-
Jacewicz, A., Izumi, A., Brunner, K., Schnell, R. & Schneider, G. Structural insights into the UbiD protein family from the crystal structure of PA0254 from Pseudomonas aeruginosa. PLoS ONE 8, e63161 (2013).
-
(2013)
PLoS ONE
, vol.8
, pp. e63161
-
-
Jacewicz, A.1
Izumi, A.2
Brunner, K.3
Schnell, R.4
Schneider, G.5
-
9
-
-
84863882491
-
Mapping the structural requirements of inducers and substrates for decarboxylation of weak acid preservatives by the food spoilage mould Aspergillus niger
-
Stratford,M. et al.Mapping the structural requirements of inducers and substrates for decarboxylation of weak acid preservatives by the food spoilage mould Aspergillus Niger. Int. J. Food Microbiol. 157, 375-383 (2012).
-
(2012)
Int. J. Food Microbiol.
, vol.157
, pp. 375-383
-
-
Stratford, M.1
-
10
-
-
84933056649
-
UbiX is a flavin prenyltransferase required for bacterial ubiquinone biosynthesis
-
White, M. D. et al. UbiX is a flavin prenyltransferase required for bacterial ubiquinone biosynthesis. Nature. http://dx.doi.org/10.1038/nature14559 (2015).
-
(2015)
Nature
-
-
White, M.D.1
-
11
-
-
33947231700
-
Asymmetric 1,3-dipolar cycloadditions
-
Pellissier, H. Asymmetric 1,3-dipolar cycloadditions. Tetrahedron 63, 3235-3285 (2007).
-
(2007)
Tetrahedron
, vol.63
, pp. 3235-3285
-
-
Pellissier, H.1
-
12
-
-
48749096518
-
Theory of1,3-dipolar cycloadditions:Distortion/Interaction and frontier molecular orbital models
-
Ess,D.H.&Houk, K.N. Theory of1,3-dipolar cycloadditions:Distortion/Interaction and frontier molecular orbital models. J. Am. Chem. Soc. 130, 10187-10198 (2008).
-
(2008)
J. Am. Chem. Soc.
, vol.130
, pp. 10187-10198
-
-
Ess, D.H.1
Houk, K.N.2
-
13
-
-
84864416838
-
Decarboxylationmechanisms in biological system
-
Li, T.,Huo, L., Pulley, C.& Liu, A. Decarboxylationmechanisms in biological system. Bioorg. Chem. 43, 2-14 (2012).
-
(2012)
Bioorg. Chem.
, vol.43
, pp. 2-14
-
-
Li, T.1
Huo, L.2
Pulley, C.3
Liu, A.4
-
14
-
-
84908065770
-
Investigating the role of a backbone to substrate hydrogen bond in OMP decarboxylase using a site-specific amide to ester substitution
-
Desai,B. J. et al. Investigating the role of a backbone to substrate hydrogen bond in OMP decarboxylase using a site-specific amide to ester substitution. Proc. Natl Acad. Sci. USA 111, 15066-15071 (2014).
-
(2014)
Proc. Natl Acad. Sci. USA
, vol.111
, pp. 15066-15071
-
-
Desai, B.J.1
-
15
-
-
70349998462
-
Structure-guided directed evolution of alkenyl and arylmalonate decarboxylases
-
Okrasa, K. et al. Structure-guided directed evolution of alkenyl and arylmalonate decarboxylases. Angew. Chem. 48, 7691-7694 (2009).
-
(2009)
Angew. Chem.
, vol.48
, pp. 7691-7694
-
-
Okrasa, K.1
-
16
-
-
23244446480
-
Distribution of genes encoding the microbial non-oxidative reversible hydroxyarylic acid decarboxylases/phenol carboxylases
-
Lupa, B., Lyon, D., Gibbs, M. D., Reeves, R. A. & Wiegel, J. Distribution of genes encoding the microbial non-oxidative reversible hydroxyarylic acid decarboxylases/phenol carboxylases. Genomics 86, 342-351 (2005).
-
(2005)
Genomics
, vol.86
, pp. 342-351
-
-
Lupa, B.1
Lyon, D.2
Gibbs, M.D.3
Reeves, R.A.4
Wiegel, J.5
-
17
-
-
0038546470
-
Regulation of the isofunctional genes ubiD and ubiX of the ubiquinone biosynthetic pathway of Escherichia coli
-
Zhang, H. & Javor, G. T. Regulation of the isofunctional genes ubiD and ubiX of the ubiquinone biosynthetic pathway of Escherichia coli. FEMS Microbiol. Lett. 223, 67-72 (2003).
-
(2003)
FEMS Microbiol. Lett.
, vol.223
, pp. 67-72
-
-
Zhang, H.1
Javor, G.T.2
-
18
-
-
80955135674
-
Structure of PA4019. A putative aromatic acid decarboxylase from Pseudomonas aeruginosa
-
Kopec, J., Schnell, R.&Schneider,G. Structure of PA4019, a putative aromatic acid decarboxylase from Pseudomonas aeruginosa. Acta Crystallogr. F 67, 1184-1188 (2011).
-
(2011)
Acta Crystallogr. F
, vol.67
, pp. 1184-1188
-
-
Kopec, J.1
Schnell, R.2
Schneider, G.3
-
19
-
-
77954143053
-
The decarboxylation of the weak-acid preservative, sorbic acids, is encoded by linked genes in Aspergillus spp
-
Plumridge,A. et al. The decarboxylation of the weak-acid preservative, sorbic acids, is encoded by linked genes in Aspergillus spp. Fungal Genet. Biol. 47, 683-692 (2010).
-
(2010)
Fungal Genet. Biol.
, vol.47
, pp. 683-692
-
-
Plumridge, A.1
-
20
-
-
84928166783
-
Isofunctional enzymes Pad1 and UbiX catalyse formation of a novel cofactor required by ferulic acid decarboxylase and 4-hydroxy-3-polyprenylbenzoic acid decarboxylase
-
Lin, F., Ferguson, K. L., Boyer, D. R., Lin, X. N. & Marsh, E. N. Isofunctional enzymes Pad1 and UbiX catalyse formation of a novel cofactor required by ferulic acid decarboxylase and 4-hydroxy-3-polyprenylbenzoic acid decarboxylase. ACS Chem. Biol. 10, 1137-1144 (2015).
-
(2015)
ACS Chem. Biol.
, vol.10
, pp. 1137-1144
-
-
Lin, F.1
Ferguson, K.L.2
Boyer, D.R.3
Lin, X.N.4
Marsh, E.N.5
-
21
-
-
0033785799
-
Structural proteomics of an archaeon
-
Christendat, D. et al. Structural proteomics of an archaeon. Nature Struct. Biol. 7, 903-909 (2000).
-
(2000)
Nature Struct. Biol.
, vol.7
, pp. 903-909
-
-
Christendat, D.1
-
22
-
-
84870925950
-
Flavoenzymes: Versatile catalysts in biosynthetic pathways
-
Walsh, C. T. & Wencewicz, T. A. Flavoenzymes: versatile catalysts in biosynthetic pathways. Nat. Prod. Rep. 30, 175-200 (2013).
-
(2013)
Nat. Prod. Rep.
, vol.30
, pp. 175-200
-
-
Walsh, C.T.1
Wencewicz, T.A.2
-
23
-
-
84887231258
-
Crystal structures of isoorotate decarboxylases reveal a novel catalytic mechanism of 5-carboxyl-uracil decarboxylation and shed light on the search for DNA decarboxylase
-
Xu, S. et al. Crystal structures of isoorotate decarboxylases reveal a novel catalytic mechanism of 5-carboxyl-uracil decarboxylation and shed light on the search for DNA decarboxylase. Cell Res. 23, 1296-1309 (2013).
-
(2013)
Cell Res.
, vol.23
, pp. 1296-1309
-
-
Xu, S.1
-
24
-
-
77953709208
-
Synthetic applications of the carbonyl generating Grob fragmentation
-
Prantz, K. & Mulzer, J. Synthetic applications of the carbonyl generating Grob fragmentation. Chem. Rev. 110, 3741-3766 (2010).
-
(2010)
Chem. Rev.
, vol.110
, pp. 3741-3766
-
-
Prantz, K.1
Mulzer, J.2
-
25
-
-
79955642774
-
Enzyme-catalysed [412] cycloaddition is a key step in the biosynthesis of spinosyn A
-
Kim, H. J., Ruszczycky, M. W., Choi, S.-H., Lie, Y.-N. & Liu, H.-W. Enzyme-catalysed [412] cycloaddition is a key step in the biosynthesis of spinosyn A. Nature 473, 109-112 (2011).
-
(2011)
Nature
, vol.473
, pp. 109-112
-
-
Kim, H.J.1
Ruszczycky, M.W.2
Choi, S.-H.3
Lie, Y.-N.4
Liu, H.-W.5
-
26
-
-
84901855811
-
Impact of scaffold rigidity on the design and evolution of an artificial Diels-Alderase
-
Preiswerk, N. et al. Impact of scaffold rigidity on the design and evolution of an artificial Diels-Alderase. Proc. Natl Acad. Sci. USA 111, 8013-8018 (2014).
-
(2014)
Proc. Natl Acad. Sci. USA
, vol.111
, pp. 8013-8018
-
-
Preiswerk, N.1
-
27
-
-
84883884890
-
Functional diversity of organic molecule enzyme cofactors
-
Richter, M. Functional diversity of organic molecule enzyme cofactors. Nat. Prod. Rep. 30, 1324-1345 (2013).
-
(2013)
Nat. Prod. Rep.
, vol.30
, pp. 1324-1345
-
-
Richter, M.1
-
28
-
-
80053333905
-
Turning a riboflavinbinding protein into a self-sufficient monooxygenase by cofactor redesign
-
de Gonzalo, G., Smit, C., Jin, J.,Minnaard, A. J. & Fraaije,M.W. Turning a riboflavinbinding protein into a self-sufficient monooxygenase by cofactor redesign. Chem. Commun. 47, 11050-11052 (2011).
-
(2011)
Chem. Commun.
, vol.47
, pp. 11050-11052
-
-
De Gonzalo, G.1
Smit, C.2
Jin, J.3
Minnaard, A.J.4
Fraaije, M.W.5
-
29
-
-
79955780071
-
Aerobic reduction of olefins by in situ generation of diimide with synthetic flavin catalysts
-
Imada, Y., Iida, H., Kitagawa, T. & Naota, T. Aerobic reduction of olefins by in situ generation of diimide with synthetic flavin catalysts. Chemistry 17, 5908-5920 (2011).
-
(2011)
Chemistry
, vol.17
, pp. 5908-5920
-
-
Imada, Y.1
Iida, H.2
Kitagawa, T.3
Naota, T.4
-
30
-
-
0016771772
-
Microbial L-phenylalanine ammonia-lyase. Purification, subunit structure and kinetic properties of the enzyme from Rhizoctonia solani
-
Kalghatgi, K. K. & Subba Rao, P. V. Microbial L-phenylalanine ammonia-lyase. Purification, subunit structure and kinetic properties of the enzyme from Rhizoctonia solani. Biochem. J. 149, 65-72 (1975).
-
(1975)
Biochem. J.
, vol.149
, pp. 65-72
-
-
Kalghatgi, K.K.1
Subba Rao, P.V.2
-
31
-
-
0034002165
-
Comparing HPLC and UV spectrophotometric analysis methods for determining the stability of sorbic acid in nonionic creams containing lactic acid
-
de Villiers, M. M. & Bergh, J. J. Comparing HPLC and UV spectrophotometric analysis methods for determining the stability of sorbic acid in nonionic creams containing lactic acid. Drug Dev. Ind. Pharm. 26, 539-547 (2000).
-
(2000)
Drug Dev. Ind. Pharm.
, vol.26
, pp. 539-547
-
-
De Villiers, M.M.1
Bergh, J.J.2
-
32
-
-
79953737180
-
Overview of the CCP4 suite and current developments
-
Winn, M. D. et al. Overview of the CCP4 suite and current developments. Acta Crystallogr. D 67, 235-242 (2011).
-
(2011)
Acta Crystallogr. D
, vol.67
, pp. 235-242
-
-
Winn, M.D.1
-
34
-
-
79960535267
-
Atomic-resolution structure of an N5 flavin adduct in D-arginine dehydrogenase
-
Fu, G. et al. Atomic-resolution structure of an N5 flavin adduct in D-arginine dehydrogenase. Biochemistry 50, 6292-6294 (2011).
-
(2011)
Biochemistry
, vol.50
, pp. 6292-6294
-
-
Fu, G.1
-
35
-
-
70450206724
-
-
Gaussian, Wallingford, CT, revision B.01
-
Frisch, X. M. J. et al. Gaussian 09 (Gaussian, Wallingford, CT, revision B.01, 2010).
-
Gaussian 09
, pp. 2010
-
-
Frisch, X.M.J.1
-
36
-
-
0031473847
-
SWISS-MODEL and the Swiss-PdbViewer: An environment for comparative protein modeling
-
Guex, Y. N. & Peitsch, M. C. (1997) SWISS-MODEL and the Swiss-PdbViewer: An environment for comparative protein modeling. Electrophoresis 18, 2714-2723 (1997).
-
(1997)
Electrophoresis
, vol.18
, pp. 2714-2723
-
-
Guex, Y.N.1
Peitsch, M.C.2
-
37
-
-
33644897568
-
Hybrid density functional theory for pi-stacking interactions: Application to benzenes, pyridines, and DNA bases
-
Waller, M. P., Robertazzi, A., Platts, J. A., Hibbs,D. E.& Williams, P. A.Hybrid density functional theory for pi-stacking interactions: Application to benzenes, pyridines, and DNA bases. J. Comput. Chem. 27, 491 (2006).
-
(2006)
J. Comput. Chem.
, vol.27
, pp. 491
-
-
Waller, M.P.1
Robertazzi, A.2
Platts, J.A.3
Hibbs, D.E.4
Williams, P.A.5
|